
A Nonparametric Bayesian Approach Toward Stacked Convolutional

Independent Component Analysis

Sotirios P. Chatzis

Cyprus University of Technology

Limassol 3036, Cyprus

sotirios.chatzis@eecei.cut.ac.cy

Dimitrios Kosmopoulos

University of Patras

Agrinion 30100, Greece

dkosmo@upatras.gr

Abstract

Unsupervised feature learning algorithms based on con-

volutional formulations of independent components analy-

sis (ICA) have been demonstrated to yield state-of-the-art

results in several action recognition benchmarks. However,

existing approaches do not allow for the number of latent

components (features) to be automatically inferred from the

data in an unsupervised manner. This is a significant dis-

advantage of the state-of-the-art, as it results in consider-

able burden imposed on researchers and practitioners, who

must resort to tedious cross-validation procedures to obtain

the optimal number of latent features. To resolve these is-

sues, in this paper we introduce a convolutional nonpara-

metric Bayesian sparse ICA architecture for overcomplete

feature learning from high-dimensional data. Our method

utilizes an Indian buffet process prior to facilitate inference

of the appropriate number of latent features under a hy-

brid variational inference algorithm, scalable to massive

datasets. As we show, our model can be naturally used

to obtain deep unsupervised hierarchical feature extractors,

by greedily stacking successive model layers, similar to ex-

isting approaches. In addition, inference for this model is

completely heuristics-free; thus, it obviates the need of te-

dious parameter tuning, which is a major challenge most

deep learning approaches are faced with. We evaluate our

method on several action recognition benchmarks, and ex-

hibit its advantages over the state-of-the-art.

1. Introduction

Unsupervised feature learning from high-dimensional

data using deep sparse feature extractors has been shown

to yield state-of-the-art performance in a number of bench-

mark datasets. The major advantage of these approaches

consists in the fact that they alleviate the need of manu-

ally tuning feature design each time we consider a different

sensor modality, contrary to conventional approaches, such

as optical flow-based ones (e.g., HOG3D [15], HOG/HOF

[35]), methods maximizing saliency functions in the spa-

tiotemporal domain (e.g., Cuboid [5] and ESURF [37]),

methods based on dense trajectory sampling (e.g., [34] and

[36]), and methods based on hierarchical template matching

after Gabor filtering and max pooling (e.g., [11]).

Indeed, unsupervised feature extractors are highly gen-

eralizable, being capable of seamlessly learning effective

feature representations from observed data, irrespectively

of the data nature and/or origin. Due to this fact, there is

a growing interest in such methods from the computer vi-

sion and machine learning communities, with characteris-

tic approaches including sparse coding (SC) [19, 28], deep

belief networks (DBNs) [9], stacked autoencoders (SAEs)

[1], and methods based on independent component analysis

(ICA) and its variants (e.g., ISA [18] and RICA [17]).

In this work, we focus on unsupervised feature extrac-

tors based on stacked convolutional ICA architectures, with

application to action recognition in video sequences. Our

interest in these methods is motivated by both experimental

results, where such approaches have been shown to yield

state-of-the-art performance, as well as results from neuro-

science, where it has been shown that these algorithms can

learn receptive fields similar to the V1 area of visual cor-

tex when applied to static images and the MT area of visual

cortex when applied to sequences of images [10, 31, 26].

A major drawback of existing deep learning architec-

tures for feature extraction concerns the requirement of a

priori provision of the number of extracted latent features

[20, 27, 14, 7, 18]. This need imposes considerable burden

to researchers and practitioners, as it entails training mul-

tiple alternative model configurations to choose from, and

application of cross-validation to determine optimal model

configuration for the applications at hand. Therefore, en-

abling automatic data-driven determination of the most ap-

propriate number of latent features would represent a signif-

icant leap forward in the field of deep unsupervised feature

extraction approaches.

To address these issues, in this paper we initially intro-

12803

duce a nonparametric Bayesian sparse formulation of ICA.

Our model imposes an Indian buffet process (IBP) [8, 23]

prior over the learned latent feature matrix parameters, that

naturally promotes sparsity, and allows for automatically

inferring the optimal number of latent features. We un-

derline that the IBP prior is designed under the assumption

of infinite-dimensional latent feature representations, thus

being capable of naturally handling extraction of overcom-

plete representations if the data requires it, without suffer-

ing from degeneracies [6]1. We dub the so-obtained model

as IBP-ICA.

We devise an efficient inference algorithm for our model

under a hybrid variational inference paradigm, similar to

[24]. In contrast to traditional variational inference algo-

rithms, which require imposition of truncation thresholds

for the model or the variational distribution over the ex-

tracted features [13], our method adapts model complex-

ity on the fly. In addition, variational inference scales much

better to massive datasets compared to Markov chain Monte

Carlo (MCMC) approaches [2, Chapter 10], which do not

easily scale, unless one resorts to expensive parallel hard-

ware.

