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Abstract

This paper studies the problem of improving the top-1 ac-

curacy of RGB-D object recognition. Despite of the impres-

sive top-5 accuracies achieved by existing methods, their

top-1 accuracies are not very satisfactory. The reasons are

in two-fold: (1) existing similarity measures are sensitive to

object pose and scale changes, as well as intra-class varia-

tions; and (2) effectively fusing RGB and depth cues is still

an open problem. To address these problems, this paper first

proposes a new similarity measure based on dense match-

ing, through which objects in comparison are warped and

aligned, to better tolerate variations. Towards RGB and

depth fusion, we argue that a constant and golden weight

doesn’t exist. The two modalities have varying contribu-

tions when comparing objects from different categories. To

capture such a dynamic characteristic, a group of matchers

equipped with various fusion weights is constructed, to ex-

plore the responses of dense matching under different fusion

configurations. All the response scores are finally merged

following a learning-to-combination way, which provides

quite good generalization ability in practice. The proposed

approach win the best results on several public benchmarks,

e.g., achieves 92.7% top-1 test accuracy on the Washington

RGB-D object dataset, with a 5.1% improvement over the

state-of-the-art.

1. Introduction

RGB-D object recognition has now become an active re-

search area with the rapid development of commodity depth

cameras. These depth cameras, such as Kinect, are capa-

ble of recording synchronized color and depth data, which

together provide rich multimodal information to depict an

object. In the past year, a noticeable trend is that depth

∗The work was performed at Microsoft Research.
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Figure 1. Given a query pitcher, (a) shows the top-3 categories

predicted by the state-of-the-art CNN-RNN method [30], which

wrongly promotes the cap due to its black color; and (b) shows

the results of the proposed approach, in which the other pitcher is

correctly ranked at the first position. Please be noted that in (b),

both the color and depth images are warped according to the query.

camera has been integrated into mobile devices like Google

Tango [1] and Microsoft Hololens [2], which offer an even

appealing platform for RGB-D object recognition.

Remarkable research efforts have been invested in recent

years. Some of them focus on devising elaborated features

for both RGB and depth channels [20, 8, 5]; while other-

s study exploiting machine learning techniques to combine

cues of the two modalities [21, 4, 7, 30]. All these methods

have made significant progress to advance the state-of-the-

art, e.g., several approaches [5, 4, 7, 30] were observed to

achieve around 98% top-5 accuracy on the very challenging

Washington RGB-D object dataset [20]. Such an impressive

performance indeed demonstrates the advantages of RGB-

D data for object recognition, also provides a solid base for

follow-up studies. Towards the demands of practical sce-

narios, especially of those applications on mobile platfor-

m, the major concern of existing approaches is their top-1

accuracies are not satisfactory enough. Averagely, current

solutions obtain around 85% top-1 accuracy, which cannot

provide a high-quality and stable user experience.

Improving top-1 accuracy of RGB-D object recognition

remains a very challenging problem. The reasons are in
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Figure 2. An illustration of the proposed dense matching-based

similarity measure.

two-fold. First, objects from the same category may appear

in different poses and scales, as well as have a certain degree

of intra-class variations. This brings troubles to most exist-

ing RGB and depth features, and tends to cause false nega-

tive decisions. Second, objects from different categories but

having ambiguous texture appearances or geometric shapes

usually confuse the strategies adopted to combine RGB and

depth cues, and lead to false positive errors. For example,

Fig. 1 (a) shows the top-3 objects considered to be the clos-

est ones to the query pitcher by the state-of-the-art CNN-

RNN method [30]. The cap ranked at the first position,

which is clearly a false positive, is wrongly promoted by

its black color. By contrast, the other pitcher ranked at the

third position is demoted as its shape and appearance have

some variations to the query.

This paper aims at improving the top-1 accuracy of

RGB-D object recognition. Towards the aforementioned

problems, we first present a dense matching-based simi-

larity measure to better tolerate object shape, pose, and s-

cale variations. Then a simple yet effective learning-to-

combination strategy is devised to boost the recognition ac-

curacy based on the dense matching similarities. Fig. 1 (b)

shows the result generated by the proposed approach. The

other pitcher is now correctly ranked at the first position.

