
Webly Supervised Learning of Convolutional Networks

Xinlei Chen
Carnegie Mellon University

xinleic@cs.cmu.edu

Abhinav Gupta
Carnegie Mellon University

abhinavg@cs.cmu.edu

Abstract

We present an approach to utilize large amounts of web

data for learning CNNs. Specifically inspired by curriculum

learning, we present a two-step approach for CNN training.

First, we use easy images to train an initial visual represen-

tation. We then use this initial CNN and adapt it to harder,

more realistic images by leveraging the structure of data

and categories. We demonstrate that our two-stage CNN

outperforms a fine-tuned CNN trained on ImageNet on Pas-

cal VOC 2012. We also demonstrate the strength of webly

supervised learning by localizing objects in web images and

training a R-CNN style [19] detector. It achieves the best

performance on VOC 2007 where no VOC training data is

used. Finally, we show our approach is quite robust to noise

and performs comparably even when we use image search

results from March 2013 (pre-CNN image search era).

1. Introduction

With an enormous amount of visual data online, web and

social media are among the most important sources of data

for vision research. Vision datasets such as ImageNet [41],

PASCAL VOC [14] and MS COCO [29] have been created

from Google or Flickr by harnessing human intelligence to

filter out the noisy images and label object locations. The

resulting clean data has helped significantly advance per-

formance on relevant tasks [16, 24, 19, 59]. For example,

training a neural network on ImageNet followed by fine-

tuning on PASCAL VOC has led to the state-of-the-art per-

formance on the object detection challenge [24, 19]. But

human supervision comes with a cost and its own problems

(e.g. inconsistency, incompleteness and bias [52]). There-

fore, an alternative, and more appealing way is to learn vi-

sual representations and object detectors from the web data

directly, without using any manual labeling of bounding

boxes. But the big question is, can we actually use millions

of images online without using any human supervision?

In fact, researchers have pushed hard to realize this

dream of learning visual representations and object detec-

tors from web data. These efforts have looked at different

aspects of webly supervised learning such as:

• What are the good sources of data? Researchers
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Figure 1. We investigate the problem of training a webly super-

vised CNN. Two types of visual data are available online: image

search engine results (left) and photo-sharing websites (right). We

train a two-stage network bootstrapping from clean examples re-

trieved by Google, and enhanced by noisier images from Flickr.

have tried various search engines ranging from

text/image search engines [5, 56, 54, 17] to Flickr im-

ages [33].

• What types of data can be exploited? Researchers

have tried to explore different types of data, like

images-only [27, 9], images-with-text [5, 43] or even

images-with-n-grams [13]).

• How do we exploit the data? Extensive algorithms

(e.g. probabilistic models [17, 27], exemplar based

models [9], deformable part models [13], self organiz-

ing map [20] etc.) have been developed.

• What should we learn from web data? There has

been lot of effort ranging from just cleaning data [15,

57, 33] to training visual models [27, 53, 28], to even

discovering common-sense relationships [9].

Nevertheless, while many of these systems have seen orders
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of magnitudes larger number of images, their performance

has never matched up against contemporary methods that

receive extensive supervision from humans. Why is that?

Of course the biggest issue is the data itself: 1) it contains

noise, and 2) is has bias - image search engines like Google

usually operate in the high-precision low-recall regime and

tend to be biased toward images where a single object is

centered with a clean background and a canonical view-

point [30, 4, 29]. But is it just the data? We argue that it

is not just the data itself, but also the ability of algorithms to

learn from large data sources and generalize. For example,

traditional approaches which use hand-crafted features (e.g.

HOG [9]) and classifiers like support vector machines [13]

have very few parameters (less capacity to memorize) and

are therefore unlikely to effectively use large-scale training

data. On the other hand, memory based nearest neighbors

classifiers can better capture the distribution given a suffi-

cient amount of data, but are less robust to the noise. For-

tunately, Convolutional Neural Networks (CNNs) [24] have

resurfaced as a powerful tool for learning from large-scale

data: when trained with ImageNet [41] (∼1M images), it is

not only able to achieve state-of-the-art performance for the

same image classification task, but the learned representa-

tion can be readily applied to other relevant tasks [19, 59].

