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Abstract

Natural image modeling plays a key role in many vision

problems such as image denoising. Image priors are widely

used to regularize the denoising process, which is an ill-

posed inverse problem. One category of denoising methods

exploit the priors (e.g., TV, sparsity) learned from external

clean images to reconstruct the given noisy image, while

another category of methods exploit the internal prior (e.g.,

self-similarity) to reconstruct the latent image. Though the

internal prior based methods have achieved impressive de-

noising results, the improvement of visual quality will be-

come very difficult with the increase of noise level. In this

paper, we propose to exploit image external patch prior and

internal self-similarity prior jointly, and develop an exter-

nal patch prior guided internal clustering algorithm for im-

age denoising. It is known that natural image patches form

multiple subspaces. By utilizing Gaussian mixture models

(GMMs) learning, image similar patches can be clustered

and the subspaces can be learned. The learned GMMs from

clean images are then used to guide the clustering of noisy-

patches of the input noisy images, followed by a low-rank

approximation process to estimate the latent subspace for

image recovery. Numerical experiments show that the pro-

posed method outperforms many state-of-the-art denoising

algorithms such as BM3D and WNNM.

1. Introduction

Image denoising aims to restore the latent clean image

x from its noise-corrupted version y = x+ v, where v is

commonly assumed to be additive white Gaussian noise of

standard deviation σ. As a classical and fundamental prob-

lem in low level vision, image denoising has been wide-

ly studied [28, 29, 6, 25, 19, 20, 8]. From a probability-

based perspective, denoising could be treated as a Bayesian

posterior estimation problem: p(x|y) = p(y|x)p(x)/p(y),
where p(y) is a constant once y is given. The conditional

probability p(y|x) is called the data model, which can be

written as

p(y|x) ∝ exp

(

−
‖y − x‖22

σ2

)

. (1)

The distribution of probability p(x) is called the prior

model since it specifies a priori bias among the targeted

patterns and is independent of data observation. The clas-

sic total variation (TV) [28] method actually assumes that

natural image gradients exhibit heavy-tailed distributions,

which can be fitted by Laplacian or hyper-Laplacian mod-

els [17, 34]. Many statistical models of wavelet coefficients

have also been proposed, such as generalized Gaussian [12]

and Gaussian scale mixture [25] models, etc.

The seminal work of nonlocal means (NLM) brings a

new era of denoising by finding nonlocal similar patches

within the image [2]. Such an internal self-similarity prior is

widely exploited in patch-based denoising methods and has

achieved a great success [7, 22, 15, 30]. A typical example

is the so-called BM3D algorithm [10], which uses collabo-

rative filtering in transformed domain by grouping nonlocal

similar patches. The BM3D algorithm is very effective and

it has been a benchmark in image denoising. Based on the

principle of sparse and redundant representations, another

effective category of denoising methods is the dictionary-

based models. Largely owe to the success of the seminal

work of KSVD [1], learning dictionaries from natural im-

age patches has become a hot topic in image processing and

computer vision [27, 21, 7].

Since image denoising is a typical ill-posed problem, the

use of external natural patch priors to regularize the denois-

ing process has proved to be very successful. Chatterjee

and Milanfar [9] learned denoising bounds based on clus-

tered natural patch database. Zoran and Weiss [33] learned

603



clean natural image patches using Gaussian mixture mod-

els (GMMs), and reconstructed the latent image by maxi-

mizing the expected patch log likelihood (EPLL). The MLP

[3] method uses a multi-layer perceptron network to learn

image denoising procedure from training examples, which

consist of pairs of noisy and noise-free patches. Zontak and

Irani [31] proposed an internal parametric prior to evaluate

the nonlocal patch recurrence. They also found that patch

recurrence holds across scales [32]. Though external patch

priors based image denoising methods have shown compet-

itive results, they do not make good use of image internal

self-similarity. Mosseri et al. [24] combined the power of

internal and external priors to improve image denoising per-

formance. However, there is not global objective functional

in this method, but a combining strategy to select the inter-

nal and external information. Obviously, how to integrate

external patch priors and internal self-similarity into one

framework to improve image denoising performance is an

interesting problem to investigate.