Dense Matching. Object similarities are mainly based

on the distance of pre-selected RGB and depth features. Al-

though some of these features (e.g., SIFT [25], kernel [5],

and convolutional descriptors [4, 30]) can tolerate a small

degree of local pose, scale, and color variations, they stil-

l failed to deal with the tough pitcher case in Fig. 1. It is

noticed that almost all of these existing features are com-

puted solely based on the host object itself. In other words,

features of an object remain the same, independently of the

object it is compared to. This could be arguable as people

maybe adopt a different way to distinguish objects. For ex-

ample, to compare the two pitchers in Fig. 1, a more natural

way is to first align them to the same pose and size, and then

make comparisons part-by-part (e.g. the handle and spout

parts of a pitcher). In this way, the description (features)

of an object should be adaptive when it is compared with

different objects. This is the first motivation of this paper.

One pioneer work inspiring us is the SIFT flow proposed

in [24, 23]. Unlike traditional optical flow [16, 9, 10], which

pitchers vs. coffee mugs greens vs. bell peppers calculators vs. cell phones

Figure 3. Example pairs of object categories being easily confused

with each other. They usually share similar visual appearances or

geometric shapes, which makes the choosing of fusion weight a

tough problem. Please refer to the text for details.

merely estimates the motion of the same object along time,

SIFT flow is capable of building correspondences between

different objects from the same category. For example,

aligning the wheel parts of different models of cars. Fol-

lowing the idea of SIFT flow, in this paper, dense matching

is proposed to transform (or warp) one object to another, to

align semantically corresponding parts of the two objects.

Like that shown in Fig. 2, a reference object is first warped

according to the query through dense matching. After that,

the similarity is measured based on the distorted object and

the query. We call this query adaptive similarity measure

because the dense matching alignment depends on the query

object.

Learning-to-Combination. In dense matching, fusing

RGB and depth data is still an unavoidable problem. Par-

ticularly, we need to specify a weight to combine the a-

greements of local RGB and depth patches. No doubt that

choosing different weights leads to entirely different objec-

t alignments. A straightforward idea is to learn a magic

weight to balance the two modalities based on a training set.

Here, we argue that such an ideally golden fusion weight

doesn’t exist at all. The truth is, the two modalities have

varying contributions when comparing objects in different

categories. This is the second motivation of this paper.

Fig. 3 illustrates several easily confused object cate-

gories to explain our observations. For instance, we expect

to emphasize shape (depth) to boost the similarity between

various pitchers; while at the same time we also want to

emphasize texture appearance (RGB) to distinguish pitcher-

s from coffee mugs. Also, there are situations that both RGB

and depth cues have to be considered to make a right deci-

sion, such as to distinguish calculators from cell phones.

To better balance RGB and depth cues, a learning-to-

combination strategy is introduced in this paper. Given a

fusion weight, dense matching tries to align objects follow-

ing a certain assumption of the contributions from the two

modalities, and the output cost reflects how well the object-

s are matched under such an assumption. Through vary-

ing the weight, we construct a group of dense matchers,

whose outputs together characterize the trend of similarity

change under different fusion configurations. In analogy to

learning-to-rank in web search, supervised learning is feasi-
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ble here to find an optimal way combining responses of all

the matchers, to promote query-relevant objects in recogni-

tion. Although such a learning-to-combination strategy is

quite simple, it shows surprisingly good generalization a-

bility in experiments.

The rest of this paper is organized as follows. Section 2

briefly reviews related work. Section 3 and 4 introduce de-

tails of the proposed approach. Extensive experimental re-

sults are reported in Section 5 and conclusion is drawn in

Section 6.

2. Related Work

RGB-D Object Recognition. A fair amount of research

efforts focused on devising RGB and depth features. Lai et

al. [20] extracted SIFT [25], texton histograms [22] and spin

images [19] over the color and depth frames individually,

followed by a concatenation of all these features to depict

an object. Allowing for the specificity of the depth infor-

mation, depth kernel features [5] and local surface descrip-

tors [3] were designed to represent the depth cues more ef-

fectively. Another line of work [4, 7, 30, 31] exploited very

successful machine learning methods to obtain state-of-the-

art performance. Browatzki et al. [8] exploited a multi-layer

perception to fuse multiple SVMs learned on separate fea-

tures. Lai et al. [21] extended the distance learning meth-

ods [29, 26] to define a view-to-object distance, which can

effectively fuse heterogenous features. In this paper, we in-

vestigate the problem from another perspective, focusing on

designing a kind of query dependent similarity measure as

well as the corresponding fusing strategy. In experiments

we will show that the proposed approach is a good comple-

mentary to existing solutions.