Attracted by their amazing capability to harness large-

scale data, in this paper, we investigate webly supervised

learning for CNNs (See Figure 1). Specifically, 1) we

present a two-stage webly supervised approach to learning

CNNs. First we show that CNNs can be readily trained

for easy categories using images retrieved by search en-

gines. We then adapt this network to hard (Flickr style)

web images using the relationships discovered in easy im-

ages. 2) We show webly supervised CNNs also generalize

well to relevant vision tasks, giving state-of-the-art perfor-

mance compared to ImageNet pretrained CNNs if there is

enough data. 3) We show state-of-the-art performance on

VOC data for the scenario where not a single VOC training

image is used - just the images from the web. 4) We also

show competitive results on scene classification. We believe

this paper opens up avenues for exploitation of web data to

achieve next cycle of performance gain in vision tasks (and

at no human labeling costs!).

1.1. Why Webly Supervised?

Driven by CNNs, the field of object detection has seen a

dramatic churning in the past two years, which has resulted

in a significant improvement in the state-of-the-art perfor-

mance. But as we move forward, how do we further im-

prove performance of CNN-based approaches? We believe

there are two directions. The first and already explored area

is designing deeper networks [45, 50]. We believe a more

promising direction is to feed more data into these networks

(in fact, deeper networks would often need more data to

train). But more data needs more human labeling efforts.

But data labeling in terms of bounding boxes can be very

cumbersome and expensive. Therefore, if we can exploit

web data for training CNNs, it would help us move from

million to billion image datasets in the future. In this pa-

per, we take the first step in demonstrating: 1) CNNs can

be trained effectively by just exploiting web data at much

larger scales; 2) competitive object detection results can be

obtained without using a single bounding box labels from

humans.

2. Related Work

Mining high-quality visual data and learning good vi-

sual representation for recognition from the web naturally

form two aspects of a typical chicken-and-egg problem in

vision. On one hand, clean and representative seed images

can help build better and more powerful models; but on the

other hand, models that recognize concepts well are crucial

for indexing and retrieving image sets that contain the con-

cept of interest. How to attack this problem has long been

attractive to both industry and academia.

From Models to Data: Image retrieval [47, 46] is a classi-

cal problem in this setting. It is not only an active research

topic, but also fascinating to commercial image search en-

gines and photo-sharing websites since they would like to

better capture data streams on the Internet and thus bet-

ter serve user’s information need. Over the years, various

techniques (e.g. click-through data) have been integrated to

improve search engine results. Note that, using pretrained

models (e.g. CNN [57]) to clean up web data also falls

into this category, since extensive human supervision has

already been used.

From Data to Models: A more interesting and challeng-

ing direction is the opposite - can models automatically dis-

cover the hidden structures in the data and be trained di-

rectly from web data? Many people have pushed hard in

this line of research. For example, earlier work focused on

jointly modeling images and text and used text based search

engines for gathering the data [5, 43, 42]. This tends to offer

less biased training pairs, but unfortunately such an associ-

ation is often too weak and hard to capture, since visual

knowledge is usually regarded as common sense knowl-

edge and too obvious to be mentioned in the text [9]. As

the image search engines became mature, recent work fo-

cused on using them to filter out the noise when learning

visual models [18, 56, 54, 53, 28, 13, 20]. But using im-

age search engines added more bias to the gathered data

[7, 30, 29]. To combat both noise and data bias, recent ap-

proaches have taken a more semi-supervised approach. In

particular, [27, 9] proposed iterative approaches to jointly

learn models and find clean examples, hoping that sim-

ple examples learned first can help the model learn harder,

more complex examples [3, 25]. However, to the best of

our knowledge, human supervision is still a clear winner in

performance, regardless of orders of magnitudes more data

seen by many of these web learners.

Our work is also closely related to another trend in
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Figure 2. Outline of our approach. We first train a CNN using easy images from Google (above). This CNN is then used to find relationships

and initialize another CNN (below) for harder images. The learned representations are in turn used to localize objects and clean up data.

computer vision: learning and exploiting visual represen-

tation via CNNs [24, 19, 51, 21]. However, learning these

CNNs from noisy labeled data [49, 40] is still an open chal-

lenge. Following the recent success of convolutional net-

works and curriculum learning [3, 25, 26], we demonstrate

that, while directly training CNNs with high-level or fine-

grained queries (e.g. random proper nouns, abstract con-

cepts) and noisy labels (e.g. Flickr tags) can still be chal-

lenging, a more learning approach might provide us the

right solution. Specifically, one can bootstrap CNN train-

ing with easy examples first, followed by a more extensive

and comprehensive learning procedure with similarity con-

straints to learn visual representations. We demonstrate that

visual representations learned by our algorithm performs

very competitively as compared to ImageNet trained CNNs.