Finally, we apply our IBP-ICA model to the problem

of action recognition in video sequences. For this pur-

pose, we present a stacked convolutional architecture for

unsupervised feature extraction from data with spatiotem-

poral dynamics, utilizing IBP-ICA models as its building

blocks. Our convolutional architecture, hereafter referred

to as stacked convolutional IBP-ICA (SC-IBP-ICA) net-

works, is inspired from related work on convolutional neu-

ral networks, e.g. the 3D-CNN method [12], and is based

on the approach followed by existing convolutional exten-

sions of unsupervised feature extractors, e.g. convGRBM

[30] and ISA [18]. Specifically, similar to [30, 18], our

convolutional architecture comprises training one unsuper-

vised feature extractor (in our case, one IBP-ICA model)

on small spatiotemporal patches extracted from sequences

of video frames, and subsequently convolving this model

with a larger region of the video frames. Eventually, we

combine the responses of the convolution step into a single

feature vector, which is further processed by a pooling sub-

layer, to allow for translational invariance. The so-obtained

feature vectors may be further presented to a similar sub-

sequent processing layer, thus eventually obtaining a deep

learning architecture.

Our stacked model is greedily trained in a layerwise

manner, similar to a large number of alternative approaches

1As an aside, we also note that performing Bayesian inference over the

parameters of ICA-based models (instead of the point-estimates obtained

by existing approaches) allows for taking uncertainty into account during

the learning procedure [13]. Even though this is not examined in this paper,

such a capacity is theoretically expected to yield much better performing

models in cases learning is conducted using limited and scarce datasets

[3].

proposed in the deep learning literature [9, 20, 1]. Our hy-

brid variational inference algorithm for this model is com-

pletely heuristic parameter-free, thus obviating the need of

parameter tuning, which is a major challenge most deep un-

supervised feature extractors are faced with.

The remainder of this paper is organized as follows: In

Section 2, we briefly review existing ICA formulations for

unsupervised feature extraction. In Section 3, we present

our proposed method, and elaborate on its inference and

feature generation algorithms. In Section 4, we experimen-

tally demonstrate the advantages of the proposed approach:

we apply it to the Hollywood2, YouTube, and KTH action

recognition benchmarks. Finally, in the last section we sum-

marize our results and conclude this paper.

2. ICA-based feature extractors

In this section, we provide an overview of existing ICA-

based feature extractors, which are relevant to our approach.

Let us denote as {xn}
N
n=1 a random sample of size N com-

prising D-dimensional observations. ICA, in its simplest

form, models the observed variables xn, n = 1, ..., N, as

xn = Gyn + en (1)

where yn is a K-dimensional vector of latent variables

(latent features), G is a D × K matrix of factor load-

ings (latent feature matrix), and en is the model er-

ror pertaining to modeling of xn. ICA assumes that

(x1,y1), (x2,y2), ..., (xN ,yN) are independent, identi-

cally distributed (i.i.d). Further, the key characteristic of

ICA that sets it apart from related approaches is the ad-

ditional assumption that the distinct components (features)

comprising the feature vectors yn = [ynk]
K
k=1 are also i.i.d.

For example, we may consider a simple J-component mix-

ture of Gaussians (MoG) prior, i.e.

ynk ∼
J
∑

j=1

̟kjN (0, skj) (2)

with a Dirichlet prior imposed over the weight vectors

̟k = [̟kj]
J
j=1, i.e.

p(̟k|ξk) = Dir(̟k|ξk) (3)

and a Gamma prior imposed over the inverse variances s−1
kj

p(s−1
kj) = G(s−1

kj |η1, η2) (4)

Finally, model error is usually considered to follow an

isotropic Gaussian distribution, reading

en ∼ N (0, φ−1I) (5)

Along these lines, several researchers have also consid-

ered more complex assumptions regarding the model like-

lihood expression. For instance, a nonlinear likelihood as-

sumption has been adopted in [18], yielding xn ≈ σ(Gyn),

2804

where σ is some nonlinear function (e.g., quadratic). Even-

tually, the training algorithm of the model reduces to a min-

imization problem that takes the form

min
G

K
∑

k=1

N
∑

n=1

h(GT
:,kxn) (6)

where the form of the function h(·) follows from the form

of the postulated likelihood and prior assumptions, and G:,k

is the kth column of G. Usually, the minimization problem

(6) is solved under the additional orthonormality constraint

GGT = I (7)

This constraint is imposed so as to ensure non-degeneracy,

i.e., to prevent the bases in the factor loadings matrix G

from becoming degenerate. However, it is effective only

in cases of undercomplete or complete representations, i.e.,

the number of latent features does not exceed the number of

observed features (K ≤ D) [17].

As we discussed in Section 1, the capacity of extract-

ing overcomplete latent feature representations is a signifi-

cant merit for unsupervised feature learning algorithms. As

such, it is important that ICA can be effectively employed

when postulating K > D. A computationally efficient

method that resolves this issue was proposed in [17]; it con-

sists in replacing the orthonormality constraint (7) with a

soft reconstruction cost which measures the difference be-

tween the original observations {xn}
N
n=1 and the recon-

structions obtained by a linear autoencoder, where the en-

coding and decoding weights are tied to the feature matrix

G learned by the model. The resulting method, dubbed re-

construction ICA (RICA), yields the minimization problem

min
G

ξ

N

N
∑

n=1

||GGTxn − xn||
2
2 +

K
∑

k=1

N
∑

n=1

h(GT
:,kxn)

where ξ is a regularization parameter, and G:,k is the kth

column of G.

