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Abstract

We present an approach to nonrigid registration of 3D

surfaces. We cast isometric embedding as MRF opti-

mization and apply efficient global optimization algorithms

based on linear programming relaxations. The Markov ran-

dom field perspective suggests a natural connection with

robust statistics and motivates robust forms of the intrinsic

distortion functional. Our approach outperforms a large

body of prior work by a significant margin, increasing reg-

istration precision on real data by a factor of 3.

1. Introduction

Given two surfaces S, T ⊂ R
3, the nonrigid registration

problem calls for computing a physically or perceptually

meaningful mapping f : S → T . For example, if S and

T are two models of people in different poses, a natural

mapping associates the corresponding body parts [6]. Such

mappings can be used for loop closure detection in dynamic

scene reconstruction, regularization in joint shape analysis,

propagation of material properties across 3D models, and

other applications in computer vision and graphics.

Treatments of the registration problem differ in the

mathematical formulation of the registration objective—

typically a functional on the space of mappings—and the

computational approach to optimizing the objective. A par-

ticularly elegant formulation calls for minimizing the intrin-

sic distortion induced by the mapping [8]. If S and T are

accurate surface models of near-isometric shapes, a low-

distortion mapping can yield plausible correspondences.

Since models produced by 3D scanning systems are im-

perfect, registration algorithms that operate on such data

must be robust to its defects. These defects can be mild,

such as surface noise and occlusion gaps, or severe, such

as large-scale fusion of adjoining parts. The severe defects

are particularly challenging because they violate basic as-

sumptions made by many registration algorithms. These

violations commonly lead to registration failure. A recent

evaluation of state-of-the-art algorithms on real data with

carefully collected ground truth found that none of the eval-

uated algorithms performed satisfactorily [6].

In this paper, we develop an approach to surface registra-

tion that alleviates some of the difficulties encountered by

existing techniques. Our guiding observation is that mini-

mization of the intrinsic distortion functional can be cast as

MRF optimization [2]. We show that this simple observa-

tion has profound implications for surface registration.

The MRF formulation allows us to tap into highly ef-

ficient global optimization algorithms based on linear pro-

gramming relaxations. We show that simply optimizing a

variant of the classical intrinsic distortion objective [8] us-

ing modern MRF optimization machinery yields state-of-

the-art registration accuracy, outperforming far more com-

plex registration pipelines.

Furthermore, the Markov random field perspective sug-

gests a natural connection with robust statistics and moti-

vates robust forms of the embedding objective. We show

that optimizing a robust objective stabilizes registration in

the presence of major topological violations and substan-

tially increases registration accuracy. Our final model im-

proves registration precision on the challenging FAUST

dataset by a factor of 3 relative to the state of the art. Figure

1 illustrates the results. The presented approach is simple

and provides a natural baseline for future progress.

2. Background

Nonrigid shape registration was considered by Elad and

Kimmel, who identified the utility of isometric embeddings

[12]. They proposed matching two shapes by embedding

them in an intermediate Euclidean space, such that geodesic

distances are approximated by Euclidean ones. This re-

duces nonrigid registration to rigid registration in an inter-

mediate space, albeit at a loss of accuracy. A number of

other methods that use an intermediate space followed, no-

tably the conformal mapping approach [24, 52, 19].

A more direct approach is to embed one surface directly

into the other, without intermediate embeddings. This for-

mulation was developed by Bronstein et al. [8], building on

the work of Mémoli and Sapiro [28]. They defined the em-

bedding objective in terms of the distance distortion induced

by the mapping:

E(f) =
∑

i,j

wi,j

∣∣dS(si, sj)− dT (f(si), f(sj))
∣∣p. (1)
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(a) Blended intrinsic maps [19] (b) Random forests [33] (c) Our approach

Figure 1. Nonrigid registration of scans from the FAUST dataset [6]. Two scans of the same subject in the top row, two scans of different

subjects below. Error magnitude is coded by color, as shown in the color bar on the right.

Here dS(·, ·) and dT (·, ·) are the geodesic distance func-

tions on S and T , S = {si}
n
i=1

is a fixed discrete sampling

of S , and {wi,j} are weights that can be used to disable

some of the distortion terms. Optimization of (1) is called

generalized multidimensional scaling (GMDS).

