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Abstract

We propose an efficient online video filtering method, called

adaptive exponential filtering (AES) to refine pixel prediction

maps. Assuming each pixel is associated with a discriminative pre-

diction score, the proposed AES applies exponentially decreasing

weights over time to smooth the prediction score of each pixel, sim-

ilar to classic exponential smoothing. However, instead of fixing

the spatial pixel location to perform temporal filtering, we trace

each pixel in the past frames by finding the optimal path that can

bring the maximum exponential smoothing score, thus performing

adaptive and non-linear filtering. Thanks to the pixel tracing, AES

can better address object movements and avoid over-smoothing.

To enable real-time filtering, we propose a linear-complexity dy-

namic programming scheme that can trace all pixels simultane-

ously. We apply the proposed filtering method to improve both

saliency detection maps and scene parsing maps. The compar-

isons with average and exponential filtering, as well as state-of-

the-art methods, validate that our AES can effectively refine the

pixel prediction maps, without using the original video again.

1. Introduction

Despite the success of pixel prediction, e.g., saliency de-

tection and parsing in individual images, its extension to

video pixel prediction remains a challenging problem due

to the spatio-temporal structure among the pixels and the

huge computations to analyze the video data. For exam-

ple, when each video frame is parsed independently, the

per-pixel prediction maps are usually “flickering” due to

the spatio-temporal inconsistencies and noisy predictions,

e.g., caused by object and camera movements or low quality

videos. Thus an efficient online filtering of the pixel predic-

tion maps is important for many streaming video analytics

applications.

To address the “flickering” effects, enforcing spatio-

temporal smoothness constraints over the pixel predictions

can improve the quality of the prediction maps [25, 8, 12, 9].

However, existing methods still have difficulty in providing

a solution that is both efficient and effective. On the one

hand, despite a lot of previous works [19, 22] on real-time

video denoising, they are designed to improve the video

quality rather than its pixel prediction maps. It is worth

Figure 1: We propose a spatio-temporal filtering framework, to

refine the per-frame prediction maps from an image analysis mod-

ule. Top Row: input video. Middle Row: per-frame prediction

maps. Bottom Row: refined maps by our filter.

noting that linear spatio-temporal filtering methods such as

moving average or exponential smoothing that works well

for independent additive video noises may not provide satis-

factory results on the pixel prediction maps, which are usu-

ally affected by non-additive and signal dependent noises.

Thus special spatio-temporal filtering methods are required

to deal with them. On the other hand, although a few spatio-

temporal filtering methods have been proposed to refine

pixel prediction maps, most of them only perform in an of-

fline or batch mode where the whole video is required to

perform the smoothing [14, 17, 24, 2]. Although a few re-

cent works have been developed for online video filtering,

they usually rely on extra steps, such as producing tempo-

rally consistent superpixels from a streaming video [9], or

leveraging metric learning and optical flow [25], thus are

difficult to be implemented in real-time.

To address the above limitations, in this paper we pro-

pose an efficient online video filtering method which is able

to perform online and real-time filtering. Given a sequence

of pixel prediction maps, where each pixel is associated

with a detection score or a probabilistic multi-class distri-

bution, our goal is to provide a causal filtering that can
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improve the spatio-temporal smoothness of the pixel pre-

diction maps thus to reduce the “flickering” effects. Our

method is motivated by the classic exponential smoothing,

as we also apply exponentially decreasing weights over time

to smooth the prediction score of each pixel. However, in-

stead of fixing the pixel location to perform temporal filter-

ing, for each pixel, we firstly search for a smoothing path of

maximum score that traces this pixel over past frames, and

then perform temporal smoothing over the found path. To

find the path for each pixel, we rely on the pixel prediction

maps. For example, if a pixel truly belongs to the car cate-

gory, it should be easily traced back to the pixels in previous

frames that also belong to the car category.