As discussed in [17], under this scheme some bases of

G may still degenerate and become zero, because the re-

construction constraint can be satisfied with only a complete

subset of features2. In addition, we note that the imposed re-

construction error constraints suffer from a weak point that

has been extensively studied in the autoencoder (AE) liter-

ature: specifically, the optimal reconstruction criterion of

AEs may merely lead to the trivial solution of just copying

the input to the output, that yields very low reconstruction

error in a given training set combined with extremely poor

modeling and generalization performance [33] (performing

training using a noise-corrupted version of the original ob-

servations is a solution commonly used in AE literature to

prevent this from happening [33]).

2The authors of [17] resorted to introducing an additional norm ball

constraint to resolve this issue.

3. Proposed Approach

3.1. IBPICA

3.1.1 Model Formulation

Let us consider a set of D-dimensional observations

{xn}
N
n=1. We model this dataset using ICA, adopting the

conventional assumptions (1) - (5). However, in contrast to

the conventional model formulation, we specifically want

to examine the case where the dimensionality K of the la-

tent feature vectors yn tends to infinity, K → ∞. In other

words, we seek to obtain a nonparametric formulation for

our model.

Under such an assumption, and imposing an appropri-

ate prior distribution over the latent feature matrix G, we

can obtain an inference algorithm that allows for automatic

determination of the most appropriate number of latent fea-

tures to model our data, and performs inference over only

this finite set [23]. For this purpose, we impose a spike-and-

slab prior over the components of the latent feature matrix

G:

p(gdk|zdk;λk) = zdkN (gdk|0, λ
−1
k) + (1− zdk)δ0(gdk)

(8)

where λk is the precision parameter of the (Gaussian) prior

distribution of the kth base in G, δ0(·) is a spike distribution

with all its mass concentrated at zero (delta function), and

the discrete latent variables zdk indicate latent feature ac-

tivity, being equal to one if the kth latent feature contributes

to generation of the dth observed dimension (i.e., the latent

feature is active), zero otherwise. Note that a similar prior

has been previously adopted in the related, factor analysis

(FA)-based latent feature model of [16]. The key difference

between FA- and ICA-based models is that in FA the prior

over the latent feature vectors is a spherical Gaussian; in

contrast, in ICA we impose independent priors over each

latent feature taking the form of a more complex distribu-

tion (a Gaussian mixture in our work, see Eqs. (2)-(4)).

Spike-and-slab priors [25] are commonly used to intro-

duce sparsity in the modeling procedure; combined with a

nonparametric prior over the matrix of discrete latent vari-

ables Z = [zdk]d,k, they also allow for defining a genera-

tive process for the number of latent factors under a sparse

modeling scheme. To this end, we utilize the IBP prior

[8]; specifically, we adopt the stick-breaking construction of

IBP [6]. This is another key difference between our model

formulation and the method of [16]; the major advantage

of using the stick-breaking construction consists in allow-

ing for obtaining a variational inference algorithm, which is

much more scalable to massive data compared to MCMC

[6] (used in [16]). We have:

zdk ∼ Bernoulli(πk) (9)

2805

where

πk =
k
∏

i=1

vi (10)

and the prior over the stick-variables vi is defined as

vk ∼ Beta(α, 1) (11)

In (11), α is called the innovation hyperparameter, and con-

trols the tendency of the process to discover new latent fea-

tures. We impose a Gamma hyperprior over it, yielding

p(α) = G(α|γ1, γ2) (12)

Finally, we impose a Gamma prior over the precision pa-

rameters λk, which reads

p(λk) = G(λk|c, f) (13)

as well as a Gamma prior over the noise precision parameter

φ

p(φ) = G(φ|a, b) (14)

This concludes the definition of our IBP-ICA model.

3.1.2 Inference Algorithm

The formulation of our model using the stick-breaking con-

struction of IBP allows for performing inference by means

of an efficient hybrid variational algorithm, inspired from

[24]. Our approach combines: (i) mean-field variational in-

ference [13] for the model parameters and latent variables,

similar to existing models utilizing the stick-breaking con-

struction of the IBP, e.g. [6]; and (ii) a local Metropolis-

Hastings (MH) step to sample from the distribution over the

number of (active) latent features pertaining to each dimen-

sion of the observed data, inspired from [23].

Let us denote as q(·) the obtained variational posteriors.