Objective (1) is in general highly non-convex and non-

differentiable. While multiresolution schemes and vari-

ous search techniques have been proposed, GMDS is gen-

erally not considered viable without a good initialization

[7, 31, 36, 38]. Our work expresses the GMDS objec-

tive as a Markov random field (MRF) and leverages power-

ful methods developed for MRF optimization over the last

decade. The objective admits a linear programming relax-

ation that can be efficiently solved without an initialization

and yields global solutions.

Many approaches guide the registration by computing

local shape descriptors [11, 29, 32, 34, 33]. While this

strategy has been successful for rigid matching [1], its ap-

plication to nonrigid registration is complicated by the re-

quirement that the descriptors themselves be invariant to de-

formations. Many intrinsic descriptors have been proposed

[35, 42, 3, 25, 50]. The downside of their invariance to iso-

metric deformations is their sensitivity to gross topological

inconsistencies. Such topological violations commonly oc-

cur in practice, for example due to self-contact [6]. For this

reason, we do not use keypoints, segments, or shape de-

scriptors. Our work demonstrates that a direct approach that

simply optimizes an isometric distortion objective substan-

tially outperforms descriptor-based techniques.

The geodesic distance is itself sensitive to topological

inconsistencies. To stabilize the registration, Bronstein et

al. [10] propose to replace the geodesic metric by the diffu-

sion distance. Our work is complementary: our approach is

agnostic to the distance metric and can be used with the dif-

fusion distance if desired. Yet this is not sufficient in itself.

The diffusion distance is robust to some degree of topo-

logical noise, but not to large-scale topological violations.

We therefore introduce robustness at a higher level, by re-

placing the Lp norm in (1) with a robust truncated norm.

This is motivated by a long-standing connection between

MRF modeling and robust statistics [4] and is supported by

the optimization strategy. While the plateaus of a truncated

norm can stymie gradient-based optimization, they are han-

dled well by our approach.

Windheuser et al. [49] share our goal of a convex op-

timization approach to nonrigid matching and describe a

linear programming relaxation for this problem. However,

their formulation is substantially different: it operates on

diffeomorphisms and cannot handle topological inconsis-

tencies.
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The early work of Anguelov et al. [2], which predates

many developments covered earlier in this section, identi-

fied the utility of geodesic distance preservation and formu-

lated the nonrigid registration problem in terms of Markov

network optimization. However, their formulation is elabo-

rate, incorporating several types of potentials such as local

surface signatures in addition to distance preservation, and

their distance potentials are binary. In contrast, we show

that a simple continuous embedding objective coupled with

modern MRF optimization machinery is sufficient.

A number of nonrigid registration pipelines reformulate

the objective as an integer quadratic program, which can

then be approximately solved using integer programming

techniques or by relaxation [11, 31, 32, 34, 47]. These for-

mulations commonly suffer from extremely high compu-

tational complexity, which restricts their applicability to a

small number of feature points [11, 31, 47]. In particular,

Wang et al. [47] use an integer quadratic programming for-

mulation and optimize it using the dual decomposition algo-

rithm of Torresani et al. [44]. This work is related to ours in

that the dual decomposition framework also solves a convex

relaxation. However, our algorithms are substantially differ-

ent. Wang et al. rely on an algorithm that computes maximal

flows in a graph that has O(n2) vertices and O(n4) edges,

resulting in computational complexity O(n8). While the

authors discuss a heuristic multiresolution scheme that in-

dependently solves small local subproblems, the applicabil-

ity of the approach is restricted to matching a few points at

a time and the authors only explore sparse keypoint match-

ing. In contrast, we do not use a quadratic programming for-

mulation and employ a highly effective optimization strat-

egy with total complexity O(n4). This allows joint global

optimization on dense sample sets, enabling high-accuracy

dense registration of challenging real-world data.

3. Optimization

The embedding objective (1) corresponds to a contin-

uous Markov random field with pairwise potentials [5].

