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Abstract

In the past decade, Grassmann manifolds (Grassman-

nian) have been commonly used in mathematical formu-

lations of many Computer Vision tasks. Averaging points

on a Grassmann manifold is a very common operation in

many applications including but not limited to, tracking, ac-

tion recognition, video-face recognition, face recognition,

etc. Computing the intrinsic/Fréchet mean (FM) of a set of

points on the Grassmann can be cast as finding the global

optimum (if it exists) of the sum of squared geodesic dis-

tances cost function. A common approach to solve this

problem involves the use of the gradient descent method.

An alternative way to compute the FM is to develop a re-

cursive/inductive definition that does not involve optimizing

the aforementioned cost function. In this paper, we pro-

pose one such computationally efficient algorithm called the

Grassmann inductive Fréchet mean estimator (GiFME). In

developing the recursive solution to find the FM of the given

set of points, GiFME exploits the fact that there is a closed

form solution to find the FM of two points on the Grass-

mann. In the limit as the number of samples tends to in-

finity, we prove that GiFME converges to the FM (this is

called the weak consistency result on the Grassmann mani-

fold). Further, for the finite sample case, in the limit as the

number of sample paths (trials) goes to infinity, we show

that GiFME converges to the finite sample FM. Moreover,

we present a bound on the geodesic distance between the

estimate from GiFME and the true FM. We present several

experiments on synthetic and real data sets to demonstrate

the performance of GiFME in comparison to the gradient

descent based (batch mode) technique. Our goal in these

applications is to demonstrate the computational advantage

and achieve comparable accuracy to the state-of-the-art.

1. Introduction

The Grassmann manifold has been commonly used in

mathematical formulations of many computer vision tasks

such as video based face recognition [34, 4], activity recog-

nition [5, 35], video restoration [15], shape analysis [13, 25]

etc. Given a set of data points on a Grassmann manifold,

finding their average is a crucial task in many classification

and clustering based applications including the aforemen-

tioned applications. Since, a general Riemannian manifold

lacks vector space structure, a Euclidean mean is not a valid

representative of the average of points on the manifold. In-

stead one can use a Riemannian center of mass, also known

as the Fréchet mean (FM) [12, 18] as a way to denote the

average of data points. This mean however is not unique in

general and can be shown to be unique only in a geodesic

ball of a certain injectivity/convexity radius. We refer the

reader to an excellent paper [2] for a detailed exposition on

this topic. Further, in general there is no closed form solu-

tion for the FM of an arbitrary number of points on a Rie-

mannian manifold. Of course, one can argue about using the

Euclidean mean which though computationally efficient, is

not intrinsic and does not have many of the desired proper-

ties of the FM on the manifold. On a Riemannian manifold,

the FM is defined as the minimizer of the sum of squared

geodesic distances cost function. A popular approach to

compute the FM is to use a gradient descent technique on

this cost function [10, 24, 3]. An alternative approach to

finding the FM proposed in [14] however does not involve

the minimization of a cost function but is posed as a special

case of iteratively finding the zeros of a vector field on the

Riemannian manifold.

Where applicable, a recursive algorithm can take advan-

tage of the closed form solution to compute the FM of two

points as the base of the recursion and recurse through the

number of points in the given set. This will yield a much

faster way to compute the FM if and when the convergence

of the algorithm can be proved. In [31], an inductive def-

inition of FM was proposed and almost sure convergence
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was shown for all non-positively curved (NPC) spaces. In

[33], authors also presented a recursive FM computation al-

gorithm but without any convergence analysis. Recently,

recursive algorithms (along with proofs of convergence) to

compute the FM on the Riemannian manifold of (n × n)
symmetric positive definite matrices (Pn) were reported in

[16, 27, 21]. In this paper, we present a novel recursive

(also called inductive) algorithm with convergence analy-

sis, for computing the FM on a Grassmann manifold whose

geometry is quite distinct from that of Pn and hence the

convergence analysis on Pn [16, 27, 21] does not carry over

to this setting.

The Grassmann manifold, denoted by Grass(p, n), is

the space of p dimensional subspaces of Rn. In some of the

recent works [34], researchers have used Procrustes metric

defined in the ambient Euclidean space [7] instead of using

an canonical metric on the Grassmann. As Grass(p, n) is

geodesically complete, hence, by the Hopf-Rinow theorem

[17], there exists at least one length minimizing geodesic

between any two points on Grass(p, n). In our formula-

tion, we use this closed form expression for geodesics de-

rived using the unique (up to a multiplicative constant) uni-

tary invariant Riemannian metric on the Grassmann [9, 1].

