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Abstract

Recent leading approaches to semantic segmentation

rely on deep convolutional networks trained with human-

annotated, pixel-level segmentation masks. Such pixel-

accurate supervision demands expensive labeling effort and

limits the performance of deep networks that usually benefit

from more training data. In this paper, we propose a method

that achieves competitive accuracy but only requires eas-

ily obtained bounding box annotations. The basic idea is

to iterate between automatically generating region propos-

als and training convolutional networks. These two steps

gradually recover segmentation masks for improving the

networks, and vise versa. Our method, called “BoxSup”,

produces competitive results (e.g., 62.0% mAP for valida-

tion) supervised by boxes only, on par with strong baselines

(e.g., 63.8% mAP) fully supervised by masks under the same

setting. By leveraging a large amount of bounding boxes,

BoxSup further yields state-of-the-art results on PASCAL

VOC 2012 and PASCAL-CONTEXT [26].

1. Introduction

In the past few months, tremendous progress has been

made in the field of semantic segmentation [13, 24, 14, 7, 6,

25]. Deep convolutional neural networks (CNNs) [21, 20]

that play as rich hierarchical feature extractors are a key to

these methods. These networks are trained on large-scale

datasets [8, 29] as classifiers, and transferred to the seman-

tic segmentation tasks based on the annotated segmentation

masks as supervision.

But pixel-level mask annotations are time-consuming,

frustrating, and in the end commercially expensive to ob-

tain. According to the annotation report of the large-scale

Microsoft COCO dataset [23], the workload of labeling seg-

mentation masks is more than 15 times heavier than that of

spotting object locations. Further, the crowdsourcing anno-

tators need to be specially trained for the tedious and diffi-

cult task of labeling per-pixel masks. These facts limit the

amount of available segmentation mask annotations, and

thus hinder the performance of CNNs that in general de-

sire large-scale data for training. On the contrary, bounding

box annotations are more economical than masks. There

have already existed a large number of available box-level

annotations in datasets like ImageNet [29] and Microsoft

COCO. Though these box-level annotations are less pre-

cise than pixel-level masks, their amount may help improve

training deep networks for semantic segmentation.

In addition, current leading approaches have not fully

utilized the detailed pixel-level annotations. For example,

in the Convolutional Feature Masking (CFM) method [7],

the fine-resolution masks are used to generate very low-

resolution (e.g., 6 × 6) masks on the feature maps. In the

Fully Convolutional Network (FCN) method [24], the net-

work predictions are regressed to the ground-truth masks

using a large stride (e.g., 8 pixels). These methods yield

competitive results without explicitly harnessing the finer

masks. If we consider the box-level annotations as very

coarse masks, can we still retain comparably good results

without using the segmentation masks?

In this work, we investigate bounding box annotations

as an alternative or extra source of supervision to train con-

volutional networks for semantic segmentation1. We resort

to region proposal methods [4, 33, 2] to generate candidate

segmentation masks. The convolutional network is trained

under the supervision of these approximate masks. The up-

dated network in turn improves the estimated masks used

for training. This process is iterated. Although the masks

are coarse at the beginning, they are gradually improved and

then provide useful information for network training. Fig. 1

illustrates our training algorithm.

We extensively evaluate our method, called “BoxSup”,

on the PASCAL segmentation benchmarks [9, 26]. Our

box-supervised (i.e., using bounding box annotations)

method shows a graceful degradation compared with its

mask-supervised (i.e., using mask annotations) counterpart.

1The idea of using bounding box annotations for CNN-based semantic

segmentation is developed concurrently and independently in [27].
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Figure 1: Overview of our training approach supervised by bounding boxes.

As such, our method waives the requirement of pixel-level

masks for training. Further, our semi-supervised variant in

which 9/10 mask annotations are replaced with bounding

box annotations yields comparable accuracy with the fully

mask-supervised counterpart. This suggests that we may

save expensive labeling effort by using bounding box anno-

tations dominantly. Moreover, our method makes it possi-

ble to harness the large number of available box annotations

to improve the mask-supervised results. Using the limited

provided masks and extra large-scale bounding boxes, our

method achieves state-of-the-art results on both PASCAL

VOC 2012 and PASCAL-CONTEXT [26] benchmarks.