For efficient online implementation, instead of perform-

ing pixel tracing for each individual pixel, we propose a

dynamic programming algorithm that can trace all pixels

simultaneously with only linear complexity in terms of the

total number of pixels. It guarantees to obtain the optimal

paths for all pixels, and only needs to keep the most recent

pixel prediction values for online filtering. Thanks to the

pixel tracing, our method can better address object or cam-

era movements when performing spatio-temporal filtering.

Moreover, similar to exponential smoothing, our method

can well address false alarms, i.e., pixels with high predic-

tion score but low exponential smoothing score, as well as

missing detections, i.e., pixels with low prediction score but

high exponential smoothing score. We also discuss the re-

lationship between the proposed filtering method and the

existing filtering methods and show that they are actually

the special cases of the proposed method.

We perform two different streaming video analytics

tasks, i.e., online saliency map filtering and online multi-

class scene parsing, to evaluate the performance. We

achieve more than 55 frames per second for a video of size

320 × 240. The excellent performance compared with the

state-of-the-art methods validates the effectiveness and ef-

ficiency of the proposed spatio-temporal filtering for video

analytics applications.

2. Related Work

Our work is inspired by classical linear casual filters,

e.g., spatio-temporal exponential filter. While these filters

can well suppress additive noises in static backgrounds,

they usually tend to overly smooth moving objects. To bet-

ter deal with moving objects, previous methods [25, 27] re-

strict support of the filters by optical flow connection. Also,

[25] applies metric learning so that filtering is performed

adaptively according to the learned appearance similarities.

While effective, the methods are computationally intensive.

In contrast, our method is also an extension of exponential

filter but with two important differences: (1) no appearance

or motion information is needed by our method, and (2) the

computational cost is much smaller.

Probabilistic graphical models [16, 12, 8, 35] are also

used to perform on-line spatio-temporal smoothing. In

these models, labeling consistency among the frames is en-

Input 
Frame

Original 
Saliency 

Map

Exponential
Filtering

Ours
Filtering

Figure 2: Exponential filter (Eq. 2) can introduce signifi-

cant tailing artifacts when filtering fast-moving pixels. First

row: input video. 2nd Row: per-frame prediction maps.

3rd Row: refined maps by exponential filter. Bottom Row:

refined maps by our filter.

forced via pairwise edge terms. To satisfy the online re-

quirement, some of them restrict the message passing from

past to current frame [12, 8, 35]. While they yield good per-

formance, efficient inference over large graphical model is

still a challenging problem. In addition, they only provide

discretized labeling results without retaining the confidence

scores. However, as argued in [25], confidence scores are

useful for certain applications thus it is preferable that the

filtering can directly refine the prediction scores.

Different from the above, which perform online filtering

based on existing per-frame prediction maps, online super-

voxels methods [9, 36, 39, 38, 15, 21, 28] can be used to

enforce spatio-temporal consistency during prediction step.

However, even with the spatio-temporal consistent super-

voxels, inconsistent predictions may still occur, thus filter-

ing may be needed.

Our work is also related to max-path formulation for

video event detection [32, 40]. However [32] only needs

to find the max path among all paths while our target is to

denoise the dense maps thus we need to trace each individ-

ual pixel. The formulation in [40] is more relevant to mov-

ing average, in contrast our work generalizes classic expo-

nential smoothing. Furthermore, our work is related to the

offline techniques which model spatio-temporal structure

among pixels [14, 17, 24, 41, 27, 37, 2] and video denois-

ing [19, 22]. It should be noted most video denoising meth-

ods are mainly designed for appearance denoising, rather

than noises introduced from classifier output, i.e., predic-

tion maps denoising.