Note that in Euclidean space, the recursive form of com-

puting the arithmetic mean (which yields the same solution

as the minimization of sum of squared distances) involves

only two points in each recursion step and can be geomet-

rically interpreted as moving an appropriate distance away

from the already computed mean (old mean) towards the

new-mean on the straight line joining the old mean and the

new data point. This geometric procedure can be readily

extended to any Riemannian manifold using geodesics. To

this end, we make use of the closed form expression – de-

rived using the cannonical metric on the Grassman – for the

geodesic between two points on the Grassman. More pre-

cisely, after computing the estimate of the FM of k points,

denoted by Mk, the k + 1th estimate lies on the geodesic

between Mk and the k + 1th point Xk+1. This readily

yields an algorithm for computing the FM that does not re-

quire any function optimization, a considerable advantage

often realized as gains in computation time of several orders

in magnitude over non-incremental algorithms based on

minimization of sum of squared geodesic distances. How-

ever, because of the presence of curvature, the recursive

form and the minimization formulation do not necessarily

yield the same solution in general. In particular, it is not

immediately clear that Mk will indeed converge asymptot-

ically to the true FM.

In this paper, we present a weak consistency result which

implies that as the number of samples goes to infinity, our

inductive estimator does converge to the Fréchet expecta-

tion. For the finite samples case, with a fixed number of

sample paths (trials), our estimator and FM in general can

be different but close. Hence, we also give the bound on the

distance between our estimator and the finite sample FM.

An excellent research monograph on the topic of statis-

tics on special matrix manifolds including the Grassmann

and Stiefel manifolds is the book by Chikuse [7]. The book

however does not address computational efficiency issues.

One of the first detailed and complete works on the gradi-

ent descent and the conjugate gradient descent algorithm on

the Grassmann manifold was reported in [9]. Srivastava et

al. [30] pose the commonly encountered Computer Vision

problem of the subspace tracking problem on a complex

Grassmann manifold. A nonlinear mean shift algorithm on

the Grassmann manifold was presented in [32, 6] with ap-

plications to segmentation of multiple motions and filtering.

Turaga et al. [34] have reported results on statistical analy-

sis on the Grassmann manifold with various applications in-

cluding action recognition, video face recognition etc. Most

recently, Hauberg et al. [15] formulated the dimensionality

reduction problem as an averaging problem on Grassmann.

For a comprehensive survey of computer vision applications

that use a variety of Riemannian manifolds including Grass-

mann we refer the reader to [23].

The rest of the paper is organized as follows. In sec-

tion 2, we discuss the formulation of inductive FM on the

Grassmann manifold. Further, we present a proof of the

Weak Consistency of our estimator on the Grassmann. The

distance between our inductive estimate of the FM and the

true FM is also presented for the finite sample case. Exper-

imental results on synthetic and real data sets are presented

in section 3. Finally, in section 4, we draw conclusions.

2. Inductive Fréchet mean on the Grassmann

manifold

In this section, we first briefly recall some preliminaries

regarding the Grassmann manifold. Then, we present an in-

ductive formulation for computing the Fréchet mean (FM)

[12, 18] on Grassmann manifold. For a finite sample set, the

FM is defined as a minimizer of the sum of squared geodesic

distances between the unknown mean and the given sam-

ples. In general, the uniqueness can only be guaranteed

within a certain injectivity/ convexity radius [12, 18, 2]. We

also prove the Weak Consistency of GiFME on the Grass-

mannian and present a bound on the distance between the

the estimate obtained using GiFME and the FM.

2.1. Mathematical Preliminaries

The set of all p−dimensional linear subspaces of Rn is

defined as the Grassmann manifold, Grass(p, n), where

p ∈ Z
+, n ∈ Z

+, n ≥ p. So, a point on Grass(p, n) is

a p−dimensional hyperplane in R
n containing the origin.

The special case of Grass(p, n) is when p = 1, which is

called the real projective space. A point, X ∈ Grass(p, n)
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can be specified by a basis, i.e., a set of p, n−dimensional

linearly independent vectors. Let Xn×p be the matrix

whose columns are the basis vectors. Then, X = Col(X),
where Col(X) returns the column space of X . The set of all

n× p, p ≤ n, full rank matrices is termed as (noncompact)

Stiefel manifold, denoted by St(p, n).
Clearly, given X ∈ Grass(p, n), the choice of X ∈