Dense Matching. The nature of dense matching is to

insure some kind of agreement between matched pixels, as

well as enforce smoothness in their local neighborhoods.

Such a formulation has been extensively studied in opti-

cal flow [16, 9, 10] to align temporally adjacent frames via

brightness constancy. Recently, the additional depth data

was also exploited in RGB-D flow [15, 28] to estimate mo-

tion field in 3D space. Both optical flow and RGB-D flow

are limited to track the same object along time (and in s-

pace). SIFT flow [24, 23] relaxes such a limitation, and is

able to match similar objects in different scenes. This paper

extends the framework of SIFT flow to align objects, tak-

ing the agreements of both RGB and depth modalities into

consideration.

3. Our Approach

3.1. Dense Matching for Similarity Measure

To match a query object Iq and a reference object Ir in

database, Ir is first warped according to Iq by dense match-

ing. The goal is to reduce the distractions of possible vari-

ations, and provide more robust inputs to further similarity

measure. Essentially, dense matching is to construct a map-

ping relation M: Ir → Iq , in which each pixel in Ir is

associated with one pixel in Iq , by

(x′, y′) = (x, y) + (dx, dy), (1)

where (x, y) is the coordinate of a pixel pi in Ir, and (x′, y′)
is the coordinate of the matched pixel p′i in Iq . (dx, dy) is

the displacement of pi, and is denoted by the vector ti =
(dx, dy) for the sake of simplicity.

To optimize the displacements of all the pixels as a w-

hole, following the formulation of typical optical flow [16,

9, 10] and SIFT flow methods [24, 23], here in dense match-

ing we consider three constraints including agreements of

local RGB and depth patches (data term), strength of dis-

placement (range term), and neighborhood smoothness (s-

moothing term). The total cost is defined as

E(ti) =
∑
i

Di(ti) + α
∑
i

‖ti‖1 + β
∑

i,j∈N

min(‖ti − tj‖1, λ).

data term range term smoothing term

(2)
Here the range term, expressed as the L1 norm of the dis-

placement vector, penalizes unexpected large deformations.

The smoothing term constrains the displacement vectors of

adjacent pixels to be similar, where N is a 2 × 2 spatial

neighborhood, and the L1 norm truncated by λ is adopted

to account for the discontinuities of local object boundaries.

In addition, α and β are two constant coefficients to balance

different terms. The settings of α, β, and λ follow the SIFT

flow work, more details please refer to [23].

The data term in (2) differs from those adopted in op-

tical flow and SIFT flow. Besides visual agreement, depth

agreement also contributes to this constraint. Together we

have

Di(ti) = θ · [frgb(pi|Ir)− frgb(pi + ti|Iq)]+

(1− θ) · [fdepth(pi|Ir)− fdepth(pi + ti|Iq)].
(3)

Here, frgb(p|I) and fdepth(p|I) are respectively the RGB

and depth feature descriptors extracted at the point p from

the object I , and θ ∈ [0, 1] is a specified fusion weight to

combine RGB and depth cues.

Optimization. Following the computational framework

proposed in [23], we exploit a dual-layer loopy belief prop-

agation to minimize the discrete energy function. To speed

up the algorithm, a coarse-to-fine matching scheme is em-

ployed as well. For both modalities (depth and RGB), map-

s of their features are down-sampled to construct a multi-

resolution pyramid. The mapping relation M is roughly

estimated at the coarsest resolution, and is then propagated

and refined layer-by-layer, until reaches to the finest resolu-

tion. Such a scheme significantly reduces the computation

time, also generates more robust result.
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Conditional Similarity. Given the optimized mapping

relation M from Ir to Iq , we define the conditional similar-

ity as

sθ(Ir|Iq) = exp(−γ
−1

∑

i

Di(ti)), (4)

where γ is the scale parameter, which is empirically set as

the average data term cost over the training set. The score

explicitly evaluates the local appearance and shape agree-

ments between the two objects, pixel-by-pixel, adopting a

certain fusion weight θ to balance the two cues. It is worth

noting that the conditional similarity is asymmetric, since

the dense matching is query dependent. In general, the

matching between objects from the same category usually

converges with a relatively small cost, and generates a high

similarity score according to (4). By contrast, the cost of

matching objects from different categories (e.g. aligning

the cap to the query pitcher in Fig. 1 (b)) is expensive, as a

consequence, results in a poor similarity score.