Recently, low-rank approximation methods have exhib-

ited exciting performance on denoising [13, 26, 14, 18,

5, 16]. It is accepted that the latent structure underly-

ing image similar patches forms a low-dimensional sub-

space. Given a noisy observation set of similar patches

Y = [y1,y2, · · · ,ym] ∈ R
n×m and Y = X + V , where

X and V are the corresponding patch matrices of original

image and noise, respectively, the independence of noises

at the different pixels implies that

p(Y |X) ∝ exp

(

−
‖Y −X‖2F

σ2

)

. (2)

Under the assumption that the image patches in Y have sim-

ilar structures, the latent clean data matrix X has a low-rank

property, i.e., p(X) ∝ exp(−‖X‖∗) . In terms of logarith-

mic likelihood E = − ln p, we can minimize the posterior

energy:

E(X) =
1

σ2
‖Y −X‖2F + τ‖X‖∗, (3)

where τ is a positive constant. It is shown in Cai et

al. [4] that the optimal solution to this problem is X̂ =
USτ (Σ)V

T where Y = UΣV T is the SVD of Y and Sτ (Σ)
is the soft-thresholding function on Σ with parameter τ .

In [18], the nuclear norm minimization has been extended

to weighted nuclear norm minimization (WNNM) and has

achieved excellent denoising results. However, such meth-

ods face two challenges:

1. How to measure the similarity of patches for low-rank

denoising method? For example, Fig. 1 shows a giv-

en reference patch (a) and two candidate patches (b)

and (c). One commonly used similarity measure is the

Euclidean distance (such as in BM3D [10] and WNN-

M [18]). It means that only patches whose l2 distance

Figure 1. Similarity measure between the reference patch and the

candidate patches.

to the reference patch is smaller than a fixed threshold

are considered as similar patches to the reference one.

However, there is no guarantee that Euclidean distance

is a good choice for patch similarity measure, since the

image patch space is not a Euclidean space. We might

conclude that patch (b) is closer to (a) than (c) by Eu-

clidean distance. However, by visual comparison, (a)

and (c) have the same edge structure, and their collab-

orative filtering could preserve patch structure better.

Therefore, subspace structure and some structure mea-

sure should be taken into account in patch grouping.

2. How to find similar patches on a global scope? Block

matching [10] is a simple and effective method for

finding image patches similar to a given reference one.

This method has shown convincing results, but its ef-

ficiency is low. In practice, block matching is often

performed within a relatively large local window in-

stead of globally. This stems from the assumption that

many similar patches can be found in the local region.

However, some patches with salient structures such as

round edges or corners do not have repetitive pattern-

s within the neighborhood. Moreover, enforcing local

similarity in non-repetitive patterns will in particular

cause ringing artifacts (please refer to Fig. 2). In such

case, globally searching for the most similar patches in

the whole image becomes very important.

In this work, we propose a new framework of patch clus-

tering based low-rank regularization to address the above

two issues. In order to obtain the latent patch subspaces

with different structures, we perform patch clustering guid-

ed by a learned Gaussian mixture prior. By utilizing exter-

nal patch prior to guide internal clustering, an energy func-

tion with low-rank regularization is constructed for image

denoising. By minimizing the proposed objective function-

al, denoising and patch clustering procedures are carried out

simultaneously. The proposed model effectively exploit-

s external natural patch priors and internal self-similarity

priors to improve the denoising performance.
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Clean image Noisy image (σ = 35) BM3D[10]: PSNR=25.44dB WNNM[18]: PSNR= 26.12dB Ours: PSNR= 26.12dB

Figure 2. Local block matching causes ringing artifacts in human face.

2. External prior guided internal clustering for

patch based image denoising

Since image patch space is not a ball like Euclidean s-

pace, using the Mahalanobis distance characterized by the

patch covariance matrix could be a better choice for patch

similarity measure. In order to illustrate it, we uniform-

ly extract 299,000 image patches (size: 8 × 8) from 5 im-

ages (Lena, House, Cameraman, Monarch, Peppers). These

patches are divided into 3 groups according to their vari-

ance vp: smooth areas ( vp ≤ 0.002), structural region

(0.002 < vp ≤ 0.02), and textural area (vp > 0.02). The

correct matching rates (%) of Mahalanobis distance (MD)

and Euclidean distance (ED) under different noise levels (σ)

are listed in Table 1. It can be seen that MD indeed has

much better performance than ED in matching noisy patch-

es. By observing the close relationship between covariance

matrix and SVD, we find that a collection of patches with

similar structure could benefit much the low-rank matrix re-

covery for image restoration. In this section, we introduce a

data clustering method to group similar image patches by a

set of Gaussian mixture models (GMM). We will then show

how GMM priors can be incorporated in low-rank method

for image denoising.