St(p, n) for which X = Col(X) is not unique. In

fact, Grass(p, n) can be identified with the quotient space

St(p, n)/GL(p), where GL(p) is the p−dimensional gen-

eral linear group, i.e., p × p non-singular matrices. Thus,

GL(p) defines an equivalence relation on St(p, n) as fol-

lows: X ∼ Y iff ∃L ∈ GL(p) such that, X = Y L,

X,Y ∈ St(p, n). Note that, Col(X) is same as Col(Y ),
so the equivalence classes of St(p, n) are in one-to-one cor-

respondence with the points on Grass(p, n).
Now, we will consider the unitary group invariant canon-

ical metric on Grass(p, n). The terminology used here

is borrowed from [1]. In order to define a metric on

Grass(p, n), we will first define a metric on St(p, n). Let

X ∈ Grass(p, n), ξ, η ∈ TXGrass(p, n). Let, X ∈
St(p, n) such that X = Col(X). As St(p, n) is an open

subset of Rn×p, TXSt(p, n) is isomorphic to R
n×p. We

define the horizontal space HX (a subspace of TXSt(p, n))
as

HX = {X ⊥ W |W ∈ R
(n−p)×p}

where X ⊥∈ St(n − p, n) s.t. XTX ⊥= 0. For any two

U, V ∈ TXSt(p, n) define the following metric:

〈U, V 〉X = trace
(
(XTX)−1UTV

)
(1)

According to the theory of principal fiber bundles [19],

for every ξ ∈ TXGrass(p, n), there exists an unique hor-

izontal vector ξ⋄X such that ξ⋄X projects to ξ via the span

operation. Hence, using Eq. 1, we can define the metric on

Grass(p, n) as follows:

〈ξ, η〉
X

= trace
(
(XTX)−1ξT⋄Xη⋄X

)
(2)

where, ξ⋄X denotes the horizontal lift of ξ at X [1]. This

metric is invariant under the orthogonal group (set of n× n
dimensional orthogonal matrices) operation, i.e.,

trace
(
(XTX)−1ξT⋄Xη⋄X

)

= trace
(
((QX)T (QX))−1(Qξ⋄X)T (Qη⋄X)

)

for all Q ∈ O(n). Further, it is well known that the Grass-

mann manifold is complete [1] and hence, one can extend

the geodesics on it indefinitely. Given X ,Y ∈ Grass(p, n)
with their respective orthonormal basis (o.n.b.) X and Y ,

the unique geodesic, Γ(X ,Y, t) from X to Y is defined by

[1]:

Γ(X ,Y, t) = span
(
XV cos(Θt) + U sin(Θt)

)
(3)

where, XTY is non-singular and
(
I −

X(XTX)−1XT
)
Y (XTY )−1 = UΣV T be the “thin”

Singular value decomposition (SVD), (i.e., U is n × p and

V is p× p orthonormal matrix, whereas Σ is p× p diagonal

matrix), and Θ = atanΣ. The geodesic distance between

X and Y induced by the unitary invariant metric (as given

in Eq. 2), is

dGr(X ,Y) =
√
〈ξ, ξ〉 (4)

where, ξ = Exp−1
X Y , Exp−1

X Y is the inverse of the Rie-

mannian Exponential map. The distance between X and

Y can also be shown as the 2−norm of diag(Θ), where,

diag(Θ) returns the vector consisting of the diagonal ele-

ments of Θ (termed as principal angles between X and Y).

Another classical definition of distance on Grassmannian is

given by sin(maxΘ), where maxΘ is the largest principal

angle. In this work, we have used the sin(maxΘ) defini-

tion. We are now ready to use the above material to derive

the incremental a.k.a inductive FM.

2.2. The Inductive Fréchet Expectation

Given the closed-form expression for the geodesic on a

Grassmann manifold, now we are in a position to define the

inductive Fréchet expectation estimator on the Grassmann

manifold, henceforth abbreviated as GiFEE. Prior to that,

let us recall the definition of the Fréchet Mean (FM) and

the Fréchet Expectation. The FM, X ∗ of a set of N points

{X1, · · · ,XN}, is defined [12, 18] as:

X ∗ = arg min
Y∈Grass(p,n)

N∑

i=1

d2Gr

(
Y,Xi

)
(5)

For a probability density fX on Grass(p, n) with finite Rie-

mannian L
2 moment, the Fréchet Expectation, µ∗ is defined

[12, 18] as:

µ∗ = arg min
µ∈Grass(p,n)

∫

Grass(p,n)

d2Gr

(
µ,X

)
fX (X )d(X )

(6)

where, d(X ) is the Riemannian measure (or volume form)

used in defining the density on Grass(p, n).

Algorithm for Inductive Fréchet Expectation

Estimator Let X1, X2, · · · be independent sam-

ples drawn from a probability distribution P (X )
on Grass(p, n). Then, we define the Fréchet ex-

pectation estimator Mk by the following recursion:

M1 = X1 (7)

Mk+1 = Γ
(
Mk,Xk+1, ωk+1

)
(8)

where, Γ(., ., .) is the geodesic as defined in Eq. 3, and
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ωk+1 = 1
k+1 . Eq. 7 simply means that the k + 1th

estimator lies on the geodesic between the kth estimator

and the k + 1th sample point. The rationale behind this

formulation comes from the euclidean update formula as

discussed in [16]. This inductive formulation will hence-

forth be denoted by GiFEE for expectation estimator and

GiFME for the finite sample mean estimator respectively.

