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Abstract

Robust and accurate visual tracking is one of the most

challenging computer vision problems. Due to the inherent

lack of training data, a robust approach for constructing a

target appearance model is crucial. Recently, discrimina-

tively learned correlation filters (DCF) have been success-

fully applied to address this problem for tracking. These

methods utilize a periodic assumption of the training sam-

ples to efficiently learn a classifier on all patches in the tar-

get neighborhood. However, the periodic assumption also

introduces unwanted boundary effects, which severely de-

grade the quality of the tracking model.

We propose Spatially Regularized Discriminative Cor-

relation Filters (SRDCF) for tracking. A spatial regular-

ization component is introduced in the learning to penalize

correlation filter coefficients depending on their spatial lo-

cation. Our SRDCF formulation allows the correlation fil-

ters to be learned on a significantly larger set of negative

training samples, without corrupting the positive samples.

We further propose an optimization strategy, based on the it-

erative Gauss-Seidel method, for efficient online learning of

our SRDCF. Experiments are performed on four benchmark

datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014.

Our approach achieves state-of-the-art results on all four

datasets. On OTB-2013 and OTB-2015, we obtain an ab-

solute gain of 8.0% and 8.2% respectively, in mean overlap

precision, compared to the best existing trackers.

1. Introduction

Visual tracking is a classical computer vision problem

with many applications. In generic tracking the task is to

estimate the trajectory of a target in an image sequence,

given only its initial location. This problem is especially

challenging. The tracker must generalize the target appear-

ance from a very limited set of training samples to achieve

robustness against, e.g. occlusions, fast motion and defor-

mations. Here, we investigate the key problem of learning a

robust appearance model under these conditions.

Recently, Discriminative Correlation Filter (DCF) based

(a) Original image. (b) Periodicity in correlation filters.

Figure 1. Example image (a) and the underlying periodic assump-

tion (b) employed in the standard DCF methods. The periodic

assumption (b) leads to a limited set of negative training samples,

that fails to capture the true image content (a). As a consequence,

an inaccurate tracking model is learned.

approaches [5, 8, 10, 19, 20, 24] have successfully been ap-

plied to the tracking problem [23]. These methods learn a

correlation filter from a set of training samples. The corre-

lation filter is trained to perform a circular sliding window

operation on the training samples. This corresponds to as-

suming a periodic extension of these samples (see figure 1).

The periodic assumption enables efficient training and de-

tection by utilizing the Fast Fourier Transform (FFT).

As discussed above, the computational efficiency of the

standard DCF originates from the periodic assumption at

both training and detection. However, this underlying as-

sumption produces unwanted boundary effects. This leads

to an inaccurate representation of the image content, since

the training patches contain periodic repetitions. The in-

duced boundary effects mainly limit the standard DCF for-

mulation in two important aspects. Firstly, inaccurate nega-

tive training patches reduce the discriminative power of the

learned model. Secondly, the detection scores are only ac-

curate near the center of the region, while the remaining

scores are heavily influenced by the periodic repetitions of

the detection sample. This leads to a very restricted target

search region at the detection step.

The aforementioned limitations of the standard DCF for-
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mulation hamper the tracking performance in several ways.

(a) The DCF based trackers struggle in cases with fast target

motion due to the restricted search region. (b) The lack of

negative training patches leads to over-fitting of the learned

model, significantly affecting the performance in cases with

e.g. target deformations. (c) The mentioned limitations

in training and detection also reduce the potential of the

tracker to re-detect the target after an occlusion. (d) A naive

expansion of the image area used for training the correla-

tion filter corresponds to using a larger periodicity (see fig-

ure 1). Such an expansion results in an inclusion of substan-

tial amount of background information within the positive

training samples. These corrupted training samples severely

degrade the discriminative power of the model, leading to

inferior tracking results. In this work, we tackle these inher-

ent problems by re-visiting the standard DCF formulation.

1.1. Contributions

In this paper, we propose Spatially Regularized Discrim-

inative Correlation Filters (SRDCF) for tracking. We intro-

duce a spatial regularization component within the DCF for-

mulation, to address the problems induced by the periodic

assumption. The proposed regularization weights penalize

the correlation filter coefficients during learning. The spa-

tial weights are based on the a priori information about the

spatial extent of the filter. Due to the spatial regularization,

the correlation filter can be learned on larger image regions.

This enables a larger set of negative patches to be included

in the training, leading to a more discriminative model.