Finally, our paper is also related to learning from weak

or noisy labels [11, 34, 12, 48, 55]. There are some recent

works showcasing that CNNs trained in a weakly super-

vised setting can also develop detailed information about

the object intrinsically [44, 32, 36, 6, 35]. However, dif-

ferent from the assumptions in most weakly-supervised ap-

proaches, here our model is deprived of clean human super-

vision altogether (instead of only removing the location or

segmentation). Most recently, novel loss layers have also

been introduced in CNNs to deal with noisy labels [49, 40].

On the other hand, we assume a vanilla CNN is robust to

noise when trained with simple examples, from which a re-

lationship graph can be learned, and this relationship graph

provides powerful constraints when the network is faced

with more challenging and noisier data.

3. Approach

Our goal is to learn deep representations directly from

the massive amount of data online. While it seems that

CNNs are designed for big data - small datasets plus mil-

lions of parameters can easily lead to over-fitting, we found

it is still hard to train a CNN naively with random image-

text/tag pairs. For example, most Flickr tags correspond to

meta information and specific locations, which usually re-

sults in extremely high intra-tag variation. One possibility

is to use commercial text-based image search engine to in-

crease diversity in the training data. But if thousands of

query strings are used some of them might not correspond

to a visualizable concept and some of the query strings

might be too fine grained (e.g. random names of a person

or abstract concepts). These non-visualizable concepts and

fine-grained categories incur unexpected noise during the

training process1. One can use specifically designed tech-

niques [9, 13] and loss layers [49, 40] to alleviate some of

these problems. But these approaches are based on esti-

mating the empirical noise distribution which is non-trivial.

Learning the noise distribution is non-trivial since it is heav-

ily dependent on the representation, and weak features (e.g.

HOG or when the network is being trained from scratch) of-

ten lead to incorrect estimates. On the other hand, for many

basic categories commonly used in the vision community,

the top results returned by Google image search are pretty

clean. In fact, they are so clean that they are biased towards

iconic images where a single object is centered with a clean

background in a canonical viewpoint [30, 38, 4, 29]. This

is good news for learning algorithm to quickly grasp the ap-

pearance of a certain concept, but a representation learned

from such data is likely biased and less generalizable. So,

what we want is an approach that can learn visual represen-

tation from Flickr-like images.

Inspired by the philosophy of curriculum learning [3,

25, 26], we take a two-step approach to train CNNs from

the web. In curriculum learning, the model is designed to

learn the easy examples first, and gradually adapt itself to

harder examples. In a similar manner, we first train our

CNN model from scratch using easy images downloaded

1We tried to train a CNN with Google results of ∼7000 noun phrases

randomly sampled from the web (∼5M images), but it does not converge.
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from Google image search. Once we have this representa-

tion learned we try to feed harder Flickr images for train-

ing. Note that training with Flickr images is still difficult

because of noise in the labels. Therefore, we apply con-

straints during fine-tuning with Flickr images. These con-

straints are based on similarity relationships across different

categories. Specifically, we propose to learn a relationship

graph and initial visual representation from the easy exam-

ples first, and later during fine-tuning, the error can back-

propagate through the graph and get properly regularized.

The outline of our approach is shown in Figure 2.

3.1. Initial Network

As noted above, common categories used in vision

nowadays are well-studied and search engines give rela-

tively clean results. Therefore, instead of using random

noun phrases, we obtained three lists of categories from

ImageNet Challenge [41], SUN database [58] and NEIL

knowledge base [9]. ImageNet syn-sets are transformed to

its surface forms by just taking the first explanation, with

most of them focusing on object categories. To better assist

querying and reducing noise, we remove the suffix (usually

correspond to attributes, e.g. indoor/outdoor) of the SUN

categories. Since NEIL is designed to query search engines,

its list is comprehensive and favorable, we collected the list

for objects and attributes and removed the duplicate queries

with ImageNet. The category names are directly used to

query Google for images. Apart from removing unreadable

images, no pre-processing is performed. This leave us with

∼600 images for each query. All the images are then fed

directly into the CNN as training data.

For fair comparison, we use the same architecture (be-

sides the output layer) as the BLVC reference network [23],

which is a slight variant of of the original network proposed

by [24]. The architecture has five convolutional layers fol-

lowed by two fully connected layers. After seventh layer,

another fully connected layer is used to predict class labels.