Following [23], the proposed number of new features K∗

d

to be added to the number of active features Kd pertain-

ing to the dth input dimension is sampled from the Poisson

proposal distribution:

p(K∗

d) = Poisson

(

K∗

d

∣

∣

Eq(α)[α]

D − 1

)

(15)

This proposal is accepted with probability

p∗d = min

{

1,
θ∗d
θd

}

(16)

where [23]:

θ∗d = |M∗

d|
−N/2exp

(

1

2

N
∑

n=1

m∗T
ndM

∗

dm
∗

nd

)

(17)

m∗

nd =Eq(φ)[φ]M
∗−1
d G∗T

d,:

×
(

xnd − Eq(yn).q(G)[Gd,:yn]
) (18)

M∗

d = Eq(φ)[φ]G
∗T
d,:G

∗

d,: + I (19)

the 1×K∗

d variables G∗

d,: in (18) and (19) are sampled from

their prior (8), and

θd = |Md|
−N/2exp

(

1

2

N
∑

n=1

mT
ndMdmnd

)

(20)

mnd =Eq(φ)[φ]M
−1
d Eq(G)[G

T
d,:]

×
(

xnd − Eq(yn).q(G)[Gd,:yn]
) (21)

Md = Eq(φ)[φ]Eq(G)[G
T
d,:Gd,:] + I (22)

(the expressions of the expectations Eq[·] can be straight-

forwardly derived by following the identities pertaining to

Gaussians, Gamma, and Beta distributions in [2, Appendix

B]). Note that this MH step is of a local (input dimension-

wise) nature, and thus is very fast. Further, the introduction

of this local sampling step is the reason why our algorithm

does not require provision of heuristic truncation thresh-

olds, because MCMC samplers for nonparametric Bayesian

models can operate in an unbounded feature space [29].

Having updated the number of latent features, our infer-

ence algorithm proceeds to obtain the variational posteriors

over the latent feature activity indicator variables zdk. This

is performed by maximization of the variational free energy

of the model over q(zdk = 1), yielding

q(zdk = 1) =
1

1 + exp(−ωdk)
(23)

where

ωdk =
k
∑

i=1

Eq(vi)[logvi] + Eq(v)

[

log

(

1−
k
∏

i=1

vi

)]

+ Eq(λk),q(gdk)[logN (gdk|0, λ
−1
k)]

(24)

Further, the posterior over the latent feature matrices

is obtained by maximization of the variational free energy

over q(gdk), yielding

q(gdk) =q(zdk = 1)N (gdk|µ̃dk, λ̃
−1
dk)

+ (1− q(zdk = 1)) δ0(gdk)
(25)

where

λ̃dk = Eq(φ)[φ]
N
∑

n=1

Eq(ynk)[y
2
nk] + Eq(λk)[λk] ∀d (26)

µ̃dk = λ̃−1
dk Eq(φ)[φ]

N
∑

n=1

Eq(ynk)[ynk]

×
(

xnd − Eq(yn),q(G)[Gd,:yn]
)

(27)

2806

Similarly, the posterior over the learned latent features

yields

q(ynk) = N (ynk|m̃nk, s̃nk) (28)

where

s̃−1
nk = Eq(φ)[φ]Eq(G)[G

T
:,kG:,k] +

J
∑

j=1

ζnkjEq(skj)[s
−1
kj]

(29)

m̃nk = s̃nkEq(φ)[φ]Eq(G)[G
T
:,k]xn (30)

In the above expressions, ζnkj are the source model compo-

nent posteriors, which read

ζnkj ∝ exp
(

Eq(̟k)[log̟kj] +Eq(skj)[logN (ynk|0, skj)]
)

(31)

where the posterior over the mixture component weights

yields

q(̟k|ξ̃k) = Dir(̟k|ξ̃k) (32)

with ξ̃k = [ξ̃kj]
J
j=1, and

ξ̃kj = ξkj +

N
∑

n=1

ζnkj (33)

while the posterior over the skj obtains

q(s−1
kj) = G(s−1

kj |η̃kj1, η̃kj2) (34)

where

η̃kj1 = η1 +
1

2

N
∑

n=1

ζnkj (35)

and

η̃kj2 = η2 +
1

2

N
∑

n=1

ζnkjEq(ynk)[y
2
nk] (36)

The rest of the model posteriors take expressions iden-

tical to existing variational inference algorithms for non-

parametric Bayesian formulations of ICA, e.g., [6]. For

completeness sake, we provide these expressions in the Ap-

pendix. An outline of the inference algorithm of IBP-ICA

is provided in Alg. 1.

3.2. Stacked Convolutional IBPICA Networks

Let us now turn to the problem of action recognition

in video sequences. Since videos are sequences of images

(frames), to address this task using our model we simply ex-

tract the component frames of the video sequences at hand

and flatten them into a vector, which is eventually presented

to our model as the observed input. However, a problem

with this model setup is the resulting extremely high dimen-

sionality of the input observations, which induces an exces-

sive increase to the number of inferred model parameters,

Algorithm 1 IBP-ICA inference algorithm.

1. Select the number of source model components J , as

well as the hyperparameters of the imposed model pri-

ors: a, b, γ1, γ2, c, f , η1, η2, and ξkj , ∀k, j.

2. ForMAXITER iterations or until convergence of the

variational free energy of the model, do:

• Perform the MH step (15)-(16) to update the number

of generated latent features.

• Update the variational posterior over the latent feature

activity variables, q(Z), using (23).

• Update the posteriors q(ynk), q(̟k), q(s
−1
kj), ∀n, k, j,

using (28)-(36).