Due to the online nature of the tracking problem, a com-

putationally efficient learning scheme is crucial. Therefore,

we introduce a suitable optimization strategy for the pro-

posed SRDCF. The online capability is achieved by exploit-

ing the sparsity of the spatial regularization function in the

Fourier domain. We propose to apply the iterative Gauss-

Seidel method to solve the resulting normal equations. Ad-

ditionally, we introduce a strategy to maximize the detection

scores with sub-grid precision.

We perform comprehensive experiments on four bench-

mark datasets: OTB-2013 [33] with 50 videos, ALOV++

[30] with 314 videos, VOT2014 [23] with 25 videos and

OTB-2015 [34] with 100 videos. Compared to the best

existing trackers, our approach obtains an absolute gain of

8.0% and 8.2% on OTB-2013 and OTB-2015 respectively,

in mean overlap precision. Our method also achieves the

best overall results on ALOV++ and VOT2014. Addition-

ally, our tracker won the OpenCV State of the Art Vision

Challenge in tracking [25] (there termed DCFSIR).

2. Discriminative Correlation Filters

Discriminative correlation filters (DCF) is a supervised

technique for learning a linear classifier or a linear re-

gressor. The main difference from other techniques, such

as support vector machines [6], is that the DCF formula-

tion exploits the properties of circular correlation for ef-

ficient training and detection. In recent years, the DCF

based approaches have been successfully applied for track-

ing. Bolme et al. [5] first introduced the MOSSE tracker,

using only grayscale samples to train the filter. Recent

work [9, 8, 10, 20, 24] have shown a notable improvement

by learning multi-channel filters on multi-dimensional fea-

tures, such as HOG [7] or Color-Names [31]. However,

to become computationally viable, these approaches rely

on harsh approximations of the standard DCF formulation,

leading to sub-optimal learning. Other work have investi-

gated offline learning of multi-channel DCF:s for object de-

tection [13, 18] and recognition [4]. But these methods are

too computationally costly for online tracking applications.

The circular correlation within the DCF formulation has

two major advantages. Firstly, the DCF is able to make

extensive use of limited training data by implicitly includ-

ing all shifted versions of the given samples. Secondly, the

computational effort for training and detection is signifi-

cantly reduced by performing the necessary computations

in the Fourier domain and using the Fast Fourier Transform

(FFT). These two advantages make DCF:s especially suit-

able for tracking, where training data is scarce and compu-

tational efficiency is crucial for real-time applications.

By employing a circular correlation, the standard DCF

formulation relies on a periodic assumption of the train-

ing and detection samples. However, this assumption pro-

duces unwanted boundary effects, leading to an inaccu-

rate description of the image. These inaccurate training

patches severely hamper the learning of a discriminative

tracking model. Surprisingly, this problem has been largely

ignored by the tracking community. Galoogahi et al. [14]

investigate the boundary effect problem for single-channel

DCF:s. Their approach solve a constrained optimization

problem, using the Alternating Direction Method of Multi-

pliers (ADMM), to ensure a correct filter size. This however

requires a transition between the spatial and Fourier domain

in each ADMM iteration, leading to an increased computa-

tional complexity. Different to [14], we propose a spatial

regularization component in the objective. By exploiting

the sparsity of our regularizer, we efficiently optimize the

filter directly in the Fourier domain. Contrary to [14], we

target the problem of multi-dimensional features, such as

HOG, crucial for the overall tracking performance [10, 20].

2.1. Standard DCF Training and Detection

In the DCF formulation, the aim is to learn a multi-

channel convolution1 filter f from a set of training exam-

ples {(xk, yk)}tk=1. Each training sample xk consists of

a d-dimensional feature map extracted from an image re-

1We use convolution for mathematical convenience, though correlation

can equivalently be used.
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gion. All samples are assumed to have the same spatial

size M × N . At each spatial location (m,n) ∈ Ω :=
{0, . . . ,M − 1} × {0, . . . , N − 1} we thus have a d-

dimensional feature vector xk(m,n) ∈ R
d. We denote fea-

ture layer l ∈ {1, . . . , d} of xk by xl
k. The desired output

yk is a scalar valued function over the domain Ω, which in-

cludes a label for each location in the sample xk.