3.2. Representation Adaptation with Graph

After converging, the initial network has already learned

favorable low-level filters to represent the “visual world”

outlined by Google image search. However, as mentioned

before, this “visual world” is biased toward clean and sim-

ple images. For example, it was found that more than 40%

of the cars returned by Google are viewed from a 45 degree

angle [30]. Moreover, when a concept is a product, lots of

the images are wallpapers and advertisements with artificial

background, with the product centered and pictured from

the best selling view. On the other hand, photo-sharing web-

sites like Flickr have more realistic images since the users

upload their own photos. Though photographic bias still

exists, most of the images are closer-looking to the visual

world humans experience everyday. Datasets constructed

from them are shown to generalize better [52, 29]. There-

fore, as a next step, we aim to narrow the gap by fine-tuning

our representation on Flickr images 2.

For fine-tuning the network with hard Flickr images, we

again feed these images as-is for training, with the tags as

class labels. While we are getting more realistic images, we

did notice that the data becomes noisier. Powerful as CNNs,

they are still likely to be diluted by the noisy examples over

the fine-tuning process3. In an noisy open-domain environ-

ment, mistakes are unavoidable. But humans are more in-

telligent: we not just learn to recognize concepts indepen-

dently, but also build up interconnections and develop theo-

ries to help better understand the world [8]. Inspired by this,

we want to train CNNs with such relationships - with their

simplest form being pair-wise look-alike ones [9, 13]. Such

a relationship graph can provide more information of the

class and regularize/constrain the network training. A mo-

tivating example is “iphone”. While Google mostly returns

images of the product, on Flickr it is often used to specify

the device a photo is taken with - as a result, virtually any

image can be tagged as “iphone”. Knowing similar-looking

categories to “iphone” can intuitively help here.

One way to obtain relationships is through extra knowl-

edge sources like WordNet [31]. However, they are not nec-

essarily developed for the visual domain. Instead, we take

a data-driven approach to discover relationships in our data:

we assume the network will intrinsically develop connec-

tions between different categories when clean examples are

offered, and all we have to do is to distill the knowledge out.

We take a simple approach by just testing our network

on the training set, and take the confusion matrix as the re-

lationships. Mathematically, for any pair of concepts i and

j, the relationship Rij is defined as:

Rij = P (i|j) =

∑
k∈Ci

CNN(j|Ik)

|Ci|
, (1)

where Ci is the set of indexes for images that belong to

concept i, | · | is the cardinality function, and given pixel

values Ik, CNN(j|Ik) is the network’s belief on how likely

image k belongs to concept i. We want our graph to be

sparse, therefore we just used the top K (K = 5 in our

experiments) and re-normalized the probability mass.

After constructing the relationship graph, we put this

graph (represented as a matrix) on top of the seventh layer

of the network, so that now the soft-max loss function be-

comes:

L =
∑

k

∑

i

Rilk log(CNN(i|Ik)), (2)

where lk is the class label. In this way, the network is trained

2Flickr images are downloaded using tag search. We use the same

query strings as used in Google image search.
3In our experiments, we find with the same ∼1500 categories and

close-to-uniform label distribution, a CNN converged on Google images

yields an entropy ∼2.8, whereas Flickr gives ∼4.0. Note that complete

random noise will give ∼log(1500)=7.3 and perfectly separable signal

close to 0.0.
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Figure 3. Our pipeline of object localization (for “countryman”).

E-LDA detectors [22] trained on fc7 features of the seed images

are fired on EdgeBox proposals (purple boxes) from other images

for nearest neighbors (red boxes), which are then merged to form

subcategories. Noisy subcategories are purged with density esti-

mation [10].

to predict the context of a category (in terms of relation-

ships to other categories), and the error is back-propagated

through the relationship graph to lower layers. Note that,

this extra layer is similar to [49], in which Rij is used to

characterize the label-flip noise. Different from them, we

do not assume all the categories are mutually exclusive, but

instead inter related. For example, “cat” is a hyper-class

of “Siamese cat”, and it is reasonable if the model believes

some examples of “Siamese cat” are more close to the aver-

age image of a “cat”. Please see Section 4 for our empirical

validation of this assumption. For fear of semantic drift,

in this paper we keep the initially learned graph structure

fixed, but it would be interesting to see how updating the

relationship graph performs (like [9]).

3.3. Localizing Objects

Until now, we have focused on learning a webly-

supervised CNN representation based on classification loss.

