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Abstract

We introduce two new structured output models that use

a latent graph, which is flexible in terms of the number of

nodes and structure, where the training process minimises

a high-order loss function using a weakly annotated train-

ing set. These models are developed in the context of mi-

croscopy imaging of malignant tumours, where the estima-

tion of the number and proportion of classes of microcircu-

latory supply units (MCSU) is important in the assessment

of the efficacy of common cancer treatments (an MCSU is

a region of the tumour tissue supplied by a microvessel).

The proposed methodologies take as input multimodal mi-

croscopy images of a tumour, and estimate the number and

proportion of MCSU classes. This estimation is facilitated

by the use of an underlying latent graph (not present in the

manual annotations), where each MCSU is represented by a

node in this graph, labelled with the MCSU class and image

location. The training process uses the manual weak anno-

tations available, consisting of the number of MCSU classes

per training image, where the training objective is the min-

imisation of a high-order loss function based on the norm

of the error between the manual and estimated annotations.

One of the models proposed is based on a new flexible latent

structure support vector machine (FLSSVM) and the other

is based on a deep convolutional neural network (DCNN)

model. Using a dataset of 89 weakly annotated pairs of

multimodal images from eight tumours, we show that the

quantitative results from DCNN are superior, but the quali-

tative results from FLSSVM are better and both display high

correlation values regarding the number and proportion of

MCSU classes compared to the manual annotations.

1. Introduction

Structured output models have become one of the most

studied topics in computer vision given their wide applica-

bility in semantic segmentation [18, 32], instance segmenta-

tion [25], human pose estimation [28, 3], depth and normal

Figure 1. From a pair of multimodal microscopy images (pink

left box) acquired from a tumour tissue, the methodology must

produce a high-level annotation (blue right box) consisting of

the number of MCSU classes found, where the classes are nor-

moxia (N), chronic hypoxia (CH), acute hypoxia (AH), and necro-

sis (Ne). This annotation is facilitated by a latent graph (green

centre box) with nodes representing the MCSUs, which is flexible

because the number of nodes and the structure of the graph are not

fixed. This figure is better visualised with a pdf reader - please

zoom in the IF/HE images to notice the MCSU annotations.

estimation [7], multiple organ detection and segmentation

from medical images [19, 30, 20, 36], among other prob-

lems. The use of latent variables in structured output learn-

ing models [34] is also important in several problems, where

an underlying graph helps the design of a more effective

approach. Examples of such models are present in 3D hu-

man pose estimation [11, 33] and weakly supervised seman-

tic segmentation [16, 23, 33, 9]. High-order loss functions

have also become relevant in structured output problems,

with, for instance, the use of overlap loss in segmentation

problems [27, 24]. Flexible underlying graphs have also

been applied in structured output learning problems [26],

where the number of nodes and graph structure can vary

with the input data. Finally, there are a few problems for-

mulated as weakly supervised latent structured output learn-

ing [9, 16, 23], but these approaches rely on low-order loss

functions. In summary, current structured output learning
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methods that combine latent variables consisting of flexi-

ble underlying graphs, weakly supervised training and high-

order loss functions, like the approaches being proposed in

this paper, have not been proposed for computer vision ap-

plications.

In this paper, we address the problem depicted in Fig. 1,

which shows the microscopy imaging of a tumour tissue us-

ing (immuno-)fluorescence (IF) and hematoxylin and eosin

(HE) stainings of the same specimen. It has been observed

that tumours containing relatively large number of chronic

hypoxic (limitations in oxygen diffusion) and acute hypoxic

(local disturbances in perfusion) regions can present resis-

tance to common cancer treatments [2]. This observation

led to the development of a manual annotation of such im-

age pairs that produces the number of normoxic (N - normal

oxygen diffusion), chronic hypoxic (CH) and acute hypoxic

(AH) microcirculatory supply units (MCSU - regions in the

tumour tissue supplied by microvessels) [15]. This anno-

tation can then be used in the assessment of the effective-

ness of common cancer treatments [2]. Notice in Fig. 1 the

presence of the class necrotic (Ne), which is not part of the

original manual annotation above, but is nevertheless im-

portant to be represented given that an MCSU can be falsely

detected in necrotic regions, as explained below in Sec. 2.