Why can a large amount of bounding boxes help im-

prove convolutional networks? Our error analysis reveals

that a BoxSup model trained with a large set of boxes ef-

fectively increases the object recognition accuracy (the ac-

curacy in the middle of an object), and its improvement on

object boundaries is secondary. Though a box is too coarse

to contain detailed segmentation information, it provides an

instance for learning to distinguish object categories. The

large-scale object instances improve the feature quality of

the learned convolutional networks, and thus impact the

overall performance for semantic segmentation.

2. Related Work

Deep convolutional networks in general have better ac-

curacy with the growing size of training data, as is evi-

denced in [20, 36]. The ImageNet classification dataset

[29] is one of the largest datasets with quality labels, but

the current available datasets for object detection, semantic

segmentation, and many other vision tasks mostly have or-

ders of magnitudes fewer labeled samples. The milestone

work of R-CNN [10] proposes to pre-train deep networks

as classifiers on the large-scale ImageNet dataset and go on

training (fine-tuning) them for other tasks with limited train-

ing data. This transfer learning strategy is widely adopted

for object detection [10, 15, 32], semantic segmentation

[13, 24, 14, 7, 6, 25], visual tracking [34], and other visual

recognition tasks. With the continuously improving deep

convolutional models [36, 30, 5, 15, 31, 32, 16], the accu-

racy of these vision tasks also improves thanks to the more

powerful generic features learned from large-scale datasets.

Although pre-training partially relieves the problem of

limited data, the amount of the task-specific data for fine-

tuning still matters. In [1], it has been found that aug-

menting the object detection training set by combining the

VOC 2007 and VOC 2012 sets improves object detection

accuracy compared with using VOC 2007 only. In [22],

the training set for object detection is augmented by visual

tracking results obtained from videos and improves detec-

tion accuracy. These experiments demonstrate the impor-

tance of dataset sizes for task-specific network training.

For semantic segmentation, there have been existing pa-

pers [35, 11] exploiting bounding box annotations. But the

box-level annotations have not been used to supervised deep

convolutional networks in those works.

3. Baseline

Our BoxSup method is in general applicable for many

existing CNN-based mask-supervised semantic segmenta-

tion methods, such as FCN [24], improvements on FCN

[6, 37], and others [14, 7, 25]. In this paper, we adopt our

implementation of FCN refined by CRF [6] as the mask-

supervised baseline, which we briefly introduce as follows.

The network training of FCN [24] is formulated as a per-

pixel regression problem to the ground-truth segmentation

masks. Formally, the objective function can be written as:

E(θ) =
∑

p

e(Xθ(p), l(p)), (1)

where p is a pixel index, l(p) is the ground-truth semantic

label at a pixel, and Xθ(p) is the per-pixel labeling pro-
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Figure 2: Segmentation masks used as supervision. (a) A training image. (b) Ground-truth. (c) Each box is naı̈vely considered

as a rectangle mask. (d) A segmentation mask is generated by GrabCut [28]. (e) For our method, the supervision is estimated

from region proposals (MCG [2]) by considering bounding box annotations and network feedbacks.

duced by the fully convolutional network with parameters

θ. e(Xθ(p), l(p)) is the per-pixel loss function. The net-

work parameters θ are updated by back-propagation and

stochastic gradient descent (SGD). A CRF [6] is used to

post-process the FCN results.

The objective in Eqn.(1) demands pixel-level segmenta-

tion masks l(p) as supervision. It is not directly applicable

if only bounding box annotations are given as supervision.

Next we introduce our method for addressing this problem.

4. Approach

4.1. Segment Proposals for Supervised Training

To harness the bounding boxes annotations, it is desired

to estimate segmentation masks from them. This is a widely

studied supervised image segmentation problem, and can be

addressed by, e.g., GrabCut [28]. But we observed that the

segments generated by Grabut are not accurate and diverse

enough, which may be insufficient for deep network train-

ing.