This simple inductive estimator can be shown to con-

verge to the Fréchet expectation as stated in Theorem 1. The

proof of this theorem is given in the next subsection.

Theorem 1. (Weak Consistency): For any distribution

P (X ) on Grass(p, n) with finite Riemannian L
2-moment,

whose support is bounded by a geodesic ball of radius

< π/4, and a sequence of independent samples X1, X2,

· · · drawn from this distribution, the inductive Fréchet ex-

pectation estimator (GiFEE) converges to the Fréchet ex-

pectation in probability as the number of samples tends to

∞.

2.3. Proof of Theorem 1

In order to prove Theorem 1, i.e., the Weak Consistency

of GiFEE on Grass(p, n), first we will prove three lem-

mas, which will be used to prove the Theorem 1. Note that

these proof steps are not a part of our inductive algorithm.

These steps are only needed to prove the weak consistency

on Grass(p, n). Also, note that in the rest of paper with a

slight abuse of notation, we have used the term ”geodesic”

to denote the ”shortest geodesic”.

Lemma 1. Let X and Y belong to Grass(p, n), n/2 >
p, p > 1 and let X and Y be an orthonormal basis (o.n.b.)

of X and Y respectively. Let the geodesic between X and Y
be denoted by Γ(X ,Y, t). Let A ∈ Mn×(n−1)(R) be of full

column rank such that ATA = In−1 and ATX is of rank

p. Then, ∃X̃ , Ỹ ∈ Grass(p, n − 1) with their respective

o.n.b. X̃ and Ỹ such that Γ(X ,Y, t) = span(AΓβ(t))

where Γβ(t) is a basis of Γ(X̃ , Ỹ, t).

Proof. : Since the distribution P (X ) has a support bounded

by a geodesic ball of radius < π/4, the largest principal an-

gle between X and Y is < π/2, i.e., X does not contain an

orthogonal direction to Y , which implies XTY is invertible.

Claim: Given the hypothesis as above, ATY is of full

column rank.

Proof. : Consider the matrix R = XTAATY . Assume R
is not of full rank, then ∃ {ci}

p
i=1, not all 0 s.t.,

∑

i

cix
t
i(AAT )Y = 0 (9)

where, xi is the ith column of X . As Y and AAT is

not zero matrix, so Eq. 9 holds if either
∑

i cixi = 0

or
∑

i cixi ∈ N (AAT ). As X is of full column rank,∑
i cixi = 0 is true only if ci = 0, ∀i, which is a contra-

diction to our assumption that R is not of full rank. Hence,∑
i cixi ∈ N (AAT ), =⇒ AAT

∑
i(cixi) = 0, =⇒

ATX is not of full column rank, which is a contradiction to

our hypothesis. Hence, R = XTAATY is invertible, =⇒
ATY is of full column rank since, by hypothesis ATX is of

full column rank. �

Now, construct A ∈ Mn×(n−1)(R) as follows. Make the

first p columns of A same as those of X . Then, we take

each column of Y individually, and use Gram-Schmidt or-

thogonalization on that column. A is then augmented with

this orthogonalized column. Note that, if a column of Y
is in the columnspace of X , then, it is not used in the aug-

mentation of A. After these operations, we fill the remaning

columns of A by taking o.n.b. of Rn s.t. they together make

A column orthonormal. Clearly, as the first p columns of

A are all the columns of X , ATX is of full column rank.

Hence, by the above claim, ATY is of full column rank.

Let, N ∈ Mp×p(R) be invertible matrix such that

X = AX̃ (10)

Y = AỸ N (11)

where, X̃, Ỹ ∈ M(n−1)×p(R) are column orthonormal.

Hence, ∃ X̃ , Ỹ ∈ Grass(p, n − 1) s.t. X̃, Ỹ are o.n.b. of

X̃ , Ỹ respectively. It’s easy to see from our construction of

A that X̃ =

[
Ip

0(n−1)×p

]
. Moreover, as Y ∈ Col(A), Ỹ N

gives the coefficient of the linear combination. Hence, we

can use thin QR decomposition to get column orthonormal

Ỹ and the upper-triangular N with a non-zero diagonal.

Claim: X̃T Ỹ is invertible.