Table 1. Mahalanobis distance (MD) vs. Euclidean distance (ED).

σnoise
Smooth Structural Textural

MD ED MD ED MD ED

σ = 35 6.2 8.1 36.4 23.0 65.6 57.3

σ = 55 4.2 7.2 24.5 13.4 53.1 36.5

σ = 75 3.4 6.9 17.0 10.0 43.0 24.3

2.1. Problem formulation

Before giving the problem formulation, we first analyze

the relationship between covariance matrix and SVD. To

simplify the notation, we assume that without loss of gen-

erality the patch matrix Y ∈ R
n×m has zero mean. Let

C = 1

m
Y Y T be the n × n covariance matrix. We can use

SVD to decompose Y , and rewrite the covariance matrix as

C = 1

m
UΣV TV ΣUT = 1

m
UΣ2UT . Therefore, the eigen-

vectors of the covariance matrix C are the same as those of

matrix U . This implies that a good low-rank approximation

of the data matrix Y can be computed using only a small

subset of the eigenvectors and eigenvalues. Moreover, the

higher the level of correlation or structure similarity among

patches in Y , the more energy are concentrated in the first

a few eigenvalues. As described in SVD-based low-rank

matrix approximation, the small eigenvalues are truncated

and therefore grouping the patches with structure similarity

to maximize the retained eigenvalues is beneficial for low-

rank matrix recovery.

In order to use the full covariance matrix for patch clus-

tering, an intuitive method is to use GMM. As discussed in

Section I, we can assume that the latent structures of im-

age patches form K low-dimensional subspaces. Thus, the

probability of a given image patch xi could be defined as a

weighted sum of K Gaussians:

p(xi|Θ) =

K
∑

k=1

ωkpk(xi|θk), (4)

where Θ = (ω1, · · · , ωK , θ1, · · · , θK) is the set of parame-

ters and
∑K

k=1
ωk = 1. Note that each θk describes a Gaus-

sian density function pk parameterized by the mean µk and

covariance matrix Σk, and pk(xi|θk) = c · exp
(

− 1

2
(xi −

µk)
TΣ−1

k (xi − µk)
)

. Here, the negative exponent is called

the Mahalanobis distance between xi and the center µk,

and c is the normalization constant. Θ can be determined

by maximum likelihood, typically using the Expectation-

Maximization algorithm [11].

Given an image x, we can extract all overlapped patch-

es into a set, denote by Rx
.
= (R1x, · · · , Rmx), where

Ri is a matrix which extracts the i-th patch from x. To

simplify the likelihood expression, we introduce class label

C = (c1, c2, · · · , cm) and ci ∈ {1, · · · ,K} denotes which

Gaussian Rix is from. Note that p(Rix, ci|Θ) is the likeli-

hood of the i-th patch belonging to class ci under the prior

Θ. Motivated by EPLL[33], we assume independence a-

mong patches and propose the following patch cluster log

likelihood term:

log p(Rx, C|Θ) = log

m
∏

i=1

p(Rix, ci|Θ) =

m
∑

i=1

log p(Rix|ci)p(ci) =

m
∑

i=1

log(ωcipci(Rix|θci)).

(5)

Obviously, our modeling is different from EPLL[33]
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(a) (b) (c) (d)
Figure 3. Local block-matching vs. global searching. (a) A noisy patch. (b) The most similar patches to it by using block matching in a

local window. (c) The most similar patches to it by using our global searching. (d) The reconstructed patches by the two sets of similar

patches using the same low-rank minimization model in (9).

(a) (b) (c) (d) (e)
Figure 4. (a) is a noisy image (σ=50). (b)∼(d) show the patch clustering results in iterations 1, 4 and 7. Different colors represent the

different clusters. (e) shows the clustering result on the clean image for reference.

which tries to maximize the expected patch log likelihood:

EPLLp(x) = log p(Rx|Θ). If we know the value of C, it

gives rise to a partition of all overlapped patches Rx into K
classes. Let R̄kx

.
= [Rk1

, Rk2
, · · · , Rkd(k)

] denote the ma-

trix formed by the set of vectorized patches from the k-th

class, where d(k) is the number of the corresponding patch-

es. It is reasonable to assume that these vectorized patches

in each class form a low-rank matrix and we can model the

data matrix as R̄kx = Zk+Vk, where Zk and Vk denote the

low-rank matrix and the Gaussian noise matrix respectively.