We propose to generate a set of candidate segments us-

ing region proposal methods (e.g., Selective Search [33])

due to their nice properties. First, region proposal methods

have high recall rates [2] of having a good candidate in the

proposal pool. Second, region proposal methods generate

candidates of greater variance, which provide a kind of data

augmentation [20] for network training. We will show by

experiments the improvements of these properties.

The candidate segments are used to update the deep con-

volutional network. The semantic features learned by the

network are then used to pick better candidates. This proce-

dure is iterated. We formulate this procedure as an objective

function as we will describe below.

It is worth noticing that the region proposal is only used

for networking training. For inference, the trained FCN is

directly applied on the image and produces pixel-wise pre-

dictions. So our usage of region proposals does not impact

the test-time efficiency.

4.2. Formulation

As a pre-processing, we use a region proposal method to

generate segmentation masks. We adopt Multiscale Combi-

natorial Grouping (MCG) [2] by default, while other meth-

ods [33, 19] are also evaluated2. For all experiments we

use 2k candidates on average per image as a common prac-

tice. The proposal candidate masks are fixed throughout

the training procedure. But during training, each candidate

mask will be assigned a label which can be a semantic cat-

egory or background. The labels assigned to the masks will

be updated.

With a ground-truth bounding box annotation, we expect

it to pick out a candidate mask that overlaps the box as much

as possible. Formally, we define an overlapping objective

function Eo about one training image as:

Eo =
1

N

∑

S

(1− IoU(B,S))δ(lB , lS), (2)

Here the summation runs over all candidate segment masks

S on an image. B represents a ground-truth bounding box

annotation. IoU(B,S) ∈ [0, 1] is the intersection-over-

union ratio computed from the ground-truth box B and the

tight bounding box of the segment S. The function δ is

equal to one if the semantic label lS assigned to segment

S is the same as the ground-truth label lB of the bounding

box B, and zero otherwise. Minimizing Eo favors higher

IoU scores when the semantic labels are consistent. This

objective function is normalized by the number of candi-

date segments N . For each ground-truth box B, we allow

one and only one segment S assigned as non-background.

Under the situation of occlusion, a pixel covered by multi-

ple segments from overlapping bounding boxes is assigned

to the smallest segment.

With the candidate masks and their estimated semantic

labels, we can supervise the deep convolutional network as

in Eqn.(1). Formally, we consider the following regression

2We note that while SS [33] is not trained, MCG [2] on its own is

trained on some class-agnostic data. We use MCG trained on BSDS500

following [2], without any class-aware data.

31637



training image epoch #1 epoch #20epoch #5

person

chair

Figure 3: Update of segmentation masks during training. Here we show the masks in epoch #1, epoch #5, and epoch #20.

Each segmentation mask will be used as the supervision for the next epoch.

objective function Er about one training image:

Er =
∑

p

e(Xθ(p), lS(p)). (3)

Here the summation runs over all pixels on an image. lS is

the estimated semantic label used as supervision for the net-

work training. This objective is the same as Eqn.(1) except

that its regression target is the estimated candidate segment.

We minimize an objective function that combines the

above two terms:

min
θ,{lS}

∑

i

(Eo + λEr) (4)

Here the summation
∑

i runs over all training images, and

λ = 3 is a fixed weighting parameter. The variables to

be optimized are the network parameters θ and the labeling

{lS} of all candidate segments {S}. If only the term Eo
exists, the optimization problem in Eqn.(4) trivially finds a

candidate segment that has the largest IoU score with the

box; if only the term Er exists, the optimization problem in

Eqn.(4) is equivalent to FCN. Our formulation simultane-

ously considers both cases.

4.3. Training Algorithm

The objective function in Eqn.(4) involves a problem of

assigning labels to the candidate segments. Next we pro-

pose a greedy iterative solution to find a local optimum.

With the network parameters θ fixed, we update the se-

mantic labeling {lS} for all candidate segments. As men-

tioned above, we only consider the case in which one

ground-truth bounding box can “activate” (i.e., assign a

non-background label to) one and only one candidate. As

such, we can simply update the semantic labeling by select-

ing a single candidate segment for each ground-truth bound-

ing box, such that its cost Eo + λEr is the smallest among

all candidates. The selected segment is assigned the ground-

truth semantic label associated with that bounding box. All

other pixels are assigned the background label.