In order to train a webly-supervised object detector we still

need to clean the web data and localize the objects in those

images to train a detector like R-CNN [19]. Note that this

is a non-trivial task, since: 1) the CNN is only trained to

distinguish a closed set of classes, unnecessarily aware of

all the negative visual world, e.g. background clutter; 2) the

classification loss encourages the representation to be spa-

tially invariant (e.g., the network should output “orange”

regardless of where it exists in the image or how many there

are), which can be a serious issue for localization.

We now describe our subcategory discovery based ap-

proach similar to [9] to clean data and localize objects. The

whole process is illustrated in Figure 3.

Seeds: We use the full images returned by Google as seed

bounding boxes. This is based on Google’s bias toward im-

ages with a single centered object and a clean background.

Nearest Neighbor Propagation: For each seed, we train

an Exemplar-LDA [22] detector using our trained fc7 fea-

tures. Negative statistics for E-LDA are computed over all

the downloaded images. This E-LDA detector is then fired

on the remaining images to find its top k nearest neighbors.

For efficiency, instead of checking all possible windows on

each image, we use EdgeBox [60] to propose candidate

ones, which also reduces background noise. We set k=10

in our experiments.

Clustering into Subcategories: We then use a publicly-

available variant of agglomerative clustering [10] where the

nearest neighbor sets are merged iteratively from bottom up

to form the final subcategories based on E-LDA similarity

scores and density estimation. Note that this is different

from [9], but gives similar results while being much more

efficient. Some example subcategories are shown in Fig-

ure 5.

Finally, we train a R-CNN [19] detector for each cate-

gory based on all the clustered bounding boxes. Random

patches from YFCC [1] are used as negatives. The naive

approach would be using the positive examples as-is. Typ-

ically, hundreds of instances per category are available for

training. While this number is comparable to the VOC 2007

trainval set [14], we also tried to increase positive bounding

boxes using two strategies:

EdgeBox Augmentation (EA): We follow [19] to augment

the positive training examples. We again use EdgeBox [60]

to propose regions of interest on images. Whenever a pro-

posal has a ≥0.5 overlapping (measured by intersection

over union) with any of the positive bounding box, we add

it for training.

Category Expansion (CE): One big advantage of Inter-

net is its nearly infinite data limit. Here we again use

the relationship graph to look for similar categories for

more training examples. After verification the semantic-

relatedness with WordNet [31], we add the examples into

training dataset. We believe the extra examples should al-

low better generalization.

Note both these strategies are only used to increase the

amount of positive data for the final SVM to be trained in

R-CNN. We do not re-train our CNN representations using

these strategies.

4. Experimental Results

We now describe our experimental results. Our goal is

to demonstrate that the visual representation learned using

two-step webly supervised learning is meaningful. For this,

we will do four experiments: 1) First, we will show that

our learned CNN can be used for object detection. Here,

we use the approach similar to R-CNN [19] where we will

fine-tune our learned CNN using VOC data. This is fol-

lowed by learning SVM-detectors using CNN features. 2)
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Figure 4. Visualization of the relationships learned from the confusion matrix. The horizontal axis is for categories, which are ranked based

on CNN’s accuracy. Here we show random examples from three parts of the distribution: top, middle, bottom. It can be seen that the

relationships are reasonable: at the top of the distribution the network can recognize well, but when it gets confused, it gets confused to

similar categories. Even for bottom ones where the network gets heavily confused, it is confusing between semantically related categories.

Somewhat to our surprise, for noisy classes like “bossa nova”, the network can figure out it is related to musical instruments.

We will also show that our CNN can be used to clean up

the web data: that is, discover subcategories and localize

the objects in web images. 3) We will train detectors using

the cleaned up web data and evaluate them on VOC data.

Note in this case, we will not use any VOC training images.

We will only use web images to train both the CNN and

the subsequent SVMs. 4) Finally, we will show scene clas-

sification results to further showcase the usefulness of the

trained representation.

All the networks are trained with the Caffe Toolbox [23].

In total we have 2,240 objects, 89 attributes, and 874 scenes.