The main issue with the proposed manual annotation [15]

is that it contains only the final number of MCSU classes

(N, CH, AH), without indication of MCSU locations, sizes

and labels, where an MCSU is loosely defined to have a

size of around 200 × 200µm with class appearances de-

fined in Fig. 2 [15]. This size is defined by assuming that

one pixel in a positron emission tomography (PET) image

represents a 200 × 200µm region in a microscopy image,

which allows a direct comparison between the annotations

in these two modalities [15]. In fact, the detection of MC-

SUs is complicated by the fact that it is based on the de-

tection of a microvessel, which is a non-trivial task given

that the tumour tissue section can cut a microvessel in sev-

eral directions (parallel, oblique, or transversal - see Fig. 3)

in addition to the issue that microvessels can vary in diam-

eter. As a result, the task of defining the boundaries of a

microvessel in order to form an MCSU is ill-defined, and

we propose the use of a flexible and latent graph to facili-

tate this task. Finally, it is important to note that in spite of

its relevance, this manual annotation requires expertise that

is generally not available in clinical settings, which makes

it a good candidate for automation, particularly considering

its potential benefits.

We formulate this problem as a weakly supervised struc-

tured output learning using a latent graph that can vary in

terms of the number of nodes and structure, where the ob-

jective function being optimised consists of a high-order

loss function based on the norm of the difference between

the number of MCSU classes present in the manual and au-

tomated annotations. The need for the flexible and latent

graph is based on the idea that it facilitates the complex

detection of MCSUs (explained above), from a first triv-

Figure 2. Sketch of the appearance of MCSU classes [15]. Nor-

moxic MCSUs (a) have a red region at the centre of the IF image,

representing the microvessel, and a blue region around it denoting

normal oxygen supply; chronic hypoxia is denoted again by a red

region at the centre (microvessel) with a blue region immediately

around it, followed by a green region towards the border, indicat-

ing inadequate oxygen supply; acute hypoxia also has a red centre,

but immediately followed by green regions; and necrotic regions

also have a red centre, but followed by black regions around it.

Moreover, normoxic, chronic and acute hypoxic MCSUs have a

smooth appearance in the HE image (indicating vital tumour tis-

sue), while necrotic regions have a broken appearance.

Figure 3. Sketch showing different ways a microvessel can be cut

in the preparation for the tumour imaging.

ial detection and classification (into N, CH, AH, and Ne)

of microvessel pixels that can be clustered together to form

a node in this latent graph, where the clusters are formed

based on spatial proximity and classification similarity. We

explore two different methodologies to solve this problem.

The first approach is based on a latent structured support

vector machine model (LSSVM) [34] that uses a flexible

underlying graph as the latent variable and minimises a

high-order objective function [22] (this first approach is la-

belled FLSSVM), and the second approach consists of a

deep convolutional neural network (DCNN) [13] that min-

imises a high-order loss function using an implicit flexible

and latent underlying graph. This paper claims the follow-

ing contributions: 1) a new problem to be addressed by

computer vision researchers that has the potential to be sig-

nificant for cancer research, 2) a new LSSVM involving a

flexible latent underlying graph and a high-order loss func-

tion, 3) a new DCNN model that is able to use a flexible la-

tent underlying graph and minimise a high-order loss func-

tion, 4) a weakly annotated dataset of microscopy imag-

ing of cancer tissue 1, and 5) the first methodology that is

capable of automatically classifying oxygenation levels of

1This dataset can be downloaded from the page
http://cs.adelaide.edu.au/∼carneiro/humboldt/.
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MCSUs in multimodal microscopy images of cancer tissue.