The above winner-takes-all selection tends to repeatedly

use the same or very similar candidate segments, and the

optimization procedure may be trapped in poor local op-

tima. To increase the sample variance for better stochastic

training, we further adopt a random sampling method to se-

lect the candidate segment for each ground-truth bounding

box. Instead of selecting the single segment with the small-

est cost Eo + λEr, we randomly sample a segment from the

first k segments with the smallest costs. In this paper we

use k = 5. This random sampling strategy improves the

accuracy by about 2% on the validation set.

With the semantic labeling {lS} of all candidate seg-

ments fixed, we update the network parameters θ. In this

case, the problem becomes the FCN problem [24] as in

Eqn.(1). This problem is minimized by SGD.

We iteratively perform the above two steps, fixing one set

of variables and solving for the other set. For each iteration,

we update the network parameters using one training epoch

(i.e., all training images are visited once), and after that we

update the segment labeling of all images. Fig.3 shows the

gradually updated segmentation masks during training. The

network is initialized by the model pre-trained in the Im-

ageNet classification dataset, and the output layer is reini-

tialized, which produces uniformly distributed scores. Our

algorithm then starts from the step of updating segment la-

bels.

Our method is applicable for the semi-supervised case

(the ground-truth annotations are mixtures of segmentation

masks and bounding boxes). The labeling l(p) is given by

candidate proposals as above if a sample only has ground-

truth boxes, and is simply assigned as the true label if a

sample has ground-truth masks.

In the SGD training of updating the network, we use a

mini-batch size of 20, following [24]. The learning rate

is initialized to be 0.001 and divided by 10 after every 15

epochs. The training is terminated after 45 epochs.

5. Experiments

In all our experiments, we use the publicly released

VGG-16 model3 [31] that is pre-trained on ImageNet [29].

The VGG model is also used by all competitors [24, 14, 7,

6, 25] compared in this paper.

5.1. Experiments on PASCAL VOC 2012

We first evaluate our method on the PASCAL VOC

2012 semantic segmentation benchmark [9]. This dataset

3www.robots.ox.ac.uk/˜vgg/research/very_deep/
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data VOC train VOC train + COCO

total # 10,582 133,869

supervision mask box semi mask semi

mask # 10,582 - 1,464 133,869 10,582

box # - 10,582 9,118 - 123,287

mean IoU 63.8 62.0 63.5 68.1 68.2

Table 1: Comparisons of supervision in PASCAL VOC

2012 validation.

involves 20 semantic categories of objects. We use the

“comp6” evaluation protocol. The accuracy is evaluated by

mean IoU scores. The original training data has 1,464 im-

ages. Following [12], the training data with ground-truth

segmentation masks are augmented to 10,582 images. The

validation and test sets have 1,449 and 1,456 images respec-

tively. When evaluating the validation set or the test set, we

only use the training set for training. A held-out 100 ran-

dom validation images are used for cross-validation to set

hyper-parameters.

Comparisons of Supervision Strategies

Table 1 compares the results of using different strategies

of supervision on the validation set. When all ground-truth

masks are used as supervision, the result is our implemen-

tation of the baseline DeepLab-CRF [6]. Our reproduction

has a score of 63.8 (Table 1, “mask only”), which is very

close to 63.74 reported in [6] under the same setting. So we

believe that our reproduced baseline is convincing.

When all 10,582 training samples are replaced with

bounding box annotations, our method yields a score of

62.0 (Table 1, “box only”). Though the supervision in-

formation is substantially weakened, our method shows a

graceful degradation (1.8%) compared with the strongly su-

pervised baseline of 63.8. This indicates that in practice we

can avoid the expensive mask labeling effort by using only

bounding boxes, with small accuracy loss.

Table 1 also shows the semi-supervised result of our

method. This result uses the ground-truth masks of the

original 1,464 training images and the bounding box an-

notations of the rest 9k images. The score is 63.5 (Table 1,

“semi”), on par with the strongly supervised baseline. Such

semi-supervision replaces 9/10 of the segmentation mask

annotations with bounding box annotations. This means

that we can greatly reduce the labeling effort by dominantly

using bounding box annotations.