Two networks are trained on Google: 1) The object-attribute

network (GoogleO), where the output dimension is 2,329,

and 2) All included network (GoogleA), where the output

dimension is 3,203. For the first network, ∼1.5 million im-

ages are downloaded from Google image search. Combin-

ing scene images, ∼2.1 million images are used in the sec-

ond network. We set the batch size as 256 and start with

a learning rate of 0.01. The learning rate is reduced by a

factor of 10 after every 150K iterations, and we stop train-

ing at 450K iterations. For two-stage training, GoogleO is

then fine-tuned with ∼1.2 million Flickr images. We tested

both with (FlickrG) and without (FlickrF) the relationship

graph as regularization. Fine-tuning is performed for a to-

tal of 100K iterations, with a step size of 30K. As baseline,

we also report numbers for CNN learned using Flickr im-

ages alone (FlickrS) and combined Google+Flickr images

(GFAll). Note in case of GFAll, neither two stage learning

or relationship graph constraint is used.

Is Confusion Matrix Informative for Relationships? We

first want to show if the network has learned to discover the

look-alike relationships between concepts in the confusion

matrix. To verify the quality of the network, we take the

GoogleO net and visualize the top-5 most confusing con-

cepts (including self) to some of the categories. To ensure

our selection has a good coverage, we first rank the diagonal

of the confusing matrix (accuracy) in the descending order.

Then we randomly sample 3 categories from the top-100,

bottom-100, and middle-100 from the list. The visualiza-

tion and explanations can be found in Figure 4. We can see

that the top relationships learned are indeed reasonable.

4.1. PASCAL VOC Object Detection

Next, we test our webly trained CNN model for ob-

ject detection on the PASCAL VOC. Following the R-CNN

pipeline, two sets of experiments are performed on VOC

2007. First, we directly test the generalizability of CNN-

representations learned without fine-tuning on VOC data.

Second, we fine tune the CNN by back-propagating the er-

ror end-to-end using PASCAL trainval set. The fine-tuning

procedure is performed 100K iteration, with a step size of

20K. In both cases, fc7 features are extracted to represent

patches, and a SVM is learned to produce the final score.

We report numbers for all the CNNs on VOC 2007 data

in Table 1. Several interesting notes:

• Despite the search engine bias and the noise in the data,

our two-stage CNN with graph regularization is on par

with ImageNet-trained CNN.
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VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP

w
/o

V
O

C
F

T

ImageNet [19] 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7

GoogleO [Obj.] 57.1 59.9 35.4 30.5 21.9 53.9 59.5 40.7 18.6 43.3 37.5 41.9 49.6 57.7 38.4 22.8 45.2 37.1 48.0 54.5 42.7

GoogleA [Obj. + Sce.] 54.9 58.2 35.7 30.7 22.0 54.5 59.9 44.7 19.9 41.0 34.5 40.1 46.8 56.2 40.0 22.2 45.8 36.3 47.5 54.2 42.3

FlickrS [Flickr Obj.] 50.0 55.9 29.6 26.8 18.7 47.6 56.3 34.4 14.5 35.9 33.3 34.2 43.2 52.2 36.7 21.5 43.3 31.6 48.5 48.4 38.1

GFAll [All Obj., 1-stage] 52.1 57.8 38.1 25.6 21.2 47.6 56.4 43.8 19.6 42.6 30.3 37.6 45.1 50.8 39.3 22.9 43.5 34.2 48.3 52.2 40.5

FlickrF [2-stage] 53.9 60.7 37.0 31.6 23.8 57.7 60.8 44.1 20.3 46.5 31.5 39.8 49.7 59.0 41.6 23.0 44.4 36.2 49.9 56.2 43.4

FlickrG [2-stage, Graph] 55.3 61.9 39.1 29.5 24.8 55.1 62.7 43.5 22.7 49.3 36.6 42.7 48.9 59.7 41.2 25.4 47.7 41.9 48.8 56.8 44.7

w
/

V
O

C
F

T

VOC-Scratch [2] 49.9 60.6 24.7 23.7 20.3 52.5 64.8 32.9 20.4 43.5 34.2 29.9 49.0 60.4 47.5 28.0 42.3 28.6 51.2 50.0 40.7

ImageNet [19] 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

GoogleO 65.0 68.1 45.2 37.0 29.6 65.4 73.8 54.0 30.4 57.8 48.7 51.9 64.1 64.7 54.0 32.0 54.9 44.5 57.0 64.0 53.1

GoogleA 64.2 68.3 42.7 38.7 26.5 65.1 72.4 50.7 28.5 60.9 48.8 51.2 60.2 65.5 54.5 31.1 50.5 48.5 56.3 60.3 52.3

FlickrG 63.7 68.5 46.2 36.4 30.2 68.4 73.9 56.9 31.4 59.1 46.7 52.4 61.5 69.2 53.6 31.6 53.8 44.5 58.1 59.6 53.3

Table 1. Results on VOC 2007 (PASCAL data used). Please see Section 4.1 for more details.