Proof. : Using Equations 10 and 11, we get, X̃T Ỹ =
XTAATY N−1. By our earlier claim, the square matrix,

XTAATY is invertible. As product of invertible matrices

is invertible, hence X̃T Ỹ is invertible. �

Let Y (XTY )−1 − X = UΣV T be the SVD decompo-

sition. Using the previous equalities and Equations 10 and

11, we get

Y (XTY )−1 −X = AỸ N(X̃TATAỸ N)−1 −AX̃

= A
(
Ỹ N(X̃T Ỹ N)−1 − X̃

)
(12)

= A
(
Ỹ NN−1(X̃T Ỹ )−1 − X̃

)
(13)

= A
(
Ỹ (X̃T Ỹ )−1 − X̃

)
(14)

Let Ỹ (X̃T Ỹ )−1 − X̃ = Ũ Σ̃Ṽ T . Then, using Equa-

tion 14, we obtain the relationship between (U,Σ, V ) and

(Ũ , Σ̃, Ṽ ) as follows: U = AŨ , V = Ṽ and Σ = Σ̃. Let
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Θ = atanΣ and Θ̃ = atanΣ̃ = Θ. The geodesic between X
and Y , Γ(X ,Y, t) can be expressed as [1]

Γ(X ,Y, t) = span
(
X̄V cosΘt+ U sinΘt

)
(15)

Substituting the relationship between (U,Σ, V ) and

(Ũ , Σ̃, Ṽ ) into Equation 15, we get

Γ(X ,Y, t) = span
(
X̄V cosΘt+ U sinΘt

)

= span
(
A
[
X̃Ṽ cos Θ̃t+ Ũ sin Θ̃t

])

= span(AΓβ(t)) (16)

where, Γβ(t) is the basis for Γ(X̃ , Ỹ, t). Thus, the geodesic

between X and Y in Grass(p, n) can be expressed as

a function of Γβ(t). Note that AΓβ(t) is a basis for

Γ(X ,Y, t), and ATAΓβ(t) = Γβ(t) is of full column

rank. �

For, Grass(p, n) with p = n/2, if X and Y together

spans Rn, ∄ A in Lemma 1. In this special case, instead

of the reduction from Grass(p, n) to Grass(p, n − 1), we

map from Grass(p, n) to Grass(p + 1, n). In this case,

we look for a X̃ , Ỹ ∈ Grass(p + 1, n) s.t., dGr(X ,Y) =

dGr(X̃ , Ỹ). So, in this case, we will get X = X̃B and Y =

Ỹ C, where B and C contain the coefficient of the linear

combination of columns of X̃ and Ỹ respectively. Then,

we can use analogous arguments as in Lemma 1 to get the

geodesic expression between X and Y from the geodesic

expression between X̃ and Ỹ . The detailed proof will be

given in a future publication.

.Lemma 2. Let X and Y belong to Grass(1, n) from a

distribution whose support is bounded by geodesic ball of

radius < π/4, and let X,Y ∈ Sn−1 be the unit length

basis of X and Y respectively s.t. dS(X,Y ) < π/2, where

dS(., .) is the geodesic distance on Sn−1. Let ΓS(., ., t)
denote the geodesic on Sn−1. Then, any point on the

geodesic, at (t = t0), between X and Y , i.e., ΓS(X,Y, t0)
spans Γ(X ,Y, t0).

Proof. Since X and Y are unit length basis, they lie on the

hypersphere, Sn−1. Let Y (XTY )−1 −X = UΣV T be the

SVD decomposition. Then, UΣV T = Y (XTY )−1 −X =
Y−X cos θ

cos θ , where, XTY = cos θ and as XTY is invertible

thus, cos θ 6= 0. Then,

U =
Y −X cos θ

‖Y −X cos θ‖
(17)

Σ =
‖Y −X cos θ‖

cos θ
= tan θ (18)

V = 1 (19)

So, atanΣ = θ. Using Equations 17-19, the geodesic

Γ(X ,Y, t) between X and Y , can be expressed as,

Γ(X ,Y, t) = span
(
XV cos θt+ U sin θt

)

= span
(
X cos θt+

Y −X cos θ

‖Y −X cos θ‖
sin θt

)

= span
( 1

sin θ

[
Y sin θt+X sin θ(1− t)

])
.

(20)

Since X,Y ∈ Sn−1, hence, Equation 20 implies that

Γ(X ,Y, t) = span(ΓS(X,Y, t)). Here, as ΓS(X,Y, t) ∈
Sn−1, hence, this becomes an unit length basis for the sub-

space on the geodesic between X and Y . �

Lemma 3. Given the hypothesis as above, independent

samples on Grass(p, n) induces independent samples

(from the induced distribution) on Sn′
−1 for some n′ ≤ n.

Proof. Consider a set of independent samples on

Grass(p, n), X1, · · · ,XN . Using the proof of Lemma 1

and the claim within, we can take a full column orthonormal

matrix A, to get samples X̃1, · · · , X̃N on Grass(p, n− 1).
Note that since any functional tranformation of indepedent

samples yields independent samples (from the induced

distribution), X̃1, · · · , X̃N are independent samples.