To apply optimization techniques developed for discrete

Markov random fields, we discretize the label space. Let

T = {tj}
m
j=1

be a set of samples that densely cover T . Let

L be a set of m labels, such that each label l ∈ L corre-

sponds to a distinct sample tl ∈ T . We seek a labeling

l : S → L. Let li = l(si) denote the label assigned to si by

l. The labeling objective is

minimize
l

∑

i,j

wi,j

∣∣dS(si, sj)− dT (tli , tlj )
∣∣p. (2)

Each labeling l specifies a correspondence between the

sample sets S and T . This correspondence can then be up-

sampled to a high-resolution mapping from S to T as de-

scribed in Section 5.

Objective (2) corresponds to a discrete MRF with pair-

wise potentials. Using common MRF notation, we seek a

labeling l
⋆ that minimizes an energy function:

l
⋆ = l

⋆(θ) = argmin
l

E(l;θ),

where θ is the set of potentials:

E(l;θ) =
∑

i,j

θij(li, lj), (3)

θij(li, lj) = wi,j

∣∣dS(si, sj)− dT (tli , tlj )
∣∣p.

The MRF optimization problem is NP-hard in general.

A natural approach to deriving approximate algorithms is

to represent the problem as an integer linear program and

relax the integer constraints to obtain a linear program [48].

This approach has been a rich source of elegant MRF opti-

mization algorithms. The LP relaxation is

minimize
0≤x≤1

∑

i,j

∑

a,b

θij(a, b)x
ab
ij

s.t.
∑

b

xab
ij = xa

i , ∀i, j ∈ S, ∀a ∈ L

∑

a

xa
i = 1, ∀i ∈ S

(4)

Here {xa
i } and {xab

ij } are auxiliary variables that specify a

distribution over the space of labelings. The first set of con-

straints imply that correspondences between pairs of sam-

ples must be consistent with correspondences between indi-

vidual samples.

While standard LP solvers can be used to solve (4), they

do not take advantage of the structure of the problem and

do not scale well. Over the past decade, a variety of special-

purpose MRF optimization algorithms have been developed

that can effectively optimize large models with hundreds of

thousands of potentials and hundreds of labels. Many of the

most successful ones can be interpreted in terms of the dual

of (4). This dual corresponds to an optimization problem on

the potentials θ. The dual LP is

maximize
δ

∑

i

min
a

θ̃ai +
∑

i,j

min
a,b

θ̃abij ,

where θ̃ai =
∑

j

δaji

θ̃abij = θij(a, b)− δaji − δbij

(5)

The variables {δaij} have a natural interpretation as mes-

sages. Optimization of the dual LP yields revised potentials

θ̃, which can be used to obtain an optimized configuration l̃

[45, 48, 41].

We use tree-reweighted message passing (TRW) to opti-

mize objective (3) and its variants [45, 20]. TRW is one of
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the most significant families of algorithms for optimizing

Markov random fields. The basic TRW algorithms, their

generalizations, and their relationship to other inference al-

gorithms have been extensively analyzed [48, 46, 27, 21].

This interest was motivated in part by the effectiveness of

certain forms of TRW in practice. In particular, the conver-

gent sequential algorithm known as TRW-S [20] commonly

exhibits both high accuracy and rapid convergence, yielding

state-of-the-art results on large energy minimization prob-

lems [51, 43, 15]. We have evaluated TRW-S alongside a

number of alternative algorithms, including dual decompo-

sition with bundle methods [16], alternating directions dual

decomposition [26], adaptive diminishing smoothing [39],

and MPLP [40]. All results reported in this paper were ob-

tained using TRW-S.

4. Objective

The optimization approach described in Section 3 does

not assume that the distortion terms are convex, differen-

tiable, or have an informative gradient. It is thus broadly

applicable and can be used to optimize robust forms of the

embedding objective. This significantly increases accuracy

on challenging real-world data.

To motivate the revised objective, consider a didactic ex-

ample of self-contact, shown in Figure 2. In this example,

S and T are two configurations of a three-bar linkage, such

that the bars all have length d. S is open and T is closed.

Consider a pair of points si, sj ∈ S . Let x = dS(si, sj) and

y = dT (f
∗(si), f

∗(sj)), where f∗ : S → T is a ground-

truth mapping that registers individual bars. It is easy to see

that y = min(x, 3d−x). Thus the distortion |x−y|p can be

as high as (3d)p. This highlights one of the repercussions of

topological violations: they can trigger high penalties that

distort the cost landscape.