VOC 2012 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

w
/

V
O

C
F

T ImageNet [19] 68.1 63.8 46.1 29.4 27.9 56.6 57.0 65.9 26.5 48.7 39.5 66.2 57.3 65.4 53.2 26.2 54.5 38.1 50.6 51.6 49.6

ImageNet-TV 73.3 67.1 46.3 31.7 30.6 59.4 61.0 67.9 27.3 53.1 39.1 64.1 60.5 70.9 57.2 26.1 59.0 40.1 56.2 54.9 52.3

GoogleO 72.2 67.3 46.0 32.3 31.6 62.6 62.5 66.5 27.3 52.1 38.9 64.0 59.1 71.6 58.0 27.2 57.6 41.3 56.3 53.7 52.4

FlickrG 72.7 68.2 47.3 32.2 30.6 62.3 62.6 65.9 28.1 52.2 39.5 65.1 60.0 71.7 58.2 27.3 58.0 41.5 57.2 53.8 52.7

Table 2. Results on VOC 2012. Since [19] only fine-tuned on the train set, we also report results on trainval (ImageNet-TV) for fairness.

• Training a network directly on noisy and hard Flickr

images hurt the learning process. For example, FlickrS

gives the worst performance and in fact when a CNN is

trained using all the images from Google and Flickr it

gives a mAP of 40.5, which is substantially lower than

our mAP.

• The proposed two-stage training strategy effectively

takes advantage of the more realistic data Flickr pro-

vides. Without graph regularization we achieve a mAP

of 43.4 (FlickrF). However, adding the graph regular-

ization brings our final FlickrG network on par with

ImageNet (mAP = 44.7).

We use the same CNNs for VOC 2012 and report re-

sults in Table 2. In this case, our networks outperform the

ImageNet pretrained network even after fine-tuning (200K

iterations, 40K step size). Note that the original R-CNN

paper fine-tuned the ImageNet CNN using train data alone

and therefore reports lower performance [19]. For fairness,

we fine-tuned both ImageNet network and our networks

on combined trainval images (ImageNet-TV). In both VOC

2007 and 2012, our webly supervised CNNs tend to work

better for vehicles, probably because we have lots of data

for cars and other vehicles (∼500 classes). On the other

hand, ImageNet CNN seems to outperform our network on

animals [41] (e.g. cat). This is probably because ImageNet

has a lot more data for animals. It also suggests our CNNs

can potentially benefit from more animal categories.

Does web supervision work because the image search en-

gine is CNN-based? One possible hypothesis can be that

our approach performs comparably to ImageNet-CNN be-

cause Google image search itself uses a trained CNN. To

test if this hypothesis is true, we trained a separate CNN us-

ing NEIL images downloaded from Google before March

2013 (pre-CNN based image search era). Despite the data

being noisier and less (∼450 per category), we observe

∼1% performance fall compared to a CNN trained with

November 2014 data on the same categories. This indicates

that the underlying CNN in Google image search has mini-

mal effect on the training procedure and our network is quite

robust to noise.

4.2. Object Localization

In this subsection, we are interested to see if we can de-

tect objects without using a single PASCAL training image.

We believe this is possible since we can localize objects

automatically in web images with our proposed approach

(see Section 3.3). Please refer to Figure 5 for the quali-

tative results on the training localization we can get with

fc7 features. Compared to [9], the subcategories we get

are less homogeneous (e.g. people are not well-aligned, ob-

jects in different view points are clustered together). But

just because of this more powerful representation (and thus

better distance metric), we are able to dig out more signal

from the training set - since semantically related images can

form clusters and won’t be purged as noise when an image

is evaluated by its nearest neighbors.