For the case when we need to go from Grass(p, n) to

Grass(p + 1, n), by analogous argument, the samples are

also independent. So, we will use the isometry between

Grass(p, n) and Grass(n − p, n) [7], the reduction

step from Grass(p, n) from Grass(p, n − 1) and the

step from Grass(p, n) from Grass(p + 1, n) to get

independent samples on Grass(1, n′), for some n′ ≤ n.

Now, define a mapping F : Grass(1, n′) → Sn′
−1 by

F(X ) = X ∗ sgn(Xn)/‖X‖, where X is a basis of X
∈ Grass(1, n′). Then, F induces independent samples on

Sn′
−1 by the similar argument as before. �

Given the above lemmas, we are now in a position to

prove Theorem 1.

Proof of Theorem 1. Given, Lemma 3, we can state that

independent samples on Grass(p, n) induces independent

samples on Sn′
−1. Using Lemma 2, we can state that the

geodesic on Grass(1, n) (between two points) can be com-

puted from geodesic on Sn−1 (between two corresponding

points). And as our inductive FM computation algorithm,

GiFEE, (in eqns. 7) requires closed form expression of

the geodesic at each step, we can compute GiFEE of

the samples on Grass(1, n) from the SiFEE on Sn−1.

Moreover, using Lemma 1, we can also compute GiFEE
on Grass(p, n) from the GiFEE on Grass(p, n − 1)
as geodesic on Grass(p, n) can be computed from the

geodesic on Grass(p, n − 1). For p = n/2 case, we will
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use the step to go from Grass(p, n) to Grass(p + 1, n).
Additionally, we use the isometry between Grass(p, n)
and Grass(n − p, n), n − p > 0 [7], to derive GiFEE
on Grass(n − p, n) from the GiFEE on Grass(p, n).
Hence, we can state that the GiFEE of the samples on

Grass(p, n) can be derived from the SiFEE on Sn′
−1, for

some n′ ≤ n. Hence, given the proof of weak consistency

on Sn′
−1, we have a proof for the weak consistency of

GiFEE on Grass(p, n).
An example of the reduction steps from Grass(5, 10)
to Grass(1, 4): Grass(5, 10) → Grass(6, 10) →
Grass(4, 10) → Grass(4, 9) → Grass(4, 8) →
Grass(5, 8) → Grass(3, 8) → Grass(3, 7) →
Grass(3, 6) → Grass(4, 6) → Grass(2, 6) →
Grass(2, 5) → Grass(2, 4) → Grass(3, 4) →
Grass(1, 4), where → denotes the reduction step.

We now state the weak consistency of our estimator on

Sn−1 in Theorem 2 and refer the reader to [26] for the

proof. �

Theorem 2. (Weak consistency on Sn−1) Let Xi’s be the

independent samples drawn from a distribution whose sup-

port is bounded by a geodesic ball of radius < π/4. Then

the inductive Fréchet expectation estimator (SiFEE) will

converge to the Fréchet estimator in probability as the num-

ber of samples tend to ∞.

In the next subsection, we will show convergence for fi-

nite sample set.

2.4. The Finite Sample Case

Instead of infinite sample set, if we have finite sam-

ple set on Grass(p, n), it can also be proved that, if we

draw an infinite number of times from the finite sample set,

GiFME converges to the FM of the finite samples. This re-

sult is analogous to Sturm’s result for non-positively curved

(NPC) spaces [31] and proved for weighted inductive means

on the manifold of symmetric positive definite matrices in

Lim et. al [21].

Let X = {X1, · · · ,Xn} be the set of n points on

Grass(p, n). Also, assume on X, FM exists and it is

unique. Let, Nn = {1, · · · , n}. For each ω ∈
∞∏

k=1

Nn,

define inductively a sequence σω as follows:

σω(1) = Xω(1)

σω(m) = Γ

(
σω(m− 1),Xω(m),

1

m

)

This sequence may be viewed as a random walk starting at

Xω(1), and moving from σω(m − 1) toward Xω(m) along

the geodesic to reach σω(m). Then, the following theorem

holds.

Theorem 3. (Convergence of the inductive random walk)

Given the hypothesis as above, as m → ∞, σω(m) con-

verges almost surely to X ∗, i.e., the FM of X. More con-

cisely,

lim
m→∞

σω(m) = X ∗ (21)

Proof. Let us construct a setYm = {Xω(1), · · · ,Xω(m)}.

From Theorem 1, we can state that in the limit as m goes

to ∞, σω(m) converges to the FM of Ym, which is same as

the FM of the set X. �

The more generalized form of Theorem 3, where as-

sociated with X there is a probability vector W =
(w1, w2, · · · , wn), is know as “no-dice theorem”, which is

harder to prove. In our case, wi =
1
n
, ∀i.