As a proof of concept, we further evaluate using a sub-

stantially larger set of boxes. We use the Microsoft COCO

dataset [23] that has 123,287 images with available ground-

truth segmentation masks. This dataset has 80 semantic cat-

egories, and we only use the 20 categories that also present

in PASCAL VOC. For our mask-supervised baseline, the
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Figure 4: Error analysis on the validation set. Top: (from

left to right) image, ground-truth, boundary regions marked

as white, interior regions marked as white). Bottom:

boundary and interior mean IoU, using VOC masks only

(blue) and using extra COCO boxes (red).

result is a score of 68.1 (Table 1). Then we replace the

ground-truth segmentation masks in COCO with their tight

bounding boxes. Our semi-supervised result is 68.2 (Ta-

ble 1), on par with the strongly supervised baseline. Fig. 5

shows some visual results in the validation set.

The semi-supervised result (68.2) that uses VOC+COCO

is considerably better than the strongly supervised result

(63.8) that uses VOC only. The 4.4% gain is contributed

by the extra large-scale bounding boxes in the 123k COCO

images. This comparison suggests a promising strategy -

we may make use of the larger amount of existing bounding

boxes annotations to improve the overall semantic segmen-

tation results, as further analyzed below.

Error Analysis

Why can a large set of bounding boxes help improve

convolutional networks? The error in semantic segmenta-

tion can be roughly thought of as two types: (i) recogni-

tion error that is due to confusions of recognizing object

categories, and (ii) boundary error that is due to misalign-

ments of pixel-level labels on object boundaries. Although

the bounding box annotations have no information about the

object boundaries, they provide extra object instances for

recognizing them. We may expect that the large amount of

boxes mainly improve the recognition accuracy.

To analyze the error, we separately evaluate the perfor-

mance on the boundary regions and interior regions. Fol-

lowing [17, 6], we generate a “trimap” near the ground-truth
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masks mean IoU

rectangles 52.3

GrabCut 55.2

WSSL [27] 58.5

ours w/o sampling 59.7

ours 62.0

Table 2: Comparisons of estimated masks for supervision

in PASCAL VOC 2012 validation. All methods only use

10,582 bounding boxes as annotations, with no ground-

truth segmentation mask used.

SS GOP MCG

mean IoU 59.5 60.4 62.0

Table 3: Comparisons of the effects of region proposal

methods on our method in PASCAL VOC 2012 validation.

All methods only use 10,582 bounding boxes as annota-

tions, with no ground-truth segmentation mask used.

boundaries (Fig. 4, top). We evaluate mean IoU scores in-

side/outside the bands, referred to as boundary/interior re-

gions. Fig. 4 (bottom) shows the results of using different

band widths for the trimaps.

For the interior region, the accuracy of using the extra

COCO boxes (red solid line, Fig. 4) is considerably higher

than that of using VOC masks only (blue solid line). On the

contrary, the improvement on the boundary regions is rela-

tively smaller (red dash line vs. blue dash line). Note that

correctly recognizing the interior may also help improve the

boundaries (e.g., due to the CRF post-processing). So the

improvement of the extra boxes on the boundary regions is

secondary.

Because the accuracy in the interior region is mainly de-

termined by correctly recognizing objects, this analysis sug-

gests that the large amount of boxes improve the feature

quality of a learned BoxSup model for better recognition.

Comparisons of Estimated Masks for Supervision

In Table 2 we evaluate different methods of estimating

masks from bounding boxes for supervision. As a naı̈ve

baseline, we fill each bounding box with its semantic la-

bel, and consider it as a rectangular mask (Fig. 2(c)). Us-

ing these rectangular masks as the supervision throughout

training, the score is 52.3 on the validation set. We also use

GrabCut [28] to generate segmentation masks from boxes

(Fig. 2(d)). With the GrabCut masks as the supervision

throughout training, the score is 55.2. In both cases, the

masks are not updated by the network feedbacks.