The desired filter f consists of one M ×N convolution

filter f l per feature layer. The convolution response of the

filter f on a M ×N sample x is given by

Sf (x) =

d
∑

l=1

xl ∗ f l. (1)

Here, ∗ denotes circular convolution. The filter is obtained

by minimizing the L2-error between the responses Sf (xk)
on the training samples xk, and the labels yk,

εt(f) =

t
∑

k=1

αk

∥

∥Sf (xk)− yk
∥

∥

2
+ λ

d
∑

l=1

∥

∥f l
∥

∥

2
. (2)

Here, the weights αk ≥ 0 determine the impact of each

training sample and λ ≥ 0 is the weight of the regulariza-

tion term. Eq. 2 is a linear least squares problem. Using

Parseval’s formula, it can be transformed to the Fourier do-

main, where the resulting normal equations have a block di-

agonal structure. The Discrete Fourier Transformed (DFT)

filters f̂ l = F{f l} can then be obtained by solving MN
number of d× d linear equation systems [13].

For efficiency reasons, the learned DCF is typically ap-

plied in a sliding-window-like manner by evaluating the

classification scores on all cyclic shifts of a test sample. Let

z denote the M × N feature map extracted from an image

region. The classification scores Sf (z) at all locations in

this image region can be computed using the convolution

property of the DFT,

Sf (z) = F
−1

{

d
∑

l=1

ẑl · f̂ l

}

. (3)

Here, · denotes point-wise multiplication, the hat denotes

the DFT of a function and F−1 denotes the inverse DFT.

The FFT hence allows the detection scores to be computed

in O(dMN logMN) complexity instead of O(dM2N2).
Note that the operation Sf (x) in (1) corresponds to ap-

plying the linear classifier f , in a sliding window fashion, to

the periodic extension of the sample x (see figure 1). This

introduces unwanted periodic boundary effects in the train-

ing (2) and detection (3) steps.

3. Spatially Regularized Correlation Filters

We propose to use a spatial regularization component in

the standard DCF formulation. The resulting optimization

problem is solved in the Fourier domain, by exploiting the

sparse nature of the proposed regularization.

Figure 2. Visualization of the spatial regularization weights w em-

ployed in the learning of our SRDCF, and the corresponding im-

age region used for training. Filter coefficients residing in the

background region are penalized by assigning higher weights in

w. This significantly mitigates the emphasis on background infor-

mation in the learned classifier.

3.1. Spatial Regularization

To alleviate the problems induced by the circular convo-

lution in (1), we replace the regularization term in (2) with

a more general Tikhonov regularization. We introduce a

spatial weight function w : Ω → R used to penalize the

magnitude of the filter coefficients in the learning. The reg-

ularization weights w determine the importance of the filter

coefficients f l, depending on their spatial locations. Coeffi-

cients in f l residing outside the target region are suppressed

by assigning higher weights in w and vice versa. The result-

ing optimization problem is expressed as,

ε(f) =

t
∑

k=1

αk

∥

∥Sf (xk)− yk
∥

∥

2
+

d
∑

l=1

∥

∥w · f l
∥

∥

2
. (4)

The regularization weights w in (4) are visualized in fig-

ure 2. Visual features close to the target edge are often less

reliable than those close to the target center, due to e.g. tar-

get rotations and occlusions. We therefore let the regular-

ization weights change smoothly from the target region to

the background. This also increases the sparsity of w in

the Fourier domain. Note that (4) simplifies to the standard

DCF (2) for uniform weights w(m,n) =
√
λ.

By applying Parseval’s theorem to (4), the filter f can

equivalently be obtained by minimizing the resulting loss

function (5) over the DFT coefficients f̂ ,

ε̌(f̂) =
t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

x̂l
k ·f̂ l−ŷk

∥

∥

∥

∥

∥

2

+
d
∑

l=1

∥

∥

∥

∥

∥

ŵ

MN
∗f̂ l

∥

∥

∥

∥

∥

2

. (5)

The second term in (5) follows from the convolution prop-

erty of the inverse DFT. A vectorization of (5) gives,

ε̌(f̂) =

t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

D(x̂l
k)f̂

l−ŷk

∥

∥

∥

∥

∥

2

+

d
∑

l=1

∥

∥

∥

∥

∥

C(ŵ)

MN
f̂ l

∥

∥

∥

∥

∥

2

. (6)
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(a) Standard DCF. (b) Our SRDCF.

Figure 3. Visualization of the filter coefficients learned using the standard DCF (a) and our approach (b). The surface plots show the filter

values f l and the corresponding image region used for training. In the standard DCF, high values are assigned to the background region.