In the following subsection, we will present a bound on

the distance between GiFME and the finite sample FM.

2.5. An upper bound on dGr

(
Mk+1,X

∗

)

Given a finite number of sample points on Grass(p, n),
let the kth estimate from GiFME be Mk and the FM be

denoted by X ∗. Using Lemma 1 and the isometry between

Grass(p, n) and Grass(n−p, n), it is easy to see that find-

ing an upper bound on dGr

(
Mk+1,X

∗

)
is equivalent to

finding an upper bound on the distance between SiFME
and FM on Sn−1.

Lemma 4. Given S1, · · · , Sn on northern hemisphere of

Sn−1 (i.e., nth coordinate of Si is always positive, ∀i) with

FM S∗ = (0, 0, · · · , 0, 1)t and kth inductive estimator, Tk,

the distance between Tk and S∗, denoted by dS(Tk,S
∗) is

bounded according to,

dS(Tk,S
∗) ≤ max

i
θi1

where, θi1, θ
i
2, · · · , θ

i
n−1 are the angular coordinates for Si,

θij ∈ (0, π), ∀{i, j}.

The proof of this Lemma is given in [26].

3. Experimental Results

In this section, we present experiments demonstrating

the performance of GiFME in comparison to the batch mode

counterpart (which uses the gradient descent on the sum of

squared geodesic distances cost function) on synthetic and

real data. Since the practical thrust of the paper is on com-

putational efficiency in estimating the FM using GiFME, we

provide the run times on a desktop used for performing all

the experiments. All the experimental results reported here

were executed on a desktop with a single 3.33 GHz Intel-i7

CPU with 24 GB RAM.
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Figure 1. Average error comparison for GFME and GiFME

3.1. Comparative performance of GiFME on Syn-
thetic data

We generate 1000 i.i.d. samples from a Log-Normal dis-

tribution on Grass(p, n) with variance 0.25 and expecta-

tion to be Col(Ĩ), where

Ĩij =

{
1 1 ≤ i = j ≤ p

0 o.w.

We use the procedure in [29] to generate samples form a

Log-Normal distribution. Then, we input these i.i.d. sam-

ples to both GiFME and GFME (non-recursive, Grass-

man Fréchet mean estimator). To compare the performance

we compute the error, which is the intrinsic distance (on

the Grassmann) between the computed mean and the FM.

We also report the computation time for these both cases.

We perform this experiment 10 times and the average error

in accuracy and the average computation time are reported.

The comparison plot of the average error is shown in Fig.

1, here n = 100, p = 10. In order to achieve faster con-

vergence of GFME, we have used the FM of k samples

to initialize the FM computation for k + 1 samples. From

this plot, it can be seen that the average accuracy error of

GiFME is almost same as that of GFME. The compari-

son plot of computation time for GiFME and GFME is

shown in Fig. 2. In Fig. 2 we present the time required

by GiFME for the incremental update step involved in

computing the FM of k samples given the FM of (k − 1)
samples. From this figure, we can see that GiFME out-

performs GFME. As the number of samples increases,

the computational efficiency of GiFME over GFME be-

comes very large. We can also see that the time require-

ment for GiFME is almost constant with respect to the the

number of samples, which makes GiFME computation-

ally very efficient and attractive for large number of sam-

ples.

Another interesting question to ask is, how many sam-

ples are need in order to compute the FM within a given er-

ror tolerance? We answer this question through the plot in

Figure 3 and present a comparison of the number of sample

required for GiFME and GFME to reach the specified
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Figure 2. The running time comparison for GFME and GiFME

(in an incremental context).
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Figure 3. The comparison of number of samples required for

GFME and GiFME to attain a specified accuracy.

error tolerance. From Fig. 3, we can see that the number

of samples required to reach the specified error tolerance by

GiFME and GFME are almost the same.

3.2. Application to Face Recognition

In this section, we present an application of GiFME
to face recognition. We use the YaleExtendedB [20] face

recognition database to conduct our experiments. This

database contains 16128 face images taken from 28 human

subjects with varying pose and illumination conditions. In

order to do the recognition, we formulate the face recog-

nition problem as one that requires the computation of the

intrinsic mean on the Grassmann manifold, as described in

the following paragraph.

For each person indexed by i, consider his/her face im-

ages. From each image, j, construct the SIFT descriptor

matrix, F ij [22]. Let the dimension of each F ij be n×m,

n > m. For each (i, j), construct the matrix P ij where

the kth column of the matrix is the kth principal vector of

F ij . Suppose, we have considered the first c, 1 ≤ c < m
principal vectors. Then, we can view each of F ij as a

point on Grass(c,m) such that each row of F ij belongs

to the c dimensional subspace of Rm. Then, for ith person,

construct the geodesic submanifold, Hi of Grass(c,m) ac-

cording to [11]. In order to construct the submanifold, we

first compute the FM (on the Grassmann) µi of F ij , ∀j.