�݆ 
�∗ሺ�݅ሻ 

�∗ሺ��ሻ 

�݅ 

S T
Figure 2. Without robust penalties, self-contact can significantly

distort the cost landscape.

To bound penalties imposed on good mappings due to

topological violations, we replace the unbounded Lp norm

with a robust truncated penalty. (We use truncated L1.)

Furthermore, note that in our didactic example the distor-

tion is non-zero only when x > 3d/2; in general, high

spurious penalties are only imposed if at least one of the

distances, either on S or on T , is high. We thus addition-

ally apply a Laplace weight to attenuate the contribution of

long-distance pairs to the objective. Our combined penalty

function is

ρ(x, y) = exp

(
−
min(x, y)

b

)
min

(
|x− y|, τ

)
,

where b and τ are global parameters, set to 0.1m and 0.2m

in our implementation.

We also add a weak extrinsic unary term into the objec-

tive to disambiguate intrinsic symmetries [9]. The complete

objective is

E(l) =

n∑

i,j=1

ρ
(
dS(si, sj), dT (tli , tlj )

)

+ λ
∑

i

‖si − tli‖. (6)

The weight λ balances the strength of the pairwise and

unary terms, which have different cardinality.

Objective (6) is a pairwise MRF objective and can be

optimized as described in Section 3. For clarity, the LPs

in Section 3 were given without unary terms; these can be

added without difficulty.

5. Implementation

Preprocessing. Our approach does not assume that the in-

put models are watertight. To simplify the computation of

geodesic distances, we begin by applying Poisson recon-

struction to the meshes [17]. The two surfaces are covered

by sample sets S and T using farthest point sampling [13].

Geodesic distances between all pairs of samples in S and

all pairs of samples in T are then precomputed.

Global optimization. The approach described in Section

3 can be used to globally optimize the registration objective

for hundreds of samples on each surface on a typical work-

station. For n = 100 and m = 400, the average running

time of our implementation on a pair of models from the

FAUST dataset is 20 seconds on a workstation with 16GB of

RAM and an Intel i7-4960X CPU clocked at 3.60GHz. As

shown in Section 6, global optimization of our objective at

this sampling resolution already yields state-of-the-art reg-

istration accuracy, without any coarse-to-fine processing.

Since the primal solution produced by TRW-S is related to

the ordering of nodes, we permute the ordering 10 times and

choose the best primal solution.

Upsamping. If desired, we can upsample the mapping

generated by the global optimization as follows. Consider

sample sets Ŝ ⊃ S and T̂ ⊃ T , such that |Ŝ|, |T̂ | ≫ n,m.

Since the mapping l : S → T is already well-localized, it

2042



can be upsampled to a mapping l̂ : Ŝ → T̂ by a lower-

complexity algorithm. Specifically, we can produce a high-

resolution mapping l̂ by optimizing a restricted distance

preservation objective:

argmin
l̂

w∑

i=1

n∑

j=1

ρ
(
dS(si, sj), dT (tl̂i , tlj )

)
, (7)

where w = |Ŝ|. This decomposes into independent ob-

jectives for each point in Ŝ \ S: each can thus be placed

independently.

Refinement. We can optionally refine an upsampled map-

ping l̂ by optimizing the complete distance preservation ob-

jective that links all pairs of points:

argmin
l̂

w∑

i,j=1

ρ
(
dS(si, sj), dT (tl̂i , tl̂j )

)
. (8)

To refine a mapping at high resolution, we use fusion moves

[23]. Given a current labeling l̂, we generate a proposal l′

as follows. For each point si ∈ Ŝ, we set tl′
i

to some point

t ∈ T̂ with probability

exp

(
−
dT (tl̂i , t)

b

)
/
∑

i

exp

(
−
dT (tl̂i , t)

b

)
.

This proposal l′ is then fused with the current labeling l̂

using QPBO [22, 23]. Our implementation optionally per-

forms fusion moves at resolution w = 5000, after which

the result is upsampled to the full resolution of the input

meshes.

6. Evaluation

6.1. Experimental setup

We conduct extensive experiments on the FAUST

dataset. This is a recent dataset of real 3D scans with

carefully collected ground-truth correspondences. FAUST

has been shown to be much more challenging than earlier

datasets such as TOSCA and SCAPE [6].