The larger influence of background information at the detection stage deteriorates tracking performance. In our approach, the regularization

weights penalizes filter values corresponding to features in the background. This increases the discriminative power of the learned model,

by emphasizing the appearance information within the target region (green box).

Here, bold letters denote a vectorization of the correspond-

ing scalar valued functions and D(v) denotes the diago-

nal matrix with the elements of the vector v in its diago-

nal. The MN ×MN matrix C(ŵ) represents circular 2D-

convolution with the function ŵ, i.e. C(ŵ)f̂ l = vec(ŵ∗ f̂ l).
Each row in C(ŵ) thus contains a cyclic permutation of ŵ.

The DFT of a real-valued function is known to be Her-

mitian symmetric. Therefore, minimizing (4) over the set

of real-valued filters f l, corresponds to minimizing (5) over

the set of Hermitian symmetric DFT coefficients f̂ l. We

reformulate (6) to an equivalent real-valued optimization

problem, to ensure faster convergence by preserving the

Hermitian symmetry. Let ρ : Ω → Ω be the point-reflection

ρ(m,n) = (−m mod M,−n mod N). The domain Ω
can be partitioned into Ω0, Ω+ and Ω−, where Ω0 = ρ(Ω0)
and Ω− = ρ(Ω+). Thus, Ω0 denote the part of the spectrum

with no corresponding reflected frequency, and Ω− contains

the reflected frequencies in Ω+. We define,

f̃ l(m,n) =















f̂ l(m,n), (m,n) ∈ Ω0

f̂ l (m,n)+f̂ l (ρ(m,n))√
2

, (m,n) ∈ Ω+

f̂ l (m,n)−f̂ l (ρ(m,n))

i
√
2

, (m,n) ∈ Ω−

(7)

such that f̃ l is real-valued by the Hermitian symmetry of f̂ l.

Here, i denotes the imaginary unit. Eq. 7 can be expressed

by a unitary MN ×MN matrix B such that f̃ l = Bf̂ l. By

(7), B contains at most two non-zero entries in each row.

The reformulated variables from (6) are defined as ỹk =
Bŷk, Dl

k = BD(x̂l
k)B

H and C = 1
MN

BC(ŵ)BH, where
H denotes the conjugate transpose of a matrix. Since B is

unitary, (6) can equivalently be expressed as,

ε̃(f̃1 . . . f̃d) =

t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

Dl
k f̃

l − ỹk

∥

∥

∥

∥

∥

2

+

d
∑

l=1

∥

∥

∥
C f̃ l
∥

∥

∥

2

. (8)

All variables in (8) are real-valued. The loss function (8) is

then simplified by defining the fully vectorized real-valued

filter as the concatenation f̃ =
(

(f̃1)T · · · (f̃d)T
)T

,

ε̃(f̃) =

t
∑

k=1

αk

∥

∥

∥
Dk f̃ − ỹk

∥

∥

∥

2

+
∥

∥

∥
W f̃

∥

∥

∥

2

. (9)

Here we have defined the concatenation Dk = (D1
k · · ·Dd

k)
and W to be the dMN ×dMN block diagonal matrix with

each diagonal block being equal to C. Finally, (9) is mini-

mized by solving the normal equations Atf̃ = b̃t, where

At =
t
∑

k=1

αkD
T
kDk +W TW (10a)

b̃t =

t
∑

k=1

αkD
T
kỹk. (10b)

Here, (10) defines a real dMN × dMN linear system

of equations. The fraction of non-zero elements in At is

smaller than 2d+K2

dMN
, where K is the number of non-zero

Fourier coefficients in ŵ. Thus, At is sparse if w has a

sparse spectrum. The DFT coefficients for the filters are ob-

tained by solving the system (10) and applying f̂ l = BHf̃ l.

Figure 3 visualizes the filter learned by optimizing the

standard DCF loss (2) and the proposed formulation (4),

using the spatial regularization weights w in figure 2. In the

standard DCF, large values are spatially distributed over the

whole filter. By penalizing filter coefficients corresponding

to background, our approach learns a classifier that empha-

sizes visual information within the target region.

A direct application of a sparse solver to the normal

equations Atf̃ = b̃t is computationally very demanding

(even when the standard regularization W TW = λI is used

and the number of features is small (d > 2)). Next, we pro-

pose an efficient optimization scheme to solve the normal

equations for online learning scenarios, such as tracking.
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