• Update the posteriors q(λk), q(vk), q(φ), q(α), ∀k, us-

ing the expressions given in the Appendix.

• Update the posteriors q(G) = {q(gdk)}d,k using (25)-

(27).

Figure 1. The proposed SC-IBP-ICA architecture. It is trained by

using some randomly selected video patches, from each of which

we extract an input vector x. Pooling is performed between the

first and the second layer over small neighborhoods comprising p

adjacent first layer units. The outputs of the first layer are pre-

sented as inputs to the second layer (after whitening).

and, hence, the computational complexity of the inference

algorithm of our model.

To alleviate this computational burden, we opt for re-

sorting to a stacked convolutional IBP-ICA network archi-

tecture, inspired from local receptive field networks (e.g.,

[18, 20]). Specifically, instead of processing the whole

video frames using a single IBP-ICA model, we use mul-

tiple convolved copies of an IBP-ICA model to process

smaller (overlapping) patches of the video frame sequences.

2807

This way, we manage to dramatically reduce the number of

inferred model parameters, and, hence, the imposed compu-

tational complexity. The output feature vectors of the pos-

tulated component IBP-ICA models are further processed

by a pooling sublayer, similar to conventional convolutional

neural network architectures. The introduction of pooling

into our convolutional IBP-ICA network endows it with the

merit of translational invariance, which is a desideratum in

the context of action recognition applications in video se-

quences. Finally, we stack multiple layers of our convo-

lutional IBP-ICA network to obtain a deep learning archi-

tecture. Our deep architecture allows for capturing features

that correspond to both lower and higher level analysis of

the spatiotemporal dynamics in the observed data; this way,

it extracts much richer information to train a classifier with,

compared to shallow models [1] .

Training of our proposed SC-IBP-ICA network proceeds

as follows: Initially, we train an IBP-ICA model on small

video patches. Subsequently, we build a convolutional

network of IBP-ICA models, by replicating and applying

copies of the learned IBP-CA model to different overlap-

ping patches of the input video frame sequences (with an

additional pooling sublayer on top). Finally, we feed the

output of our convolutional IBP-ICA network to a similarly

trained subsequent convolutional IBP-ICA network, thus

creating a deep learning architecture through stacking3. As

a final note, we underline that training of a whole SC-IBP-

ICA network is performed in a greedy layerwise manner,

similar to many existing convolutional deep learning archi-

tectures (e.g., [20]).

A graphical illustration of the proposed SC-IBP-ICA

network and its training procedures is provided in Fig. 1.

3.3. Feature Generation Using SCIBPICA

Given a learned SC-IBP-ICA network, feature genera-

tion from observed video frame sequences is performed

similar to conventional deep convolutional networks, by

means of feedforward computation. Specifically, based on

the expression of the variational posterior q(ynk) derived

in Eq. (28), to perform feature generation we feedforward

the input vectors xn by application of Eq. (30), using the

already obtained values of Eq(φ)[φ], Eq(G)[G
T
:,kG:,k], and

Eq(G)[G
T
:,k]. Note that, from the simple feedforward com-

putation form of Eq. (30), it directly follows that using our

method to generate features is extremely fast, with costs

identical to existing state-of-the-art approaches, e.g. [18].

4. Experiments

In this section, we experimentally investigate how SC-

IBP-ICA compares to the current state-of-the-art in ac-

3In our experiments, input data are additionally pre-processed and

whitened using PCA, exactly as described in [18, 17].

Table 1. Mean average precision on the Hollywood2 dataset.

Algorithm Average Precision

Harris3D + HOG/HOF [36] 45.2%

Hessian + ESURF [36] 38.2%

Cuboids + HOG/HOF [36] 46.2%

convGRBM [30] 46.6%

Dense + HOG3D [36] 45.3%

ISA (with reconstruction
54.6%

penalty) [17]

SC-IBP-ICA (1 layer) 47.8% (286)

SC-IBP-ICA (2 layers) 53.5% (286 - 198)

Table 2. Average accuracy on the YouTube dataset.

Algorithm Accuracy

HAR + HES
71.2%

+ MSER + SIFT [21]

Harris3D + Grads.
71.2%

+ PCA + Heuristics [21]

ISA [18] 75.8%

SC-IBP-ICA (1 layer) 73.6% (291.7)

SC-IBP-ICA (2 layers) 75.4% (291.7 - 197.9)

Table 3. Average accuracy on the KTH dataset.

Algorithm Accuracy

Harris3D + HOG/HOF [36] 91.8%

Hessian + ESURF [36] 81.4%

Cuboids + HOG3D [36] 90.0%

HMAX [11] 91.7%

3D-CNN [12] 90.2%

convGRBM [30] 90.0%

ISA [18] 93.9%

SC-IBP-ICA (1 layer) 92.3% (293)

SC-IBP-ICA (2 layers) 93.4% (293 - 195)

Table 4. Average feature extraction time in our experiments (Hol-

lywood2 dataset).