Then get the first c principal components of Exp−1
µi

F ij ,

∀j, where Exp−1 is the Riemannian Inverse Exponential
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Method Precision(%) Time(s)

GFME 98.77 6808.8
GiFME 98.40 16.31

Table 1. Comparison results on Yale database

Map. These c principal vectors form the orthonormal ba-

sis of Tµi
Hi where, Hi is the geodesic submanifold. So,

for each person i, we construct the orthonormal basis of

Tµi
Hi. Then, given an unknown face image, we first extract

from it, the SIFT descriptor matrix, say G ∈ Grass(c,m).
Define the projection operator, πHi

: Grass(c,m) → Hi

by πHi
(G) = arg min

X∈Hi

dGr(X ,G) As discussed in [11],

projection onto a geodesic submanifold can be approxi-

mated linearly in the tangent space. First project G onto

Tµi
Hi by using Riemannian Inverse Exponential map, let

vG = Exp−1
µi

G. Let {vij} be the orthonormal basis of

Tmui
Hi. Then, πHi

(G) can be approximated as follows:

πHi
(G) = Expµi

(
∑

j

〈vG , v
i
j〉 vij

)
where, Exp is the

Riemannian Exponential map, 〈., ∗〉 is the inner product,

which can be taken as the standard dot product since an ar-

bitrary inner product can be taken as dot product if there

is an orthonormal basis. Then, we assign G to class c̃, if

c̃ = argminjdGr

(
πHj

(G), µj

)

For each class (person), we use 90% − 10% partition

and use 90% to compute the orthonormal basis of Tµi
Hi

and use the remaining 10% to predict the class. We have

compared the performance of GiFME and GFME both

in terms of precision and running time. Note that our main

emphasis here is on the efficient computation of the FM,

rather than improving the precision over the state-of-the-

art face recognition systems. The comparative results in

terms of computation time and precision are given in Ta-

ble 1. From the table, it is evident that though the precision

for both GFME and GiFME are comparable, GiFME
outperforms the GFME in the running time to compute the

FM.

3.3. Application to Video Action Recognition

In this section, we present an application of the FM com-

putation on the Grassmann to video face recognition. We

have used the KTH Action database [28] which contains 6
actions performed by 25 human subjects in 4 scenarios (de-

noted by ’d1’, ’d2’, ’d3’, ’d4’). All videos are captured by

static camera with homogeneous background.

For each video, we first extract 25 frames, then extract

the HOG features [8] from each of the frame. Then, each

video will become a point on Grass(p, n) with appropriate

p and n values, similar to the Face recognition application.

Method Scenario Precision(%) Time(s)

GFME d1 83.24 2714.71
GiFME d1 81.36 6.55
GFME d2 80.64 2763.91
GiFME d2 80.00 6.92
GFME d3 87.89 4260.67
GiFME d3 80.68 17.54
GFME d4 95.92 3973.83
GiFME d4 91.84 17.73

Table 2. Comparison results on the KTH action recognition

database

Then, we use the same algorithm as before to compute the

orthonormal basis for each action class. Given a video of an

unknown action class, we first get the corresponding point

on Grass(p, n) after extracting HOG features from each

frame. Then, assign this point to the class for which the

projection error is minimum. We have performed leave one

out experiments to get the precision of recognition. Simi-

lar to earlier experiments, we compare the performance of

GiFME over GFME both for precision as well as time

for computing the FM. As evident from results presented

in Table 2, we can see that the precision using GiFME is

slightly less than that of GFME but in terms of computa-

tion time, GiFME is significantly better.

4. Conclusions

In this paper, we have addressed the problem of com-

puting the FM of data residing on a Grassmann manifold.

This is a commonly encountered problem in Computer Vi-

sion with numerous applications. Computing the FM is a

computationally intensive task and most existing techniques

resort to a gradient descent approach in minimizing the sum

of squared geodesic distances on the Grassmann. We pre-

sented an efficient recursive algorithm for estimating the

FM namely, GiFME. The key contributions of this paper

are, (i) a proof of convergence (in probability) of GiFME to

the FM of the underlying distribution. This is basically the

weak consistency of GiFME. (ii) We demonstrated through

experiments, the significant gain in compute time over the

batch mode counterpart (GFME). (iii) Finally, we show the

performance of GiFME on several real datasets drawn from

the domain of face and action recognition. Our future work

will involve extending the inductive FM estimators to the

close relative of Grassmann namely, the Stiefel manifold.
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