Then the rank minimization problem can be approximately

solved by minimizing the following functional:

E(Zk) =
1

σ2
‖R̄kx− Zk‖

2
F + τ‖Zk‖∗. (6)

Given a corrupted image y, we want to restore the latent

clean image x. With the data fidelity term (1) over the whole

image, we propose to solve the following global objective

functional for image denoising by combining (5) and the

low-rank regularization term (6):

(x̂, Ĉ, {Ẑk}) = argmin
x,C,{Zk}

λ

σ2
‖y − x‖22 −

m
∑

i=1

log p(Rix, ci|Θ)

+

K
∑

k=1

(

1

σ2
‖R̄kx− Zk‖

2
F + τ‖Zk‖∗

)

,

(7)

where λ is a positive constant. Our energy functional ef-

fectively incorporates image internal self-similarity and ex-

ternal patch priors into the whole image denoising mod-

el. There are two advantages of such clustering based low-

ranks regularization.

Firstly, it can globally search the similar patches by patch

clustering within the whole image rather than a limited

search window. Fig. 3(a) shows a noisy image and indi-

cates a noisy patch; Fig. 3(b) shows the most similar patch-

es to it by using block matching in a local window (i.e., the

patch searching method used in WNNM); Fig. 3(c) shows

the most similar patches to it by using our global searching.

One can see that global searching can find more and better

similar patches to the noisy one. In Fig. 3(d), we use the

same low-rank minimization model (9) to reconstruct the o-

riginal patch by using the two sets of patches, respectively.

Clearly, global search leads to much better reconstruction.

Secondly, similarity is measured not by Euclidean dis-

tance but by Mahalanobis distance based on a learned patch

space. Therefore, the proposed model could be very effec-

tive to preserve the image edge or corner structure. Fig. 4

visualizes how external GMM prior helps computing inter-

nal self-similarity.Fig. 4(a) is a noisy image. Figs. 4(b) ∼
4(d) visualize the patch clustering results in iterations 1, 4

and 7. The similar clusters are represented in similar col-

ors. In Fig. 4(e), we show the clustering result on the clean

image as the ground-truth. It can be clearly seen that the
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our method effectively exploits the external GMM prior to

guide the similar patch grouping across the whole images.

The clustering accuracy is also increased with the iteration.

2.2. Optimization and algorithm

We first learn a finite GMM over the pixels of natural

image patches. Let Θ
′

be the learned parameter of GMM

from a training set of clean image patches. Under the white

noise assumption with zero mean and standard deviation σ,

the Θ can be estimated from Θ
′

by a simple eigenvalue-

based computation Σk = Σ
′

k + σ2I, k = 1, · · · ,K.

When the parameter Θ is known, the proposed model (7)

has three kinds of unknowns: the unknown image x, class

label C and low-rank matrixes {Zk}. We use an alternating

minimization procedure to solve the three unknowns. We

start with some initial guess x
0. In the ℓ-th iteration, ℓ ∈

N, the solutions to the alternating minimization scheme are

detailed as follows.

1. Fix x
ℓ, solve for the class label Cℓ.

For each patch Rix
ℓ, we use the PDF of the learned

GMM to calculate the likelihood within each class,

p(k|Rix
ℓ) =

ωkpk(Rix
ℓ|θk)

∑K

j=1
ωjpj(Rix

ℓ|θj)
, k = 1, · · · ,K, (8)

and find the class of which the Gaussian component

generates the maximum likelihood.

2. Fix Cℓ, solve for the low-rank matrixes Zℓ
k, k =

1, · · · ,K.

Ẑℓ
k = argmin

Zk

1

σ2
‖R̄kx− Zk‖

2
F + τ‖Zk‖∗. (9)

Eq. (9) can be solved by the weighted singular value

thresholding algorithm [18]. Let σj(Zk) be the j-th

singular value of Zk and UΣV T be the SVD of R̄kx.

It is shown that the optimal solution to this problem is

given by [18]

Ẑℓ
k = U(Σ− τ diag(α))+V

T , (10)

where αj = 1/(σj(Zk) + ǫ) and (x)+ = max{x, 0}.