3. Proposed Method

We denote a video sequence as S = {I1, I2, ..., IT },

where Ik is a W ×H image frame. For each spatio-

temporal location (x, y, t), we assume that a prediction

score U(x, y, t) is provided by an independent image analy-
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sis module. As the pixel scores are generated independently

per frame, they do not necessarily enforce the temporal con-

sistency across frames. So filtering is needed to refine the

pixel prediction maps. We first explain two classical linear

filters below:

Moving Average (Ave) [18] :

M(x, y, t) =
1

δT

t∑

i=t−δT

U(x, y, i). (1)

Exponential Smoothing (Exp) [7]:

M(x, y, t) =

α×M(x, y, t− 1) + (1− α)× U(x, y, t)

=α(t−1)U(x, y, 1) + (1− α)

t∑

i=2

α(t−i)U(x, y, i)

≈(1− α)

t∑

i=1

α(t−i)U(x, y, i). (2)

Here M(x, y, t) is the filtered response, δT and α are tem-

poral smoothing bandwidth for moving average and tem-

poral weighting factor for exponential smoothing, respec-

tively. The approximation error in Eq. 2 decays exponen-

tially with respect to t. Unlike moving average which as-

signs the equal weight for input scores within a temporal

window, exponential filtering weights input scores in an ex-

ponentially decreasing manner.

When applying to videos, these filters operate along a

fixed pixel location (x, y) to perform temporal smoothing.

As a result, they can easily overly smooth fast-moving pix-

els and cause tailing artifacts as shown in Fig. 2. To

better handle moving pixels, a good spatio-temporal filter

should be able to adapt to different pixels, so the tempo-

ral smoothing will be less likely to overly smooth moving

pixels. The above observation motivates us to propose an

adaptive smoothing that is pixel dependent.

3.1. Adaptive Exponential Smoothing (AES)

We assume each spatio-temporal location vt = (x, y, t)
is associated with a discriminative prediction score U(vt).
For example, a high positive score U(vt) implies a high

likelihood that the current pixel belongs to the target class,

while a high negative score indicates a low likelihood. To

better explain the proposed AES, we represent the video as

a 3-dimensional trellis W ×H × T denoted by G. For each

pixel v = vt, we trace it in the past frames to obtain a path

Ps→t(vt) = {vi}
t
i=s in G. Here i is the frame index, and vi

is a pixel at frame i. The path Ps→t(vt) satisfies the spatio-

temporal smoothness constraints: xi−R ≤ xi+1 ≤ xi+R,

yi − R ≤ yi+1 ≤ yi + R and ti+1 = ti + 1 where R rep-

resents the spatial neighborhood radius, i.e., (xi+1, yi+1) ∈
N (xi, yi) = [xi −R, xi +R]× [yi −R, yi +R].

Instead of performing temporal exponential smoothing

at fixed spatial location, for each pixel, we propose to trace

it back in the past frames by finding its origin, such that

the pixels of the found path are more likely to belong to the

same label category. So the temporal smoothing will be less

likely to blend the prediction scores of different classes. To

perform pixel tracing, the exponential smoothing score of

pixel vt is used as the pixel’s tracing score, which is defined

as the weighted accumulation score of all the pixels along

the path Ps→t(vt):

M(Ps→t(vt)) =

t∑

i=s

α(t−i)U(vi), (3)

where α is the temporal weighting factor ranging from 0

to 1. Similar to exponential smoothing, to filter the current

location vt, we assign the previous score U(vi) a smaller

weight according to its “age” in the path, i.e., t− i.

As the exponential smoothing score M(Ps→t(vt))
stands for the accumulative evidence to current label and

we want to find a path whose pixels are more likely to have

the same label, we formulate the filtering problem as finding

the path that maximizes the exponential smoothing score:

P∗
s→t(vt) = argmax

Ps→t(vt)∈path(G,vt)
M(Ps→t(vt)), (4)

where P∗
s→t(vt) is a pixel dependent path to perform expo-

nential smoothing, and path(G, vt) refers to the set of all

the candidate paths that end at vt. Based on the formula-

tion, the maximum exponential smoothing score is used as

the pixel’s filtered score, i.e., M(x, y, t) = M(P ∗
s→t(vt)).

A pixel with high isolated positive score but low exponen-

tial smoothing score, i.e., U(vt) is high but M(P ∗
s→t(vt))

is low, will be treated as false positive, and a pixel with

low isolated negative score but high exponential smooth-

ing score, i.e., U(vt) is low but M(P ∗
s→t(vt)) is high, will

be treated as false negative. In addition, as the individual

score U(vi) can be either positive or negative, it is not nec-

essary that a longer path is better. The length of the path ac-

tually adaptively determines the temporal smoothing band-

width, which may well address missing detections and false

alarms.