Algorithm Seconds/Frame

HOG3D 0.20

ISA [18] (1 layer) 0.13

ISA [18] (2 layers) 0.40

SC-IBP-ICA (1 layer) 0.12

SC-IBP-ICA (2 layers) 0.38

tion recognition. To perform our experimental investiga-

tions, we use three publicly available action recognition

benchmarks, namely Hollywood2 [22], KTH actions, and

YouTube actions [21]. Our experimental setup is the same

as in [18, 17], adopting exacty the same data preprocess-

ing/postprocessing steps. After extracting local features

by means of SC-IBP-ICA, we subsequently perform vector

quantization of the obtained feature vectors using K-means.

Finally, we use these discretized feature vectors to train an

2808

SVM classifier [32] employing a χ2 kernel.

We adopt the same dataset splits and evaluation met-

rics as in [36, 21]. Specifically, Hollywood2 human actions

dataset contains 823 train and 872 test video clips organized

into 12 action classes; each video clip may have more than

one action label. We utilize the produced feature vectors to

train 12 binary SVM classifiers, one for each action. We use

the final average precision (AP) metric for our evaluations,

computed as the average of AP for each classifier run on the

test set. Youtube actions dataset contains 1600 video clips

organized into 11 action classes. These video clips have

been split into 25 folds which we use to perform 25-fold

cross-validation. Note that, from each split, we use only

videos indexed 01 to 04, except for the biking and walking

classes, where we use the whole datasets. Finally, KTH ac-

tions dataset contains 2391 video samples organized into 6

action classes. We split these samples into a test set con-

taining subjects 2, 3, 5, 6, 7, 8, 9, 10, 12, and a training

set containing the rest of the subjects. We use the produced

feature vectors to train a multi-class SVM.

We evaluate SC-IBP-ICA architectures comprising one

and two layers, to examine how extra layer addition affects

model performance. Regarding selection of the size of re-

ceptive fields of our model, the first layer is of size 16×16

(spatial) and 10 (temporal), while the second one is of size

20×20 (spatial) and 14 (temporal), similar to [18, 36]. The

size of the output of the pooling layers is identical to the

size of the output of the IBP-ICA models that feed it, i.e.

the number of latent features our method discovers. Train-

ing is performed on 200,000 video blocks, randomly sam-

pled from the training set of each dataset. We perform dense

sampling with 50% overlap in all dimensions. In cases of

2-layer architectures, we train the used SVM classifiers by

combining the features generated from both layers. This

setup retains more representative features compared to us-

ing only the features from the top layer, corresponding to a

coarse-to-fine analysis of the observations [20].

Our obtained results are provided in Tables 1-3. Note

that the performances of the competing methods reported

therein have been cited from [18] and [17]. The reported

results of ISA were obtained with 300 latent features on the

first layer, and 200 latent features on the second layer (these

have been heuristically found to yield the best performance

among a large set of evaluated alternatives).

In Tables 1-3, we also provide the number of latent fea-

tures automatically discovered by our method (in parenthe-

ses, beside the accuracy figures). Note that the reported per-

formance results and the corresponding numbers of discov-

ered latent features pertaining to the YouTube dataset, illus-

trated in Table 2, are means over the 25 splits of the dataset

into training and test sets (folds) provided by its creators.

We observe that our method obtains performance similar to

the state-of-the-art, while also allowing for automatic infer-

ence of the appropriate number of generated features. We

also observe that addition of a second layer is auspicious in

all cases, corroborating similar findings in the literature.

In Table 4, we depict the computational costs of our ap-

proach regarding feature extraction from the Hollywood2

(test) dataset (run as a single thread)4. It is clear that feature

generation using our method takes time similar to existing

ICA-based approaches, namely the ISA method presented

in [18], as theoretically expected (the small computational

advantage of our method is presumably due to the lower

number of latent features compared to [18]).

Further, we examine model generalization performance

under a transfer learning setting: In real-world settings, a

feature extraction system pre-trained on samples from a set

of video sequences will be expected to perform well on any

previously unseen input video sequence, with no samples

of it included in its training set. To perform this kind of

evaluations, we train our SC-IBP-ICA network on video

blocks randomly sampled from the KTH dataset, and evalu-

ate its performance on the Hollywood2 dataset. Under this

setup, our method yields a mean average precision equal to

51.9%. Compare this result to the performance obtained by

ISA [18] under the same experimental setup, which yields a

mean average precision equal to 50.8%.

Finally, an interesting question concerns how IBP-ICA

model performance changes in case we use cross-validation

to perform model selection instead of sampling from the

related posteriors over the number of features [Eqs. (15)-

(22)]. To investigate this, we repeat our experiments using

the Hollywood2 dataset in the following way: We perform

model training without sampling the number of features,

which is considered a given constant. We repeat this ex-

periment multiple times, with different numbers of features

each time; we try configurations comprising 250-350 fea-

tures on the first layer, and 150-250 features on the second

layer, with a step of 5 features between consecutive evalu-

ated models. Model selection is performed on the grounds

of the accuracy obtained in the available test set.

Our findings are illustrated in Table 5; as we observe,

cross-validation yields a slightly better model performance

than our fully-fledged nonparametric Bayesian approach.