Using localized objects, we train R-CNN based detec-

tors to detect objects on the VOC 2007 test set. We com-

pare our results against [13], who used Google n-grams to

expand the categories (e.g. “horse” is expanded to “jump-

ing horse”, “racing horse” etc.) and the models were also

directly trained from the web. The results are shown in

Table 3. For our approach, we try five different settings:

1) GoogleO: Features are based on GoogleO CNN and the

bounding boxes are also extracted only on easy Google im-
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VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

LEVAN [13] 14.0 36.2 12.5 10.3 9.2 35.0 35.9 8.4 10.0 17.5 6.5 12.9 30.6 27.5 6.0 1.5 18.8 10.3 23.5 16.4 17.1

GoogleO 30.2 34.3 16.7 13.3 6.1 43.6 27.4 22.6 6.9 16.4 10.0 21.3 25.0 35.9 7.6 9.3 21.8 17.3 31.0 18.1 20.7

GoogleA 29.5 38.3 15.1 14.0 9.1 44.3 29.3 24.9 6.9 15.8 9.7 22.6 23.5 34.3 9.7 12.7 21.4 15.8 33.4 19.4 21.5

FlickrG 32.6 42.8 19.3 13.9 9.2 46.6 29.6 20.6 6.8 17.8 10.2 22.4 26.7 40.8 11.7 14.0 19.0 19.0 34.0 21.9 22.9

FlickrG-EA 32.7 44.3 17.9 14.0 9.3 47.1 26.6 19.2 8.2 18.3 10.0 22.7 25.0 42.5 12.0 12.7 22.2 20.9 35.6 18.2 23.0

FlickrG-CE 30.2 41.3 21.7 18.3 9.2 44.3 32.2 25.5 9.8 21.5 10.4 26.7 27.3 42.8 12.6 13.3 20.4 20.9 36.2 22.8 24.4

Table 3. Webly supervised VOC 2007 detection results (No PASCAL data used). Please see Section 4.2 for more details.
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Figure 5. We use the learned CNN representation to discover subcategories and localize positive instances for different categories [9].

Indoor-67 Accuracy

ImageNet [59] 56.8

OverFeat [39] 58.4

GoogleO [Obj.] 58.1

FlickrG [Obj.] 59.2

GoogleA [Obj. + Sce.] 66.5

Table 4. Scene classification results on MIT Indoor-67. Note that

GoogleA has scene categories for training but others do not.

ages; 2) GoogleA: Using GoogleO to extract features in-

stead; 3) FlickrG: Features are based on FlickrG instead;

4) FlickrG-EA: The same Flickr features are used but with

EdgeBox augmentation; 5) FlickrG-CE: The Flickr features

are used but the positive data includes examples from both

original and expanded categories. From the results, we can

see that in all cases the CNN based detector boosts the per-

formance a lot.

This demonstrates that our framework could be a pow-

erful way to learn detectors for arbitrary object categories

without labeling any training images. We plan to release a

service for everyone to train R-CNN detectors on the fly.

The code will also be released.

4.3. Scene Classification

To further demonstrate the usage of CNN features di-

rectly learned from the web, we also conducted scene clas-

sification experiments on the MIT Indoor-67 dataset [37].

For each image, we simply computed the fc7 feature vec-

tor, which has 4096 dimensions. We did not use any data

augmentation or spatial pooling technique, with the only

pre-processing step being normalizing the feature vector to

unit ℓ2 length [39]. The default SVM parameters (C=1)

were fixed throughout the experiments.

Table 4 summarizes the results on the default train/test

split. We can see our web based CNNs achieved very com-

petitive performances: all the three networks achieved an

accuracy at least on par with ImageNet pretrained mod-

els. Fine-tuning on hard images enhanced the features, but

adding scene-related categories gave a huge boost to 66.5

(comparable to the CNN trained on Places database [59],

68.2). This indicates CNN features learned directly from

the web are generic and quite powerful.

Moreover, since we can easily get images for seman-

tic labels (e.g. actions, n-grams, etc.) other than objects or

scenes from the web, webly supervised CNN bears a great

potential to perform well on many relevant tasks - with the

cost as low as providing a query list for that domain.

5. Conclusion

We have presented a two-stage approach to train CNNs

using noisy web data. First, we train CNN with easy im-

ages downloaded from Google image search. This network

is then used to discover structure in the data in terms of sim-

ilarity relationships. Then we fine-tune the original network

on more realistic Flickr images with the relationship graph.

We show that our two-stage CNN comes close to the Ima-

geNet pretrained-CNN on VOC 2007, and outperforms on

VOC 2012. We report state-of-the-art performance on VOC

2007 without using any VOC training image. Finally, we

will like to differentiate webly supervised and unsupervised

learning. Webly supervised learning is suited for seman-

tic tasks such as detection, classification (since supervision

comes from text). On the other hand, unsupervised learning

is useful for generic tasks which might not require semantic

invariance (e.g., 3D understanding, grasping).
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