3.2. Online Pixel Filtering

A brute-force way to solve the pixel-tracing problem de-

fined in Eq. 4 is time consuming, because the starting frame

number s of all candidate paths range from 1 to t, so the

search space is large for even a single pixel location vt, i.e.,

O((2R + 1)T ), where T is the video length. To achieve

better efficiency, we propose an efficient online filtering al-

gorithm based on dynamic programming, that can trace all

pixels simultaneously with a linear complexity. By Eq. 3
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Objective Conditions

Moving Average Filtering

(Ave)
M(x, y, t) =

1

δT

t∑

i=t−δT

U(x, y, i)
α = 1, R = 0,

s = t− δT

Spatio-Temporal Moving Average Filtering

(ST-Ave)
M(x, y, t) =

1

δT

t∑

i=t−δT

U ′(x, y, i)
α = 1, R = 0,

s = t− δT

Exponential Filtering

(Exp)
M(x, y, t) ≈ (1− α)

t∑

i=1

α(t−i)U(x, y, i) R = 0, s = 1

Spatio-Temporal Exponential Filtering

(ST-Exp)

[25] (online)
M(x, y, t) ≈ (1− α)

t∑

i=1

α(t−i)U ′(x, y, i) R = 0, s = 1

Adaptive Exponential Smoothing

(AES)
M(P∗

s→t(vt)) =

t∑

i=s

α(t−i)U(vi) -

Table 1: Relationship between our AES and other online filtering methods. Parameters α and R stand for the temporal

weighting factor and the spatial neighborhood radius, respectively. s stands for starting location of the path. U ′(x, y, t) =
1
K

∑δx=+δ
δx=−δ

∑δy=+δ
δy=−δ U(x+ δx, y+ δy, t), where δ is the spatial smoothing bandwidth. K = (2× δ+1)2 is a normalization

factor.

and Eq. 4, the pixel tracing objective can also be written as:

M(P∗
s→t(vt))

= max
1≤s≤t

{
max

∀s≤i≤t−1,
(xi,yi)∈N (xi+1,yi+1)

t−1∑

i=s

α(t−i)U(vi)

}
+ U(vt).

(5)

The outer maximization searches for the optimal starting

frame and the inner maximization searches for the optimal

path from the starting frame s to the current frame.

As explained before, for each pixel vt, we try to trace

it back to its origin vs in the past frames, such that the ex-

ponential smoothing score along the path P∗
s→t(vt) is max-

imized. Instead of performing back-tracing, our idea is to

perform forward-tracing using dynamic programming, such

that all pixels are traced simultaneously. It is in spirit simi-

lar to the max-path search in [32, 40]. We explain the idea

of our dynamic programming using the following lemma 1:

Lemma 3.1. M̂(vt) in Eq. 6 is identical to M(P∗
s→t(vt))

defined by Eq. 5.

M̂(vt)

= max

{
max

(xt−1,yt−1)∈N (xt,yt)
α× M̂(vt−1), 0

}
+ U(vt).

(6)

Let M̂(v∗t−1) indicates the maximized score from

vt’s neighbors in the previous frame, i.e., M̂(v∗t−1) =

max(xt−1,yt−1)∈N (xt,yt) M̂(vt−1). If it is positive, we

1The proof can be obtained from: https://sites.google.

com/site/kangdang/.

propagate it to the current location vt. Otherwise a new

path is started from vt, because connecting to any neigh-

bor in previous frame will decrease its score. Based on the

lemma we implement the algorithm in Alg. 1.