However, these mediocre gains come at the price of signif-

icant computational costs: Specifically, the computational

gain from skipping the updates of the posterior over the

number of latent features constitutes only a meager 16.2%

of the total training time. On the other hand, the afore-

mentioned cross-validation procedure required evaluating

40 different model configurations, i.e. repeating model

training 40 times. Therefore, model selection by means of

our nonparametric Bayesian approach offers an overwhelm-

ingly favorable complexity/accuracy trade-off compared to

4We run these experiments on an Intel Xeon 2.5GHz Quad-Core CPU

with 64GB RAM. Our source codes were written in MATLAB R2014a.

2809

Table 5. Mean average precision on the Hollywood2 dataset by

application of cross-validation.

Algorithm Average Precision Model Size

SC-IBP-ICA (1 layer) 48.1% 295

SC-IBP-ICA (2 layers) 53.9% 295-205

an exhaustive cross-validation technique.

In the same vein, another interesting question concerns

comparison of the proposed hybrid variational inference al-

gorithm of our model with the straightforward alternative

of Markov chain Monte-Carlo (MCMC) inference. To ex-

amine this aspect, we rerun our experiments by properly

adapting the MCMC algorithm outlined in [16] in the con-

text of our model. As we observed, our proposed algorithm

requires one order of magnitude less time to converge, for a

negligible performance deterioration compared to MCMC.

5. Conclusions

In this paper, we introduced a deep convolutional non-

parametric Bayesian approach for unsupervised feature ex-

traction. The main building block of our approach is a non-

parametric Bayesian formulation of ICA, dubbed IBP-ICA.

Our method imposes a spike-and-slab prior over the factor

loadings matrices, driven by an IBP prior over the latent

feature activity indicators. This way, it allows for automatic

data-driven inference of the most appropriate number of la-

tent features. This is in stark contrast with all existing meth-

ods, such as DBNs [9], ICA variants [18, 17], and SAEs [1],

where hand-tuning the number of extracted latent features

is an essential part of the application of these methods to

real-life tasks. It is also substantially different from the re-

lated approach of [4], where, instead of the spike-and-slab

prior used in this work, a simpler Beta-Bernoulli process

prior is employed; this formulation of [4] does not allow for

performing feature generation via simple feedforward com-

putation [in the sense of Eq. (30)]. Hence, feature genera-

tion in [4] requires much higher computational costs com-

pared to state-of-the-art deep learning approaches and our

method. In addition, our approach can model latent fea-

ture distributions of arbitrary complexity (approximated via

mixtures of Gaussians, Eq. (2)), as opposed to [4] which

postulates a simplistic spherical Gaussian prior.

We devised an efficient variational inference algorithm

for our model. Our method is very easy to train because

(batch) variational inference does not need any tweaking

with heuristics such learning rates and convergence crite-

ria. In this regard, our method lies on exactly the opposite

side of the spectrum compared to conventional approaches

based on neural networks: Our method entails no need of

selection of training algorithm heuristics, whatsoever, while

training neural networks is a tedious procedure requiring a

great deal of hand-tuning of several heuristics (e.g., learning

rate, weight decay, convergence parameters, inertia).

We evaluated our approach using three well-known ac-

tion recognition benchmarks, adopting a standard video

processing pipeline (e.g., [31]). As we showed, our method

yields results similar to the state-of-the-art for these bench-

marks, while imposing competitive computational costs for

feature generation. These results corroborate that nonpara-

metric Bayesian models can offer a viable alternative to ex-

isting deep feature extractors, and at the same time mitigate

some of the major hurdles deep nets are confronted with,

regarding data-driven selection of model size during infer-

ence, and learning algorithm parameters fine-tuning.

Appendix

We have

q(λk) = G(λk|c̃k, f̃k) (37)

where

c̃k = c+
1

2

D
∑

d=1

q(zdk = 1), f̃k = f +

D
∑

d=1

Eq(gdk)[g
2
dk]

(38)

and

q(φ) = G
(

φ
∣

∣a+
ND

2
, b+

N
∑

n=1

(xn − Eq(yn),q(G)[Gyn])
T

× (xn − Eq(yn),q(G)[Gyn])
)

(39)

For the stick-variables vk, we adopt the approximations [6]:

q(vk) = Beta(vk|τ̃k, τ̂k) (40)

τ̃k =

K
∑

m=k+1

(

D −
D
∑

d=1

q(zdm = 1)

)

m
∑

i=k+1

qi

+

D
∑

d=1

K
∑

m=k

q(zdm = 1) + Eq(α)[α]

(41)

τ̂k = 1 +
K
∑

m=k

(

D −
D
∑

d=1

q(zdm = 1)

)

qk (42)

where we denote K , max
d

Kd,

qk ∝ exp
(

ψ(τ̂k) +

k−1
∑

i=1

ψ(τ̃i)−
k
∑

i=1

ψ(τ̃i + τ̂i)
)

(43)

and ψ(·) is the Digamma function. Finally, the innovation

hyperparameter yields: q(α) = G(α|γ̃1, γ̃2), where γ̃1 =

γ1 +K − 1 and γ̃2 = γ2 −
∑K−1

k=1 [ψ(τ̃k)− ψ(τ̃k + τ̂k)].