3.2. Learning-to-Combine Dense Matchers

Although the proposed conditional similarity is quite

simple (basically it is directly based on the sum of pixel-

wise feature distances), as will be shown in Section 5, a

single dense matcher is capable of providing top-1 test ac-

curacy ranged from about 83% to 88%, adopting different

fusion weight θ. Such a performance is already compara-

ble with those of most existing solutions, and proves the

rationality of the dense matching idea. However, just like

we explained in Section 1, it is hard to further improve the

performance as a constant fusion weight cannot deal with

all the complicated situations when comparing objects from

various categories.

Through studying the behaviors of a single dense match-

er, it is found the trend of matching cost varying along with

the fusion weight θ also reveals some sort of information.

For example, occasionally the cost may be relatively stable

within a certain range of θ, but changes dramatically out

of that interval. In view of similar observations, a natural

thought is to construct a group of dense matchers equipped

with various θ, and explore the change of matching scores,

expecting to provide more clues to boost the recognition

accuracy. In particular, θ is gradually varied from depth-

dominated (θ = 0) to RGB-dominated (θ = 1), and all

the responding similarity scores are merged in a linear way.

That is, the combined similarity score between the query Iq
and the reference Ir can be written as

ssum(Ir|Iq) =
∑

θ

wθ × sθ(Ir|Iq) + b = w
⊤
ΦIr|Iq , (5)

where the fusion weight θ is uniformly sampled from the

interval [0.0, 1.0] with a stride δθ (i.e., θ = [0.0 : δθ : 1.0]),
ΦIr|Iq = {s0.0(Ir|Iq), · · · , s1.0(Ir|Iq), 1} is the vector of

dense matcher scores, and w = {w0.0, · · · , w1.0, b} is the

vector of combining weights. A good choice of the combin-

ing weights w should satisfy ssum(I+q |Iq) > ssum(I−q |Iq),
where I+q denotes objects from the same category of q and

I−q indicates objects from other categories.

Training data collection. It is critical to collect a set

of high quality training data to learn an optimal w. Ran-

domly selecting positive pairs (two objects from the same

category) and negative pairs (two objects from different cat-

egories) is a possible way, but may not be beneficial to im-

prove the accuracy. This is because random sampling can-

not collect enough tough cases as most object categories are

not difficult to be distinguished from each other. A more

convenient way to collect easily confused samples is ex-

ploiting the power of exiting methods [5, 4, 7, 30]. Specifi-

cally, the training set is constructed as follows. First, a held-

out validation subset is used to query the remaining dataset

(those test samples to be adopted for experimental evalua-

tion have been excluded before this step), using one of those

off-the-shelf approaches. For each query Ii, there are usu-

ally both positive I+i and negative I−i samples among its

retrieved neighboring objects. As a result, a set of triplet-

s Ω = {(Ii, Ii
+, Ii

−)}Ni=1 is constructed for learning the

combining weights w, which should promote ssum(I+i |Ii)
and demote ssum(I−i |Ii).

Ranking SVM. In analogy to the formulation of struc-

tured learning-to-rank [17], w can be optimized through

minimizing the following loss function

min 1

2
‖w‖2

2
+ C

∑
ξi,i+,i−

s.t.∀(Ii, Ii
+, Ii

−) ∈ Ω, ξi,i+,i− ≥ 0,

w
⊤
ΦI

+

i
|Ii

−w
⊤
ΦI

−

i
|Ii

> 1− ξi,i+,i− .

(6)

As with those parameters in classical SVM, here C is a non-

negative tuning parameter and {ξi,i+,i−}
N
i=1 are slack vari-

ables to tolerate some degrees of ranking error. Although

this is not a convex or differentiable problem, the cutting

plane algorithm can efficiently minimize the upper bound

of the loss function [17].

Ideally, a separate weight vector w should be optimized

for each object category (it is straightforward to extend ( 6)

to do this). While in practice, unfortunately, it was found

that over-fitting is inevitable due to the limited training sam-

ples from each category available in those public RGB-D

datasets [20, 8]. As a compromise, we learn a global w to

adapt all the categories, which shows very promising gen-

eralization ability in experiments.