For the experiments, we use a dataset of 89 pairs of IF and

HE images (from eight tumours), where 16 pairs of images

from two tumours are used for training a microvessel pixel

detector and classifier, and 73 pairs of images from six tu-

mours are used for training and testing the latent structured

output learning methodologies. Using a leave-one-tumour-

out cross validation experiment, we obtain a high corre-

lation between the manual and automated annotations in

terms of the number and proportion of MCSU types for both

methodologies, but observe that while the DCNN produces

more accurate quantitative results, FLSSVM produces bet-

ter qualitative results.

2. Methodology

We assume the availability of a dataset represented by

D = {(xn,vn,yn)}
N
n=1, where x = {x(IF),x(HE)} is the

input IF and HE images, with x(IF),x(HE) : Ω → R
3

(Ω ∈ R
2 denotes the image lattice), v : Ω → {0, 1} is a

mask that selects regions of the images that contain vital tu-

mour tissue, and y ∈ Y ⊆ N
3 denotes the annotation of the

number of normoxic (N), chronic hypoxic (CH) and acute

hypoxic (AH) MCSUs. Note that the vital tumour mask v

does not delineate precisely the tumour, which means that

necrotic (Ne) tissue can still be analysed, so it is important

to have the class Ne included in the methodology as a pos-

sible class for a detected MCSU, but note that this class is

not part of the manual annotation y.

The starting point for our proposed methodologies is the

detection and multi-class classification of microvessel pix-

els from multimodal images (see leftmost image of green

box in Fig. 4-(b)), which is detailed in Sec. 2.1. This is

followed by the explanation of FLSSVM in Sec. 2.2 and

DCNN in Sec. 2.3.

2.1. Microvessel Pixel Detection and Classification

An MCSU is defined as a vital tumour tissue area sup-

plied by a microvessel [15], which has a size of roughly

200× 200µm. Microvessel pixels are trivially detected us-

ing a threshold on the red channel of the IF image, given that

microvessels have a red color in this image modality. In par-

ticular, we define a variable t : Ω → {0, 1}, where t(i) = 1
if the red channel of the IF image at i ∈ Ω is larger than

τ = 0.1 (from the range [0, 1]), otherwise t(i) = 0 (the yel-

low dots in the first image of Fig. 4-(b) denote the microves-

sel pixels). It is also possible to build classifiers to clas-

sify a region of size 200× 200µm centred at a microvessel

pixel into four classes (N, CH, AH, Ne), using the sketches

of Fig. 2. Thus, we annotate a relatively large number of

200 × 200µm patches, represented by x(i), centred at mi-

crovessel pixel locations (i.e., image locations i ∈ Ω, where

t(i) = 1) for training the following multi-class classifiers:

1) Adaboost [37], 2) linear SVM [29], 3) random forest [5],

and 4) convolutional neural networks [13] (we choose these

four classifiers given their superior performances in a re-

Table 1. Mean and standard deviation of the errors produced by the

microvessel pixel classifiers in the 4-fold cross validation test [6].
Method Training Testing

Adaboost 0.132 ± 0.042 0.151 ± 0.053

RandForests 0.080 ± 0.024 0.130 ±0.041

linear SVM 0.183 ± 0.058 0.210 ± 0.071

CNN 0.047 ± 0.016 0.195 ± 0.055

cent study [8]). The features used by classifiers 1-3 above

are represented by a set of three histograms from the RGB

channels of the IF and HE images (one histogram extracted

from the centre of the region, another from the border and

the other histogram from the region in between the previ-

ous two - this accounts for the spatial distribution of the

red/blue/green areas in IF, as shown in Fig. 3) and for clas-

sifier 4, the features are the RGB values from the vectorized

patch (again, from IF and HE images). This process pro-

duces four classifiers

{P (k)(c|x(i), θ(1,k))}Kk=1, (1)

with K = 4, which are trained and tested with 16 pairs of IF

and HE images from 2 tumours (see Sec. 3), and produce the

errors in Tab. 1 in a 4-fold cross validation experiment, with

each run comprising 8 images for training and the remaining

8 images for testing (we have 1000 annotated patches per

image), where error is defined as the proportion of patches

x(i) that are misclassified [6]. We show the results from a

majority voting process of the four classifiers in the middle

image of Fig. 4-(b).