The FAUST dataset is composed of a training set and a

test set. Ground-truth data for the training set is publicly

available and allows thorough comparison of different ap-

proaches, computation of multiple accuracy measures, and

visualization of results. Ground-truth data for the test set is

not publicly available and the only way to evaluate an ap-

proach is to submit its results to the FAUST server. Since

we were not at liberty to submit other groups’ results to the

server, we focus on the publicly available FAUST training

set for detailed comparison to prior work.

The FAUST training set provides 100 scans of 10 human

subjects: 10 scans per subject, each in a different pose. We

evaluate on pairs of scans of the same subject in different

poses (intra-subject pairs) and on pairs of scans of differ-

ent subjects (inter-subject pairs). We randomly generate 50

intra-subject pairs such that each scan in the training set is

used in exactly one intra-subject pair. We also randomly

generate 50 inter-subject pairs such that each scan in the

training set is used in exactly one inter-subject pair.

We compare the presented approach to a large number of

prior methods for which we could obtain implementations

online or by contacting the authors: GMDS [8], Möbius

voting [24], blended intrinsic maps (BIM) [19], coarse-to-

fine matching (C2F) [36], the EM algorithm [37], coarse-to-

fine matching with symmetric flips (C2FSym) [38], sparse

modeling (SM) [30], elastic net constraints (ENC) [34], and

random forests (RF) [33]. Each method is evaluated on all

intra-subject pairs and all inter-subject pairs.

Many of the prior methods require watertight meshes as

input. Following Bogo et al. [6], we used Poisson recon-

struction for this purpose [17]. The meshes were cleaned up

by automatically removing small disconnected components.

This enabled us to successfully evaluate GMDS, Möbius,

and BIM on all pairs of models, in contrast to the incom-

plete evaluation reported in [6]. Other methods were also

successfully evaluated on all pairs, with the exception of

C2F and EM, which crashed on 7 out of 50 intra-subject

pairs and 7 out of 50 inter-subject pairs.

A number of prior methods do not scale to full-resolution

models. We run these on simplified meshes with approx-

imately 10,000 vertices. Some of the methods, such as

GMDS, Möbius, ENC, and EM, produce sparse correspon-

dences for roughly 100 to 200 samples. To maximize the re-

ported accuracy for these prior techniques, we computed er-

ror measures only for the sparse correspondences they pro-

duced. For methods that do provide complete dense cor-

respondences, including ours, accuracy is reported for all

correspondences.

RF is a model-based technique since it involves learn-

ing on the dataset, but we report its performance alongside

other methods for completeness. To maximize the perfor-

mance of this approach, we trained a dedicated random for-

est (15 trees) for each tested pair. For each pair of scans in

poses i and j, we trained a forest on all scans in the training

set (including scans of the same subjects) that are in differ-

ent poses ( 6= i, j): 80 training scans for each forest when

i 6= j, 90 training scans if i = j in an inter-subject pair.

This tests the generalization of the method to new poses, in

analogy to the partition of the FAUST dataset into training

and test sets, which are composed of scans of the same ten

subjects in different sets of poses.

6.2. Results

Results are summarized in Figures 3 and 4. Figure 3

(top) shows the cumulative error distributions for the eval-
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(c) Average error for each intra-subject pair (d) Average error for each inter-subject pair

Figure 3. Evaluation on the FAUST dataset. Intra-subject pairs on the left, inter-subject pairs on the right. Top: Cumulative error distri-

butions for the evaluated methods, in centimeters (higher is better). Bottom: Average error for each of the tested pairs, in centimeters,

sorted by magnitude (lower is better); the tested pairs are sorted independently for each method, according to the accuracy achieved by the

method on each pair: for example, pair #50 is not the same for different methods.