Recognition. Finally, object recognition is carried out

through voting. Similar to the steps for collecting train-

ing data, for a test query It, a pre-selected off-the-shelf ap-

proach is first adopted to identify T candidate categories,

and retrieve the K nearest objects for every candidate cat-

egory. Then, the score of It belonging to the category
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ci, 1 ≤ i ≤ T is defined as

svote(It; ci) =
1

K

∑

Ir∈ci

ssum(Ir|It), (7)

where Ir is one of the retrieved top-K nearest examples of

category ci. At last, It is recognized as an object of the

category associated with the highest voting score, as

category(It) = argmax
ci

svote(It; ci). (8)

4. Implementation Details

Dense Matching. To characterize the local patch struc-

tures, for each modality, two kinds of descriptors are ex-

tracted for every pixel. One is the 128-dimensional con-

volutional descriptor based on a 9 × 9 patch centered by a

pixel [14]; the other is a 200-dimensional kernel descrip-

tor, consisting of the gradient kernel and LBP kernel pro-

posed in [5]. The two descriptors are concatenated and com-

pressed through PCA dimension reduction, finally resulting

in a 256-dimensional feature vector for each pixel of each

modality.

Following the instructions in [23], we assign α = 0.05,

β = 2, and λ = 20 for the energy function (2) of dense

matching. It takes approximately 9 seconds to compute

the dense matching between an pair of objects, using a s-

ingle thread of a 2.4GHz Intel processor. Of course in

recognition, the matching process can be easily speeded up

through multi-threading parallelization on multiple cores or

machines.

Learning-to-Combination. In the learning step, we

adopted the CNN-RNN method [30] to collect training

triplets, and utilized SVMrank [18] to learn the combina-

tion weights. For recognition, we investigated the impacts

of choosing different values for the parameters δθ, T , and

K, and report the experimental results in the next section.

Also, we will show that the proposed approach can be in-

tegrated with various existing solutions and generally im-

prove their performance.

5. Experiments

5.1. Experiment Setup

Datasets. We evaluated the proposed approach on two

public available benchmark datasets, the Washington RGB-

D object dataset [20] and the 2D3D object dataset [8].

The Washington RGB-D object dataset is a large-scale

and multi-view dataset collected by Microsoft Kinect. It

consists of 300 household objects grouped into 51 cate-

gories. Each object was captured from 3 vertical angles

as well as multiple horizontal angles, resulting roughly 600

images per object. Following the instruction of [20], the 10

Table 1. Top-1 test accuracies of existing methods and the pro-

posed approach on the Washington RGB-D object database.

Methods Top-1 accuracy (%)

Linear SVM [20] 81.9± 2.8

Kernel SVM [20] 83.8± 3.5

Random Forest [20] 79.6± 4.0

IDL [21] 85.4± 3.2

KDES [5] 86.2± 2.1

CKM [4] 86.4± 2.3

HMP [6] 82.1± 3.3

SP-HMP [7] 87.5± 2.9

CNN-RNN [30] 87.6± 2.0

CRNN+CT [12] 87.2± 1.1

Our Method 92.7 ± 1.0

Table 2. Top-1 test accuracies of existing methods and the pro-

posed approach on the 2D3D object database.

Methods Top-1 accuracy (%)

MLP [8] 82.8

KDES [5] 92.8± 1.5

CKM [4] 88.7± 2.3

SP-HMP [7] 91.0

CNN-RNN [30] 92.5± 1.2

Our Method 93.6 ± 0.7

trials provided by the dataset were adopted to evaluate the

average accuracy.

The 2D3D object dataset has 156 objects organized in-

to 14 categories, which are popular in typical household or

office environments. Each object was recorded every 10◦

around the vertical axis on a turntable, yielding 36 views

per object. Following the same setting of [8], we randomly

split the dataset into a training set (82 objects) and a testing

set (74 objects). The evaluation also repeated for 10 times

to measure the average performance.

Methods. We collected as much as possible perfor-

mance reported by most well-known methods on the two

datasets. Several representative methods [5, 4, 30] only

have results for the Washington dataset in literature, to make

a more comprehensive comparison, we also implement-

ed these methods and verified them on the 2D3D dataset.