3. Fix {Zℓ
k}, solve for xℓ+1.

In practice, the patch clustering term
∑m

i=1
log p(Rix, ci|Θ) can be neglected in this

step since the reconstruction of the whole image
depends mainly on the low-rank matrixes {Zℓ

k}. After

solving for each Zℓ
k, we can reconstruct the whole

image by solving the following minimization problem

x̂
ℓ+1 = argmin

x

K
∑

k=1

‖R̄kx− Z
ℓ
k‖

2
F + λ‖y − x‖22. (11)

This is a quadratic optimization problem, and it can
be solved in closed form:

x̂
ℓ+1 =

(

λI +
∑

k

R̄
T
k R̄k

)

−1(

λy +
∑

k

R̄
T
k Z

ℓ
k

)

. (12)

Figure 5. The convergence curve of the proposed algorithm on im-

age Cameraman.

After obtaining an improved estimate of the unknown

image x
ℓ+1, the noise standard deviation σ can be updated

by utilizing the feedback of filtered noise. The updated σ
is then used to improve the estimate x

ℓ+2. Such a process

is iterated until convergence. The complete optimization

procedure is summarized as Alg. 1.

Alg. 1 GMM guided patch clustering with low-rank regu-

larization for image denoising

1 Input: noisy image y, noise standard deviation σ,

learned GMM model parameter Θ
′

and K.

2 Output: denoised image x.

3 Initialization:

1) Choose a reasonable scaling factor γ for controlling

the re-estimation of noise variance;

2) Initialize x
0 = y, σ0 = σ.

4 Optimization:

1) Outer loop: for ℓ = 1 : L do

2) Inner loop: for k = 1 : K do

(i) Update Σk = Σ
′

k + (σℓ−1)2I;

(ii) Calculate conditional probabilities p(k|Rx
ℓ−1)

via Eq. (8).

End for

3) Compute Cℓ by finding the class which has the high-

est conditional probability for each patch.

4) Inner loop: for k = 1 : K,

(i) Create R̄kx
ℓ−1 by stacking the patches from the

k-th class;

(ii) Compute Zℓ
k via Eq. (10).

End for

5) Compute x
ℓ via Eq. (12);

6) Update σℓ, such that (σℓ)2 = γ(σ2 − ‖y − x
ℓ‖22).

End for
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(a) Clean image (b) Noisy image (σ = 50) (c) BM3D (PSNR: 26.12dB) (d) EPLL (PSNR: 26.02dB)

(e) LSSC (PSNR: 26.35dB) (f) SAIST (PSNR: 26.15dB) (g) WNNM (PSNR: 26.42dB) (h) Ours (PSNR: 26.55dB)

Figure 6. Denoising results on image C. Man by different methods (σ = 50) .

2.3. Applying a fine classification

As illustrated in Table. 1, patch cluster could not work

well on smooth areas, and as a result, a great number of

smooth patches (more than 104) could be clustered into one

class. In order to improve the accuracy of patch cluster, we

employ a simple K-means for fine classification by using

the mean intensity and location of each patch. If the patch

number of some class is too small (less than 10), we merge

these patches to the other classes most likely.

2.4. Complexity and convergence

The proposed model in Eq. (7) is nonconvex, and thus

the proposed algorithm cannot be guaranteed to converge

to a global optimum. However, it is empirically found that

our algorithm converges rapidly. Fig. 5 shows an exam-

ple convergence curve of the proposed algorithm on image

Cameraman with σ = 50. One can see that the proposed

algorithm converges within 15 iterations.

Suppose that we have m patches in k clusters and each

patch has n dimensions. The main computational cost in a

single iteration of the proposed algorithm consists of three

parts. The first part is to evaluate posterior probabilities (8).

We need to compute the determinant of the covariance ma-

trix which needs O(n3) operations. Thus, the first part of

patch clustering costs O(mkn3). The second part is low-

rank matrix recovery (10). The SVD for all k clusters costs

approximately O(mkn2). The third part is to average all of

the grouped similar patches for each exemplar patch, which

costs O(mn). Suppose that our algorithm converges in t
iterations, the total computational complexity is O(tmkn3)
without considering fine classification. In our MATLAB

implementation, it takes approximately 3 minutes to de-

noise a 256×256 image with standard deviations σ = 20
on a laptop with Intel Xeon E3 CPU (3.40 GHz).