Algorithm 1 Adaptive Exponential Filtering

1: M̂(v1)← U(v1), ∀(x1, y1) ∈ [1,W ]× [1,H]
2: for t← 2 to n do

3: for all (xt, yt) ∈ [1,W ]× [1, H] do

4: M̂(v∗t−1)← max
(xt−1,yt−1)∈N (xt,yt)

M̂(vt−1)

5: M̂(vt)← max

{
α× M̂(v∗t−1), 0

}
+U(vt)

The time complexity of our algorithm is linear in terms

of the number of pixels, i.e., O(W ×H) for one frame and

O(W × H × T ) for the whole video. Due to its simplic-

ity, the computational cost of our algorithm is identical to

the classical linear filters, e.g., temporal moving average or

exponential filter.

3.3. Filtering MultiClass Pixel Prediction Maps

Our method can be easily extended to filter multi-class

pixel prediction maps. In this case each pixel has K pre-

diction scores of K classes denoted by U(v, c), where

c = 1, ...,K refers to class labels. Correspondingly there

are K paths Ps→t(vt, c) and path scores M(Ps→t(vt, c), c),
by performing pixel tracing independently for all K classes.

The final classification can be determined by “winner-

taking-all” strategy below:

c∗ = argmax
c∈{1,..K}

max
Ps→t(vt,c)∈path(G,vt)

M(Ps→t(vt, c), c).

(7)
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However, as the filtering scores of different classes are

independently calculated, the obtained filtering scores may

not be directly comparable. We can train a classifier such as

linear SVM or logistic regression to further perform score

calibration [23, 31].

If the image analysis module produces a probabilistic

score Pr(c | v) rather than a discriminative score, where∑K
k=1 Pr(c = k | v) = 1, we convert it into the discrimi-

native score by subtracting a small offset: U(v, c) = Pr(c |
v)− 1/K, where K is the number of classes.

3.4. Relationship with Other Filtering Methods

The proposed AES is a generalization of existing online

filtering approaches such as classic exponential smoothing

and moving average. In Table 1, we show how Eq. 3 can

be converted into the objective functions of other filtering

methods under different settings. For example: when set-

ting neighborhood radius R = 0, temporal weighting factor

α = 1 and forcing path starting location s = t − δT , our

method can become a moving average. When setting R = 0
and forcing s = 1, our method can approximately become

an exponential filtering. As moving average or exponential

filtering become the special cases of our framework, with

proper parameter settings, our method is guaranteed to be

the same or better than these methods in performance. We

will verify this claim from experimental comparisons.

4. Experiments

4.1. Online Filtering of Saliency Map

In this experiment, we evaluate our method on saliency

map filtering using UCF 101 and SegTrack datasets.

UCF 101 [30]. UCF101 is an action recognition

dataset and the per-frame bounding-box annotations are

provided for 25 out of 101 categories. To obtain the pixel-

wise annotations for evaluation, we label the pixels inside

the annotated bounding boxes as ground truth. We use all

the action categories except for “Basketball”, because its

ground-truth annotations are excessively noisy. We ran-

domly pick 50% of the videos for each category and down-

sample the frames to 160×120 for computational efficiency.

In total we have evaluated 1599 video sequences.

SegTrack [33] . SegTrack dataset is popular in ob-

ject tracking [33] and detection [27]. It contains 5 short

video sequences 2 and the per-frame pixel-wise annotations

are provided to denote the primary object in each video.

To obtain the initial dense saliency map estimations,

we use the phase discrepancy method [42] for UCF 101

dataset and the inside-outside map [27] for SegTrack

dataset. We use F-measure to evaluate the saliency map

quality on both datasets. Let Sd and Sg denote the de-

tected pixel-wise saliency map and the ground truth, re-

spectively, the F-measure can be computed as F-measure =

2We exclude the penguin sequence by following the setup of [27]. Pen-

guin contains multiple foreground objects but it does not label every one. It

is mainly for object tracking and not suitable for saliency map evaluation.

Original Ave ST-Ave Exp ST-Exp [40] Ours

30.6 30.6 30.7 30.6 31.6 31.0 36.2

Table 2: Saliency map filtering on UCF 101 .