For the proposed approach, we chose the CNN-RNN mod-

el [30] as the base method to help identify T = 5 candidate

object categories, each of which contains K = 10 nearest

exemplars for voting. The learning-to-combination works

on 11 dense matchers whose fusion weights θ ranged from

[0, 1] with the stride δθ = 0.1. More detailed analysis for

selecting these parameters, as well as base method, will be

discussed in Section 5.3.
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Figure 4. Separate accuracy for each of the 51 categories in the Washington dataset. Our approach clearly improve the performance of

several tough categories (e.g., c32 and c38).
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Figure 5. (a) shows some difficult examples that are misclassified by CNN-RNN but correctly recognize by our method. (b) shows some

very confused examples which are misclassified by both CNN-RNN and our method. It is noticed that our method ranks the candidate

categories more reasonably. (Red rectangle denotes the true positive for the query.)

5.2. Overall Performance

Table 1 and Table 2 respectively present the top-1 recog-

nition accuracies of various methods on the Washington

RGB-D object dataset and the 2D3D dataset. All of these

methods employ both RGB and depth modalities. On both

of the two datasets, the proposed approach achieves the best

results. Specially, on the challenging Washington dataset,

our approach clearly outperforms existing methods, exceed-

ing the state-of-the-art CNN-RNN method1 with a 5.1% im-

provement. On the 2D3D dataset, our approach also im-

proves the top-1 accuracy by around 0.8% over the current

1[30] reported its result as 86.8 ± 3.3 with the softmax classifier. For

a fair comparison, we report its result with the linear SVM classifier like

other methods [5, 6, 4, 7, 12]. Note the results have already been updated

by the latest work [13, 11]

best. In addition, our approach has the most stable perfor-

mance (i.e., the smallest standard deviation) over different

trials. In general, the overall performance indeed demon-

strates the effectiveness of the proposed solution for boost-

ing the top-1 accuracy of RGB-D object recognition.

To clearly show the performance gains of our approach, a

detailed comparison of the separate accuracy for every cat-

egory on the Washington RGB-D dataset is given in Fig. 4.

Referring to the existing state-of-the-art CNN-RNN method

as baseline, we observe that our approach can significantly

improve the performance of several tough categories, while

simultaneously preserving high accuracies for others. Some

specific examples are given in Fig. 5 (a). The query pitcher,

mushroom and binder are misclassified as cap, garlic and

keyboard respectively by CNN-RNN method, due to the
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Figure 6. The top-1 accuracy of object recognition based on a sin-

gle dense matcher equipped with fusion weight θ ∈ [0, 1].

confused color and appearance. However, through warp-

ing by dense matching, the retrieved objects can be aligned

to the query with a similar pose and scale in our similarity

measure. As a consequence, the stable local structures of

objects can be found for the query, such as the handle and

spout of pitcher, the stipe and pileus of mushroom and the

interlayer of binder, which are used in our approach to sig-

nificantly boost the similarity of intra-class objects and lead

a correct recognition.

There are some very tough examples misclassified by

both CNN-RNN and our method, as showed in Fig. 5 (b).

Actually, humans can be confused to tell such query mush-

room and binder since both the appearance and shape of the

two queries are not distinguished enough. Although the top

ranked object is a false positive, our approach can provide

a more reasonable ranking of categories, where the rank-

ing position of the true positive can be promoted by our

approach. See the query pitcher for instance. The results

prove the effectiveness of our approach as well.

5.3. Detailed Analysis

5.3.1 Effectiveness of Dense Matching

In this section, we study the effectiveness of dense match-

ing, through applying a single dense matcher, without

the learning-to-combination strategy for object recognition.

Following the same setting of the experiment setup, we e-

valuate the performance of a single dense matcher with d-

ifferent fusion weight θ on the Washington RGB-D dataset.

The results are showed in Fig. 6. When θ = 0.7, the sin-

gle dense matcher can obtain the best result of 88.2% top-1

accuracy, which is competitive to the existing state-of-the-

art (CNN-RNN, 87.6%). This proves the rationality of the

dense matching idea for object recognition.