3. Experimental results

In this section, we validate the performance of the

proposed algorithm and compare it with recently pro-

posed state-of-art denoising methods, including BM3D

[10], EPLL[33], LSSC [22], SAIST [13] and WNNM [18].

For all the competing methods the source codes are obtained

from their original authors. We used the default parameter-

s in their software packages. As in[33], we learn the G-

MM models Θ
′

with 250 mixture components from a set

of 2 × 106 patches, uniformly sampled from the 200 train-

ing images from the Berkeley segmentation dataset (BSD)

[23]. By experiment experience, we set patch size to 7× 7,

8 × 8, 9 × 9 and 10 × 10 for σ ≤ 20, 20 < σ ≤ 40 ,

40 < σ ≤ 60 and σ > 60, respectively. The involved

parameters λ and γ in the proposed algorithm are fixed to

0.18 and 0.67. The source code of the proposed method can

be downloaded at http://www4.comp.polyu.edu.

hk/˜cslzhang/code/PCLR.zip.

3.1. Results on 12 test images

We first evaluate the proposed algorithm and its compet-

ing algorithms on 12 popularly used test images. Gaussian
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(a) Clean image (b) Noisy image (σ = 100) (c) BM3D (PSNR: 23.39dB) (d) EPLL (PSNR: 23.08dB)

(e) LSSC (PSNR: 23.20dB) (f) SAIST (PSNR: 23.32dB) (g) WNNM (PSNR: 23.46dB) (h) Ours (PSNR: 23.69dB)

Figure 7. Denoising results on image Peppers by different methods (σ = 100) .

Table 2. Denoising PSNR (dB) results by different denoising methods.