method AE (cm) worst AE 10cm-recall

GMDS [8] 28.98 91.84 0.300

Möbius [24] 14.99 80.40 0.614

BIM [19] 13.60 83.90 0.658

C2F [36] 23.63 73.89 0.333

EM [37] 30.11 95.42 0.293

C2FSym [38] 26.87 100.23 0.335

SM [30] 28.81 68.42 0.326

ENC [34] 23.60 51.32 0.385

RF [33] 22.26 69.26 0.548

Our approach 4.49 10.96 0.907

Accuracy on intra-subject pairs

method AE (cm) worst AE 10cm-recall

GMDS [8] 35.06 91.21 0.188

Möbius [24] 30.58 70.02 0.300

BIM [19] 17.36 86.76 0.539

C2F [36] 25.51 90.62 0.277

EM [37] 31.25 90.74 0.235

C2FSym [38] 25.89 96.46 0.359

SM [30] 32.66 75.38 0.240

ENC [34] 29.29 57.28 0.303

RF [33] 26.92 79.43 0.435

Our approach 5.95 14.18 0.858

Accuracy on inter-subject pairs

Figure 4. Evaluation on the FAUST dataset. Intra-subject pairs on the left, inter-subject pairs on the right. For each technique, each table

reports the average error on all pairs (AE, in centimeters), average error on the worst pair for this technique (worst AE, in centimeters), and

the fraction of generated correspondences that are within 10cm of the ground truth (10cm-recall). Our technique reduces the average error

by a factor of 3 over the best-performing prior approach on intra-subject pairs, and by a factor of 2.9 on inter-subject pairs. The worst AE

is reduced by a factor of 4.7 on intra-subject pairs and by a factor of 4 on inter-subject pairs.
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uated methods, in centimeters, aggregated over all tested

pairs (intra-subject on the left, inter-subject on the right).

For example, the left plot shows that 73.85% of the sur-

face area of the intra-subject pairs was registered to a

5cm accuracy by the presented approach, while the best-

performing prior approach (BIM) achieved this accuracy for

only 43.99% of the surface area. Figure 3 (bottom) shows

the average error for each tested pair, in centimeters, sorted

by magnitude. For example, the left plot shows that the

highest average error on the worst intra-subject pair for our

technique was 10.96cm, whereas all other techniques had

average error of at least 51.32cm on some of the tested pairs.

Figure 4 reports the average error of each technique

across all tested pairs, the average error on the worst tested

pair for each technique, and the 10cm-recall of each tech-

nique (i.e., the fraction of correspondences across all tested

pairs that were within 10cm of the ground truth). Our tech-

nique reduces the average error by a factor of 3 over the

best-performing prior approach on intra-subject pairs, and

by a factor of 2.9 on inter-subject pairs. The worst average

error is reduced by a factor of 4.7 on intra-subject pairs and

by a factor of 4 on inter-subject pairs. The tested pairs that

suffered the worst average errors produced by our approach

are shown in Figure 5.

We have also evaluated the contribution of different el-

ements of the presented approach. If we use the presented

optimization approach to optimize the embedding objective

with a standard L1 penalty on distance distortion, the av-

erage error is 7.97cm on intra-subject pairs and 8.82cm on

inter-subject pairs. This is already considerably more accu-

rate than the results produced by the best-performing prior

method. When we replace the L1 norm with the robust

penalty ρ described in Section 4, the average error drops

to 5.55cm intra-subject and 6.88cm inter-subject. These re-

sults are for single-resolution global optimization. If we

add refinement with fusion moves at high resolution as de-

scribed in Section 5, the average error drops further, to

4.49cm intra-subject and 5.95cm inter-subject. This is il-

lustrated in Figure 6.

Finally, we have also submitted our results to the FAUST

server for evaluation on the test set. The average error re-

ported by the server for our model-free approach is 4.86cm

on the intra-subject challenge and 8.30cm on the inter-

subject challenge.

7. Conclusion

We presented an approach to robust nonrigid registration

of 3D surfaces. The approach optimizes a clear objective

using well-understood techniques. It yields state-of-the-

art results on challenging real-world data, outperforming a

large body of prior work by a multiplicative factor. We hope

that the simplicity of the presented approach will stimulate

further advances in this area. Our results are far from per-

Figure 5. Pairs of scans that set the worst average errors reported

for our approach in Figure 4. Worst intra-subject pair on the left

(AE 10.96cm), worst inter-subject pair on the right (AE 14.18cm).

The color coding is defined in Figure 1.

fect. We hope that future work will build on the presented

ideas to advance the theory and practice of surface registra-

tion. The ideas developed in this paper may also be useful in

the context of partial surface registration and in joint analy-

sis of non-isometric shapes [14, 18].
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