However, the performance based on a single dense

matcher can be sensitive to θ. For instance, when θ = 0,

the performance can decrease to below 83%. The probable

reason is that objects from the same category can appear
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Figure 7. Accuracies of three example categories on both valida-

tion and testing sets. Clearly that optimal fusion weights on one

set lead to bad performance on the other set. This is an evidence

of intra-class variations, which is also one of the bottlenecks of a

single dense matcher.

in different poses and scales, as well as have some degree

of intra-class variations. Such a single dense matcher can-

not deal with all the complicated situations. An evidence is

illustrated in Fig. 7. Even belonging to the same class, the

object instances can depend on very different fusion weights

to distinguish themselves with other categories. The results

also demonstrate that devising multiple dense matchers e-

quipped with different fusion weights for object recognition

is necessary.

5.3.2 Effectiveness of Learning-to-Combination

In this section, we study the effects of the parameter set-

ting to the performance of learning-to-combination strategy.

The similarity measure based on learning-to-combination s-

trategy is closely related to (1) the base method; (2) T ; (3)

K and (4) δθ. The default setting of all the parameters in

our experiments is: CNN-RNN based, T = 5, K = 10
and δθ = 0.1. Now we analyze each parameter of them

by fixing others as the default setting. For clarity, all the

experimental results below are carried out on the Washing-

ton RGB-D dataset over the second train/test split provided

by [20] (We empirically find that the result over this split is

approximate to the average result.).

Selection of base method. As showed in Fig. 8 (a),

the proposed similarity measure can significantly improve

the top-1 accuracies of RGB-D object recognition for al-

l the four methods. Note that we only learn the combining

weight vector w based on CNN-RNN model, and directly

apply w for other methods, which shows the good general-

ization ability for the learning-to-combination strategy.

Selection of T . As showed in Fig. 8 (b), when T > 2,

our approach can obtain a relatively stable and high accu-

racy (around 92.0%) of object recognition. Note that when

T = 1, it actually denotes the result of CNN-RNN model.

The results demonstrate our method is insensitive to T .

Selection of K. As showed in Fig. 8 (c), a wide range

of K (K < 30) can guarantee a stable and high perfor-

mance of our approach. While a big K (K > 30) can de-
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Figure 8. Performance analysis of the learning-to-combination strategy: (a) the improvements achieved by using different base methods to

propose candidate categories; (b) the accuracies when working with different T number of candidate categories; (c) the accuracies when

keeping different K reference objects for each candidate category; and (d) performance changes with different stride δθ .

cease the performance a little, since some dissimilar exam-

ples are included for each category, and they can interfere

with the similarity measure of the corresponding category

using the voting (7). When K exceeds a threshold 50, those

last added examples have very small similarity scores and

can be negligible for the similarity measure of each catego-

ry, resulting in a stable result finally.

Selection of δθ. Fig. 8 (d) demonstrates a small δθ (i.e.,

more dense matchers) can lead more powerful similarity

measure. The main reason is that the added dense matcher-

s can provide more cues between the pairwise objects and

contribute to the combined similarity measure. However,

a too small stride, e.g., δθ < 0.1, can improve the perfor-

mance a little, but at the price of increased computational

complexity. With a trade-off of the accuracy and efficiency,

we assign δθ = 0.1 in our experiments.

6. Conclusion and Future Work

This paper proposes a new similarity measure based on

dense matching, which can significantly improves the top-1

accuracy of RGB-D object recognition. Our similarity mea-

sure has two advantages: (1) through dense matching, the

two objects in comparison can be transformed and aligned

with each other, of which the similarity measure is more

meaningful; (2) with a learning-to-combination strategy, the

measure can explore a dynamic fusion way to combine RG-

B and depth cues effectively, which can offers surprisingly

good generalization to apply the proposed measure for ob-

ject recognition. Experiments on two public RGB-D object

datasets demonstrate the effectiveness of our method.

In the future, beyond RGB-D object recognition, we will

study the more difficult RGB-D object detection by apply-

ing the proposed similarity measure. An alternative way is

to exploit the framework of exemplar-svm [27] while using

our measure to evaluate the similarity between the pairwise

objects. The main drawback is that computing the dense

matching between the testing bounding boxes and the train-

ing exemplars is highly time consuming since a testing im-

age can have thousands of bounding boxes with sliding win-

dows. To speed up our algorithm, we will focus on more ef-

ficient algorithm to optimize the dense matching function,

as well as benefiting from the hardware such as GPU.
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