Our method has a score 62.0 (Table 2) using the same

set of bounding box annotations. This is a considerable gain

method sup. mask # box # mIoU

FCN [24] mask V 10k - 62.2

DeepLab-CRF [6] mask V 10k - 66.4

WSSL [27] box - V 10k 60.4

BoxSup box - V 10k 64.6

BoxSup semi V 1.4k V 9k 66.2

WSSL [27] mask V+C 133k - 70.4

BoxSup semi V 10k C 123k 71.0

BoxSup semi V 10k V07+C 133k 73.1

BoxSup+ semi V 10k V07+C 133k 75.1

Table 4: Results on PASCAL VOC 2012 test set. In the su-

pervision (“sup”) column, “mask” means all training sam-

ples are with segmentation mask annotations, “box” means

all training samples are with bounding box annotations, and

“semi” means mixtures of annotations. “V” denotes the

VOC data, “C” denotes the COCO data, and “V07” denotes

the VOC 2007 data which only has bounding boxes.

over the baseline using fixed GrabCut masks. This indicates

the importance of the mask quality for supervision. Fig. 3

shows that our method iteratively updates the masks by the

network, which in turn improves the network training.

We also evaluate a variant of our method where each

time the updated mask is the candidate with the largest cost,

instead of randomly sampled from the first k candidates (see

Sec. 4.3). This variant has a lower score of 59.7 (Table 2).

The random sampling strategy, which is data augmentation

and increases sample variances, is beneficial for training.

Table 2 also shows the result of the concurrent method

WSSL [6] under the same evaluation setting. Its results is

58.5. This result suggests that our method estimates more

accurate masks than [6] for supervision.

Comparisons of Region Proposals

Our method resorts to region proposals for training. In

Table 3, we compare the effects of various region propos-

als on our method: Selective Search (SS) [33], Geodesic

Object Proposals (GOP) [19], and MCG [2]. Table 3 shows

that MCG [2] has the best accuracy, which is consistent with

its segmentation quality evaluated by other metrics in [2].

Note that at test-time our method does not need region pro-

posals. So the better accuracy of using MCG implies that

our method effectively makes use of the higher quality seg-

mentation masks to train a better network.

Comparisons on the Test Set

Next we compare with the state-of-the-art methods on

the PASCAL VOC 2012 test set. In Table 4, the methods

are based on the same FCN baseline and thus fair compar-

isons are made to evaluate the impact of mask/box/semi-

supervision.
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(c) box, VOC(a) image (b) mask, VOC (d) semi, VOC mask +COCO box

Figure 5: Example semantic segmentation results on PASCAL VOC 2012 validation using our method. (a) Images. (b)

Supervised by masks in VOC. (c) Supervised by boxes in VOC. (d) Supervised by masks in VOC and boxes in COCO.

As shown in Table 4, our box-supervised result that only

uses VOC bounding boxes is 64.6. This compares favor-

ably with the WSSL [27] counterpart (60.4) under the same

setting. On the other hand, our box-supervised result has

a graceful degradation (1.8%) compared with the mask-

supervised DeepLab-CRF (66.4 [6]) using the VOC training

data. Moreover, our semi-supervised variant which replaces

9/10 segmentation mask annotations with bounding boxes

has a score of 66.2. This is on par with the mask-supervised

counterpart of DeepLab-CRF, but the supervision informa-

tion used by our method is much weaker.

In the WSSL paper [27], by using all segmentation

mask annotations in VOC and COCO, the strongly mask-

supervised result is 70.4. Our semi-supervised method

shows a higher score of 71.0. Remarkably, our result uses

the bounding box annotations from the 123k COCO images.

So our method has a more accurate result but uses much

weaker annotations than [27].

On the other hand, compared with the DeepLab-CRF re-

sult (66.4), our method has a 4.6% gain enjoyed from ex-

ploiting the bounding box annotations of the COCO dataset.

This demonstrates the power of our method that exploits

large-scale bounding box annotations to improve accuracy.

Exploiting Boxes in PASCAL VOC 2007

To further demonstrate the effect of BoxSup, we exploit

the bounding boxes in the PASCAL VOC 2007 dataset [9].

This dataset has no mask annotations. It is a de facto dataset

which mask-supervised methods are not able to use.