Images
σ = 10 σ = 30

BM3D EPLL LSSC SAIST WNNM Ours BM3D EPLL LSSC SAIST WNNM Ours

C.man 34.18 34.02 34.24 34.30 34.44 34.46 28.64 28.36 28.63 28.36 28.80 28.82

Monarch 34.12 34.27 34.44 34.76 35.03 34.96 28.36 28.35 28.20 28.65 28.92 28.83

House 36.71 35.75 36.95 36.66 36.94 36.83 32.09 31.23 32.41 32.30 32.52 32.17

Parrot 33.57 33.58 33.62 33.66 33.81 33.80 28.12 28.07 27.99 28.12 28.33 28.34

Peppers 34.68 34.54 34.80 34.82 34.95 34.96 29.28 29.16 29.25 29.24 29.49 29.56

Montage 37.35 36.49 37.26 37.46 37.84 37.48 31.38 30.17 31.10 31.06 31.65 31.35

Lena 35.93 35.58 35.83 35.90 36.03 35.98 31.26 30.79 31.18 31.27 31.43 31.36

Barbara 34.98 33.61 34.98 35.24 35.51 35.14 29.81 27.57 29.60 30.14 30.31 29.70

Boat 33.92 33.66 34.01 33.91 34.09 34.07 29.12 28.89 29.06 28.98 29.24 29.21

Couple 34.04 33.85 34.01 33.96 34.14 34.12 28.87 28.62 28.77 28.72 28.98 28.89

Hill 33.62 33.48 33.66 33.65 33.79 33.72 29.16 28.90 29.09 29.06 29.25 29.15

Man 33.98 33.97 34.10 34.12 34.23 34.21 28.86 28.83 28.87 28.81 29.00 29.00

Images
σ = 50 σ = 100

BM3D EPLL LSSC SAIST WNNM Ours BM3D EPLL LSSC SAIST WNNM Ours

C.man 26.12 26.02 26.35 26.15 26.42 26.55 23.07 22.86 23.15 23.09 23.36 23.48

Monarch 25.82 25.78 25.88 26.10 26.32 26.25 22.52 22.23 22.24 22.61 22.95 22.93

House 29.69 28.76 29.99 30.17 30.32 29.78 25.87 25.19 25.71 26.53 26.68 25.96

Parrot 25.90 25.84 25.82 25.95 26.09 26.14 22.96 22.71 22.79 23.04 23.19 23.28

Peppers 26.68 26.63 26.79 26.73 26.91 27.02 23.39 23.08 23.20 23.32 23.46 23.69

Montage 27.90 27.17 28.10 28.00 28.27 28.20 23.89 23.42 23.77 23.98 24.16 24.24

Lena 29.05 28.42 28.95 29.01 29.24 29.12 25.95 25.30 25.96 25.93 26.20 26.16

Barbara 27.23 24.82 27.03 27.51 27.79 27.11 23.62 22.14 23.54 24.07 24.37 23.66

Boat 26.78 26.65 26.77 26.63 26.97 26.99 23.97 23.71 23.87 23.80 24.10 24.16

Couple 26.46 26.24 26.35 26.30 26.65 26.56 23.51 23.32 23.27 23.21 23.55 23.65

Hill 27.19 26.96 27.14 27.04 27.34 27.24 24.58 24.43 24.47 24.29 24.75 24.83

Man 26.81 26.72 26.72 26.68 26.94 26.94 24.22 24.07 23.98 24.01 24.36 24.43
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(a) Clean image (b) Noisy image (σ = 75) (c) BM3D (PSNR: 24.22dB) (d) EPLL (PSNR: 24.45dB)

(e) LSSC (PSNR: 24.34dB) (f) SAIST (PSNR: 24.38dB) (g) WNNM (PSNR: 24.56dB) (h) Ours (PSNR: 24.69dB)

Figure 8. Denoising results on image horse from the BSD dataset by different methods (σ = 75) .

white noise with standard deviations σ = 10, 30, 50, 100
are added to those test images. It can be seen that our

method has almost the same PSNR results as WNNM on all

noise levels, and higher PSNR than other methods. The pro-

posed method effectively exploits the external GMM prior

to guide the similar patch grouping, and it can search for

the patches in the whole image.This makes the proposed

method very robust to reduce strong noise in textural area.

In particular, significant improvements can be observed for

images Peppers and C. Man since these images contain

strong textures and weak local similarity.

In addition, the proposed method demonstrates high-

er superiority to other methods in terms of visual quality.

The visual comparisons of competing denoising methods at

noise levels 50 and 100 are shown in Fig. 6 and Fig. 7,

respectively. One can see that the visual quality improve-

ments achieved by the proposed method are more convinc-

ing. It can preserve more textures and fine details than

the competing methods. Although WNNM[18] has demon-

strated a good trade-off between noise removal and edge

preservation, it still tends to over-smooth image details and

cause ringing artifacts. By more effectively exploit the im-

age external priors and internal priors, the proposed method

shows very strong capability to reconstruct the image latent

structure from strong noise corruption.

3.2. Results on the BSD dataset

We also comprehensively evaluate the proposed method

on 100 test images from the BSD dataset [23]. Table

3 shows qualitative comparisons of competing denoising

methods on four noise levels (σ = 15, 35, 55, 75). One can

see that the proposed method can achieve very competitive

denoising performance. The visual comparisons of the de-

noising methods are shown in Fig. 8. More examples of

visual comparison can be found in the supplementary file.

Table 3. Denoising results (PSNR) by different denoising methods

on 100 test images with additive Gaussian noise.

σ BM3D EPLL LSSC SAIST WNNM Ours

15 30.87 30.99 31.05 31.00 31.15 31.18

35 26.91 26.98 26.98 26.96 27.13 27.13

55 25.12 25.13 25.11 25.19 25.34 25.34

75 24.07 23.97 23.93 24.06 24.25 24.21

4. Conclusion

In this paper, a new denoising approach based on image

internal self-similarity prior and external patch priors was

presented. Our approach differs from the low-rank based

models (e.g., models in [13] and [18]) in two ways. First-

ly, we conducted low-rank regularization of similar patches

based on global patch clustering but not local block match-

ing. Therefore, we can globally search the similar patches

within the whole image. Secondly, we learned a GMM prior

model from image patches to guide the patch clustering and

the subsequent low-rank subspace learning. Such a cluster-

ing based low-rank approximation makes the latent patch

reconstruction very robust to noise. Experimental results

showed that the proposed algorithm can achieve very com-

petitive denoising performance. In particular, it can pre-

serve much better the image texture structures than the oth-

er state-of-the-art denoising algorithms under severe noise

environment .

Acknowledgements

This work is supported by NSFC grant (61401098,

61471321), the HK RGC GRF grant (PolyU 5313/13E),

and the Open Project Program of the State Key Lab of

CAD&CG (Grant No. A1415), Zhejiang University.

610



References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorith-

m for designing overcomplete dictionaries for sparse repre-

sentation. IEEE Trans. Signal Process., 54(11):4311–4322,

2006.