Birdfall Cheetah Girl Monkey Parachute Mean

Original 62.6 36.1 37.1 17.0 78.4 46.2

Ave 64.9 35.5 37.1 20.2 77.8 47.1

ST-Ave 59.7 40.5 42.1 24.4 76.1 48.5

Exp 67.1 36.3 36.8 21.1 78.6 48.0

ST-Exp 60.7 40.1 42.0 23.7 76.2 48.5

[40] 62.3 38.0 37.7 17.2 78.3 46.7

Ours 65.3 40.1 44.5 22.9 78.8 50.3

Table 3: Saliency map filtering on SegTrack.

2×precision×recall

precision+recall
, where precision =

Trace(ST
d Sg)

1Sd1
T and recall =

Trace(ST
d Sg)

1Sg1
T .

We compare our method with all the filters mentioned

in Table 1 as well as [40]. It is interesting to note that our

method dilates the modes of the saliency maps as shown

in the 6th column of Figure 6. If a more compact map is

preferred, we can take a further step to normalize the fil-

tered saliency map to [0, 1] and multiply it with the original

saliency map. As shown in the 7th column of Figure 6, it

can select the modes from the original saliency maps.

All the parameters of the proposed and the baseline

methods are selected by grid search. We fix the parameters

within each dataset for all the experiments. The quantita-

tive evaluations are shown in Table 2 and Table 3. Some

qualitative examples are also shown in Figure 4 and Figure

6. From the results, we can see that the proposed filtering

method can significantly improve the saliency map quality

and is better than the compared baseline methods especially

for UCF 101 dataset. Compared with SegTrack dataset,

UCF 101 dataset contains fast motions such as jumping

and diving, thus our method can work more effectively. In

contrast to the baseline approaches, the proposed method

uses non-straight filtering path, hence can cope with these

challenges. We also find that the original saliency maps

of UCF 101 are usually disrupted by false alarms while

SegTrack maps contain a lot of miss detections. The bet-

ter performance on both datasets shows that our method can

deal with both types of imperfections.

We have also evaluated the effects of the parameter vari-

ations of our method, i.e., the temporal weighting factor α
and the spatial neighborhood radius R, and the results are

shown in Figure 5. An interesting observation is the steep

performance dropping when the temporal weighting factor

α is increased from 0.9 to 1.0. This is due to the ampli-

fying effect of the exponential function, i.e., 0.915 ≈ 0.2
while 115 = 1, and it further validates the importance of

the temporal weighting factor α. As [40] does not consider

the temporal weighting, it becomes similar 3 to our special

3Different from our method, [40] applies certain heuristic procedures

such as multiplication of the pixel tracing score and the original score to

pull up the performance.
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Figure 3: Per-category results on UCF101.
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Figure 4: Qualitative results of saliency map filtering on

SegTrack. Top Row: input video. Middle Row: per-frame

saliency maps. Bottom Row: filtered saliency maps by our filter.
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Figure 5: Parameter sensitivity evaluation of the proposed

method on UCF 101. The vertical axis is the mean F-measure

of all the selected categories. The temporal weighting factor is

evaluated by fixing the spatial search radius to 3 and the spatial

search radius is evaluated by fixing the temporal weighting factor

to 0.9.

case of α = 1 which overly emphasizes the past frames.

This may partially explain its weak performance as shown

in Table 2 and Table 3.

The filtering algorithm is implemented in C++ and the

experiments are conducted on a laptop with Intel Core i7

processor. Our code runs at around 450 frames per second

when the input size is 160 × 120 and the spatial neighbor-

hood radius is 3.

4.2. Online Filtering of the Scene Parsing Map

Original Ave ST-Ave Exp ST-Exp [40] Ours

NYU
71.1

(28.3)

74.5

(28.1)

75.4

(28.0)

74.8

(28.8)

75.8

(28.3)

72.1

(29.2)

76.6

(28.3)

MPI
93.1

(74.6)

93.6

(76.0)

93.6

(76.0)

93.6

(76.0)

93.6

(76.0)

94.3

(77.4)

94.3

(77.1)

01TP
77.8

(40.6)

78.8

(41.4)

81.0

(43.5)

79.2

(41.9)

80.8

(43.1)

78.3

(40.9)

81.7

(44.5)

05VD
84.6

(47.8)

85.2

(47.8)

85.2

(47.8)

85.4

(48.1)

85.4

(48.1)

84.7

(47.5)

85.4

(48.2)

Table 4: Comparisons with baseline filtering methods. Numbers

outside and within brackets are per-pixel accuracies, and average

per-class IOU scores, respectively.