We exploit all 10k images in the VOC 2007 trainval and

test sets. We train a BoxSup model using the union set of

VOC 2007 boxes, COCO boxes, and the augmented VOC

2012 training set. The score improves from 71.0 to 73.1 (Ta-

ble 4) because of the extra box training data. It is reasonable

for us to expect further improvement if more bounding box

annotations are available.

Baseline Improvement

Although our focus is mainly on exploiting boxes as su-

pervision, it is worth noticing that our method may also

benefit from other improvements on the mask-sup baseline

(FCN in our case). Concurrent with our work, there are a se-

ries of improvements [37, 6] made on FCN, which achieve

excellent results using strong mask-supervision from both

VOC and COCO data.

To show the potential of our BoxSup method in parallel

with improvements on the baseline, we use a simple test-

time augmentation to boost our results. Instead of comput-

ing pixel-wise predictions on a single scale, we compute the

score maps from two extra scales (±20% of the original im-

age size) and bilinearly re-scale the score maps to the origi-

nal size. The scores from three scales are averaged and post-

processed by CRF. This simple modification boosts our re-

sult from 73.1 to 75.1 (BoxSup+, Table 4) in the VOC 2012
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(c) baseline(a) image (b) ground-truth (d) BoxSup

Figure 6: Example results on PASCAL-CONTEXT validation. (a) Images. (b) Results of our baseline (35.7 mean IoU),

trained using VOC masks. (c) Results of BoxSup (40.5 mean IoU), trained using VOC masks and COCO boxes.

method sup. mask # box # mean IoU

O2P [3] mask V 5k - 18.1

CFM [7] mask V 5k - 34.4

FCN [24] mask V 5k - 35.1

baseline mask V 5k - 35.7

BoxSup semi V 5k C 123k 40.5

Table 5: Results on PASCAL-CONTEXT [26] validation.

Our baseline is our implementation of FCN+CRF. “V” de-

notes the VOC data, and “C” denotes the COCO data.

test set. This result is on par with the latest results using

strong mask-supervision from both VOC and COCO, but in

our case the COCO dataset only provides bounding boxes.

5.2. Experiments on PASCALCONTEXT

We further perform experiments on the recently labeled

PASCAL-CONTEXT dataset [26]. This dataset provides

ground-truth semantic labels for the whole scene, including

object and stuff (e.g., grass, sky, water). Following the pro-

tocol in [26, 7, 24], the semantic segmentation is performed

on the most frequent 59 categories (identified by [26]) plus

a background category. The accuracy is measured by mean

IoU scores. The training and evaluation are performed on

the training and validation sets that have 4,998 and 5,105

images respectively.

To train a BoxSup model for this dataset, we first use the

box annotations from all 80 object categories in the COCO

dataset to train the FCN (using VGG-16). This network

ends with an 81-way (with an extra one for background)

layer. Then we remove this last layer and add a new 60-

way layer for the 59 categories of PASCAL-CONTEXT. We

fine-tune this model in the 5k training images of PASCAL-

CONTEXT. A CRF [6, 18] for post-processing is also used.

We do no use the test-time scale augmentation.

Table 5 shows the results in PASCAL-CONTEXT. The

methods of CFM [7] and FCN [24] are both based on the

VGG-16 model. Our baseline method, which is our imple-

mentation of FCN+CRF, has a score of 35.7 using masks

of the 5k training images. Using our BoxSup model pre-

trained using the COCO boxes, the result is improved to

40.5. The 4.8% gain is solely because of harnessing the

bounding box annotations in COCO. Fig. 6 shows some ex-

amples of our results for joint object and stuff segmentation.

6. Conclusion

The proposed BoxSup method can effectively harness

bounding box annotations to train deep networks for se-

mantic segmentation. Our BoxSup method that uses 123k

COCO bounding boxes and 10k masks compares favorably

with the state-of-the-art methods that use 133k masks. Our

result and error analysis suggest that current semantic seg-

mentation accuracy is hampered by the failure of recogniz-

ing objects, which large-scale data may help with.
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[13] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous detection and segmentation. In ECCV. 2014.
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