2810

References

[1] Y. Bengio, P. L. D. Popovici, and H. Larochelle. Greedy

layerwise training of deep networks. In Proc. NIPS, 2006.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer, New York, 2006.

[3] S. Chatzis, D. Kosmopoulos, and T. Varvarigou. Signal mod-

eling and classification using a robust latent space model

based on t distributions. IEEE Trans. Signal Processing,

56(3):949–963, March 2008.

[4] B. Chen, G. Polatkan, G. Sapiro, D. B. Dunson, and L. Carin.

The hierarchical Beta process for convolutional factor anal-

ysis and deep learning. In Proc. ICML, 2011.

[5] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behav-

ior recognition via sparse spatio-temporal features. In Proc.

ICCN, pages 65–72, Washington, DC, USA, 2005.

[6] F. Doshi-Velez, K. Miller, J. V. Gael, and Y. W. Teh. Varia-

tional inference for the Indian buffet process. In Proc. AIS-

TATS, 2009.

[7] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In Proc. CVPR,

pages 2155 – 2162, 2014.

[8] T. L. Griffiths and Z. Ghahramani. Infinite latent feature

models and the Indian buffet process. In Proc. NIPS, 2006.

[9] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm

for deep belief nets. Neu. Comp., 2006.

[10] A. Hyvarinen, J. Hurri, and P. Hoyer. Natural Image Statis-

tics. Springer, 2009.

[11] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically

inspired system for action recognition. In Proc. ICCV, 2007.

[12] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neu-

ral networks for human action recognition. In Proc. ICML,

2010.

[13] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An

introduction to variational methods for graphical models.

In M. Jordan, editor, Learning in Graphical Models, pages

105–162. Kluwer, Dordrecht, 1998.

[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In Proc. CVPR, pages 1725–1732,

2014.

[15] A. Kläser, M. Marszałek, and C. Schmid. A spatio-temporal

descriptor based on 3d-gradients. In Proc. BMVC, pages

995–1004, sep 2008.

[16] D. Knowles and Z. Ghahramani. Nonparametric Bayesian

sparse factor models with application to gene expression

modeling. Annal. Applied Stat., 5(2B):1534–1552, 2011.

[17] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with re-

construction cost for efficient overcomplete feature learning.

In Proc. NIPS, 2011.

[18] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learn-

ing hierarchical invariant spatio-temporal features for action

recognition with independent subspace analysis. In Proc.

CVPR, 2011.

[19] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse

coding algorithms. In Proc. NIPS, 2007.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional

deep belief networks for scalable unsupervised learning of

hierarchical representations. In Proc. ICML, 2009.

[21] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions

from videos “in the wild”. In Proc. CVPR, 2009.

[22] M. Marzalek, I. Laptev, and C. Schmid. Actions in context.

In Proc. CVPR, 2009.

[23] E. Meeds, Z. Ghahramani, R. Neal, and S. Roweis. Modeling

dyadic data with binary latent factors. In Proc. NIPS, 2006.

[24] D. Mimno, M. D. Hoffman, and D. M. Blei. Sparse stochas-

tic inference for latent Dirichlet allocation. In Proc. ICML,

2012.

[25] T. J. Mitchell and J. J. Beauchamp. Bayesian variable se-

lection in linear regression (with discussion). Journal of the

American Statistical Association, 83:1023–1036, 1988.

[26] B. A. Olshausen. Sparse coding of time-varying natural im-

ages. In Proc. ICA, 2000.

[27] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and

transferring mid-level image representations using convolu-

tional neural networks. In Proc. CVPR, pages 1717 – 1724,

2014.

[28] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep

unsupervised learning using graphics processors. In Proc.

ICML, 2009.

[29] S. Richardson and P. Green. On Bayesian analysis of mix-

tures with unknown number of components. J. Roy. Statist.

Soc. B, 59:731–792, 1997.

[30] G. Taylor, R. Fergus, Y. Lecun, and C. Bregler. Convolu-

tional learning of spatio-temporal features. In Proc. ECCV,

2010.

[31] J. van Hateren and D. Ruderman. Independent component

analysis of natural image sequences yields spatio-temporal

filters similar to simple cells in primary visual cortex. Pro-

ceedings of the Royal Society: Biological Sciences, 1998.

[32] V. N. Vapnik. Statistical Learning Theory. Wiley, New York,

1998.

[33] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.

Manzagol. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising cri-

terion. J. Machine Learning Research, 11:3371–3408, 2010.

[34] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In Proc. CVPR, pages 3169–

3176, 2011.

[35] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid.

Evaluation of local spatio-temporal features for action

recognition. In Proc. BMVC, pages 124.1–124.11, 2009.

doi:10.5244/C.23.124.

[36] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid.

Evaluation of local spatio-temporal features for action recog-

nition. In Proc. BMVC, 2010.

[37] G. Willems, T. Tuytelaars, and L. Gool. An efficient dense

and scale-invariant spatio-temporal interest point detector. In

Proc. ECCV, pages 650–663, 2008.

2811