[2] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm

for image denoising. Proc. CVPR, 2005.

[3] H. Burger, C. Schuler, and S. Harmeling. Image denois-

ing: Can plain neural networks compete with bm3d? Proc.

CVPR, 2012.

[4] J. Cai, E. Candes, and Z. Shen. A singular value thresh-

olding algorithm for matrix completion. SIAM J. Optim.,

20(4):1956–1982, 2010.

[5] E. J. Candes and Y. Plan. Matrix completion with noise.

Proceedings of the IEEE, 2010.

[6] S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresh-

olding for image denoising and compression. IEEE Trans.

Image Process., 9(9):1532 –1546, 2007.

[7] P. Chatterjee and P. Milanfar. Clustering-based denoising

with locally learned dictionaries. IEEE Trans. Image Pro-

cess., 18(7):1438 – 1451, 2009.

[8] P. Chatterjee and P. Milanfar. Is denoising dead? IEEE

Trans. Image Process., 19(4):895–911, 2010.

[9] P. Chatterjee and P. Milanfar. Learning denoising bounds for

noisy images. ICIP, 2010.

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-

age denoising by sparse 3-d transform-domain collaborative

filtering. IEEE Trans. Image Process., 16(8):2080– 2095,

2007.

[11] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the

Royal Statistical Society. Series B, 1977.

[12] M. Do and M. Vetterli. Wavelet-based texture retrieval using

generalized gaussian density and kullbackleibler distance.

IEEE Trans. Image Process., 11(2):146–158, 2002.

[13] W. Dong, G. Shi, and X. Li. Nonlocal image restoration with

bilateral variance estimation: a low-rank approach. IEEE

Trans. Image Process., 22(2):700–711, 2013.

[14] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive

sensing via nonlocal low-rank regularization. IEEE Trans.

Image Process., 23(8):3618–3632, 2014.

[15] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally central-

ized sparse representation for image restoration. IEEE Trans.

Image Process, 22(4):1620 –1630, 2013.

[16] D. L. Donoho, M.Gavish, and A. Montanari. The phase

transition of matrix recovery from gaussian measurements

matches the minimax mse of matrix denoising. PNAS, 2013.

[17] R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

Proc. ACM SIGGRAPH, 2006.

[18] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nucle-

ar norm minimization with application to image denoising.

Proc. CVPR, 2014.

[19] A. Levin and B. Nadler. Natural image denoising: Optimal-

ity and inherent bounds. CVPR, 2011.

[20] A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch

complexity, finite pixel correlations and optimal denoising.

ECCV, 2012.

[21] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary

learning. IEEE Trans. Patt. Anal. Mach. Intell., 32(4):791–

804, 2012.

[22] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Non-local sparse models for image restoration. Proc. ICCV,

2009.

[23] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to e-

valuating segmentation algorithms and measuring ecological

statistics. Proc.ICCV, 2001.

[24] I. Mosseri, M. Zontak, and M. Irani. Combining the power

of internal and external denoising. Proc.ICCP, 2013.

[25] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli.

Image denoising using scale mixtures of gaussians in the

wavelet domain. IEEE Trans. Image Process., 12(11):1338

– 1351, 2003.

[26] A. Rajwade, A. Rangarajan, and A. Banerjee. Image de-

noising using the higher order singular value decomposition.

IEEE Trans. Patt. Anal. Mach. Intell., 35(4):849–862, 2013.

[27] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for

sparse representation modeling. Proc. Special Issue on Ap-

plications of Compressive Sensing and Sparse Representa-

tion, 98(6):1045– 1057, 2010.

[28] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation

based noise removal algorithms. Physica D, 60(1):259–268,

1992.

[29] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. Proc. ICCV, 1998.

[30] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problem-

s with piecewise linear estimators: from gaussian mixture

models to structured sparsity. IEEE Trans. Image Process.,

21(5):2481–2499, 2012.

[31] M. Zontak and M. Irani. Internal statistics of a single natural

image. Proc. CVPR, 2011.

[32] M. Zontak, I. Mosseri, and M. Irani. Separating signal from

noise using patch recurrence across scales. Proc. CVPR,

2013.

[33] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. ICCV, 2011.

[34] W. Zuo, L. Zhang, C. Song, and D. Zhang. Texture enhanced

image denoising via gradient histogram preservation. Proc.

CVPR, 2013.

611