NYU MPI 01TP 05VD

ST-Exp +

Flow

75.9

(29.2)

93.7

(76.1)

78.9

(42.2)

86.1

(48.5)

[25]
75.3

(29.6)

93.6

(74.2)
-

86.9

(50.0)

Offline MRF
75.3

(28.1)

94.8

(79.7)

80.2

(42.5)

85.3

(47.6)

Ours
76.6

(28.3)

94.3

(77.1)

81.7

(44.5)

85.4

(48.2)

Table 5: Comparisons with optical flow guided spatio-temporal

exponential filtering, Miksik et al. [25] and offline MRF on scene

parsing map filtering. Numbers outside and within brackets are

per-pixel and average per-class IOU scores, respectively.

In the second experiment, we evaluate our approach on

online filtering of scene parsing maps of four videos 4.NYU

is a video of 74 annotated frames with 11 semantic labels

captured from a hand-held camera. The initial scene parsing

maps are generated from a deep-learning architecture [13].

MPI [34] consists of 156 annotated frames with 5 seman-

tic labels captured from a dashboard-mounted camera. The

initial scene parsing maps are obtained from a boosted clas-

sifier [35]. CamVid-05VD and CamVid-01TP videos [6]

contain 5100 and 1831 frames taken at 30 Hz during day-

4The initial scene parsing maps of NYU, MPI and CamVid-05VD

videos can be obtained from http://www.cs.cmu.edu/˜dmunoz/

projects/onboard.html.
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Figure 6: Qualitative results of saliency map filtering on UCF 101.
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Figure 7: Image results of NYU dataset. Top: original prediction. Bottom: temporally smoothed using our method. Inconsistent regions

are highlighted.

light and dusk, respectively. The sequences are sparsely la-

beled at 1 Hz with 11 semantic labels. To perform initial

scene parsing, we use hierarchical inference machine [26]

for CamVid-05VD and location constraint SVM classifier

[11] for CamVid-01TP. Because the four videos use dif-

ferent scene parsing algorithms, the noise patterns of their

initial maps are also distinguishably different. Therefore for

both the proposed method and all the baseline methods, for

each video we use a different set of parameters obtained by

grid search.

As the scene parsing maps contain multi-class annota-

tions, we have to run our filtering algorithm multiple times

(e.g., 11 times for NYU) and use the “winner-taking-all”

strategy to determine the filtered label. To reduce compu-

tational cost, we extract around 5000 superpixels on each

frame using SLIC algorithm [1]. All the following opera-

tions are then performed on the superpixel level, which pro-

vides a significant speedup. On average the superpixel ex-

traction runs at 50 frames per second, and the filtering runs

at 15 frames per second. We can further accelerate the fil-
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Building Car Door Person Pole Road Sidewalk Sign Sky Tree Window Ave

Per-Frame 45.2 42.4 1.1 18.4 6.8 81.0 16.9 3.2 9.8 78.8 8.0 28.3

[25] 52.0 52.5 0.0 16.9 5.8 83.0 12.8 0.0 9.8 83.0 9.4 29.6

Ours 54.6 55.3 0.0 19.7 0.8 82.1 1.2 0.0 8.0 81.8 8.2 28.3

Table 6: Per-class intersection-over-union (IOU) scores on NYU.

Building Tree Sky Car Sign Road Pedestrian Fence Column Sidewalk Bicyclist Ave

0
1
T
P Original 46.0 61.7 86.2 55.8 0.0 78.7 21.9 4.7 9.5 61.6 20.4 40.6

Ours 53.9 66.0 88.5 64.8 0.0 80.5 30.1 3.4 11.3 62.4 28.8 44.5

0
5
V
D Original 76.2 56.3 88.9 69.1 23.8 86.2 31.0 14.9 11.6 55.2 12.5 47.8

[25] 79.7 60.1 89.7 73.6 27.5 88.6 37.8 16.5 8.7 62.2 5.0 50.0

Ours 77.9 58.8 88.6 70.6 26.0 86.8 32.7 15.0 7.8 56.5 9.7 48.2

Table 7: Per-class intersection-over-union (IOU) scores on CamVid-01TP and CamVid-05VD.

Background Road Lane Vehicle Sky Ave

Original 87.4 91.0 45.7 54.4 94.6 74.6

[25] 89.7 91.0 39.3 55.8 95.2 74.2

Ours 90.7 91.2 39.7 69.5 94.3 77.1

Table 8: Per-class intersection-over-union (IOU) scores on MPI.

tering speed to 50 frames per second with quad-core paral-

lel processing using OpenMP [10]. So overall the real-time

performance can be achieved. In contrast, the code runs at

5 frames per second if the filtering is performed on the pixel

level.

Comparisons with filters from Table 1 and Yan et al.

[40]. From Table 4, we observe that our method out-

performs all these baselines by a considerable margin, ex-

cept for CamVid-05VD. The initial scene parsing maps of

CamVid-05VD contain heavy amounts of noises varying

differently for different semantic labels. Such noises nega-

tively affect our method’s pixel tracing thus the performance

gain is smaller. In Figure 7 we also show some image results

of NYU. The significant benefits of our spatio-temporal fil-

tering can be clearly observed, as we have successfully cor-

rected a lot of “flickering” classifications in its initial maps.

Comparisons with optical flow guided spatio-

temporal exponential filtering. To perform op-

tical flow wrapping, spatio-temporal exponen-

tial filter in Table 1 is modified to M(x, y, t) =
α × M(x + ux, y + uy, t − 1) + (1 − α)U ′(x, y, t),
where (ux, uy) is the flow vector computed using [3]. From

Table 5, we see that our method performs comparable with

or better than the optical flow guided spatio-temporal ex-

ponential filtering. This implies that pixel tracing from our

method is sometimes more effective than optical flow for

prediction maps filtering. For example, as CamVid-01TP

is captured at dusk, its image quality is low and the optical

flow computation becomes less reliable.

Comparisons with Miksik et al. [25]. Because [25]

uses sophisticated appearance modeling techniques such

as metric learning and optical flow to do pixel tracing, it

is more robust to the noises of initial maps. Therefore

from Table 5 our method performs worse than [25] on

CamVid-05VD. However our method performs compara-

bly for the other videos, and better for some fast-moving

categories such as “vehicle” as shown in Table 8. Moreover

ours runs 20 times faster than [25].

Comparisons with offline Markov Random Field. We

construct an MRF for the entire video where nodes repre-

sent superpixels and edges connect pairs of superpixels that

are spatially adjacent in the same frame or between neigh-

boring frames. The unary and edge energy terms are de-

fined similarly to [29], and the constructed MRF is then in-

ferred using GCMex package [5, 20, 4]. For the long video

sequences, i.e., CamVid-05VD and CamVid-01TP, the

MRF is constructed only on the annotated key frames for

computational efficiency. Table 5 shows that our method

performs better than the MRF in all the videos except for

MPI. This again demonstrates that our performance is quite

promising in spite of the method’s simplicity.

5. Conclusions

In this work, we propose an efficient online video filter-

ing method, named adaptive exponential smoothing (AES),

to refine pixel prediction maps. Compared with the tradi-

tional average and exponential filtering, our AES does not

fix the spatial location or temporal smoothing bandwidth

while performing temporal smoothing. Instead, it performs

adaptive filtering for different pixels, thus can better ad-

dress missing and false pixel predictions, and better tol-

erate fast object movements and camera motion. The ex-

perimental evaluations on saliency map filtering and multi-

class scene parsing validate the superiority of the proposed

method compared with the state of the art. Thanks to the

proposed dynamic programming algorithm for pixel trac-

ing, our filtering method has linear time complexity and

runs in real time.
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