2.2. Flexible Latent Structure Support Vector Ma
chine (FLSSVM)

The FLSSVM formulation takes as input the microves-

sel pixel detection and classification from above, where

the goal is to build the graph G = (V, E) representing

the spatial distribution and classification of MCSUs in the

image, and use this graph as a hidden variable in a la-

tent structured SVM model that is learned using a high

order loss function. More specifically, the estimation of

G starts with the map t from Sec. 2.1, which represents

the locations of microvessel pixels (see the yellow dots

in the leftmost image of Fig. 4-(b)). These microvessel

pixels are used to form an initial graph, represented by

Gini = (Vini, E ini), with nodes v ∈ Vini labelled with

position iv ∈ R
2 (where t(iv) = 1), and classification re-

sult rv = [P (k)(cv|x, θ
(1,k))]cv∈{1,...,4},k∈{1,...,K} ∈ R

4K ,

(i.e., a vector with the responses from the microvessel pixel

classifiers in (1) ), and the edges E ini defined by Delaunay

triangulation (leftmost image in FLSSVM box from Fig. 4-

(b)). The estimation of G is based on a minimum spanning

tree (MST) clustering [10] that is run on Gini, where the

edge weight between nodes v and t (where v, t ∈ Vini)

is defined as ‖iv − it‖ × ‖rv − rt‖. This clustering al-

gorithm groups nearby microvessel pixels that have simi-

lar classification results into the same cluster C ⊂ Vini,

forming clusters {C1, ..., C|V|}, with each cluster denoting
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an MCSU. The MST clustering is run using a constraint

that guarantees that each cluster C has a size smaller than

h × 200µm, with h ∈ [0.5, 2], where this size is measured

by maxv,t∈C ‖iv − it‖ (note that h around 1 is related to the

definition that an MCSU has a diameter of around 200µm).

Therefore the graph G has nodes v ∈ V formed by the clus-

ters {Cv}
|V|
v=1, where the location of each node v is the cen-

troid of the nodes t ∈ Cv , and the edge set E is obtained

with Delaunay triangulation (middle of the FLSSVM box

of Fig. 4-(b)).
The feature vector Ψ(x,y, h) to be used by FLSSVM

(right of the FLSSVM box of Fig. 4-(b)) is formed from the
labelling of the graph G that depends on the annotation y
and the nodes v ∈ V , as follows:

minimise
M

− ‖M⊙P‖2F +

3∑

c=1

(
y(c)− ‖M⊙Ec‖

2
F

)2

subject to 1
⊤
4 M = 1

⊤
|V|, M ∈ {0, 1}4×|V|

,

(2)

where P ∈ R
4×|V|, with

P(c, v) =

K∏

k=1

∏

t∈Cv

P
(k)(c|x(it), θ

(1,k)) (3)

for c ∈ {1, 2, 3, 4} and v ∈ V , E1 =
[1|V|,0|V|,0|V|,0|V|]

⊤ ∈ {0, 1}4×|V| denotes a matrix with

ones in first row and zeros elsewhere (similarly for c = 2, 3
with ones in rows 2 and 3), 1N and 0N represent a size N
column vector of ones or zeros, ‖.‖F denotes the Frobenius

norm, ⊙ represents the Hadamard product, and the summa-

tion varies from 1 to 3 because y has the annotation for three

classes only. The optimisation in (2) maximises the label as-

signment probability and minimises the difference between

the number of MCSU classes in M and in the variable y.

We relax the second constraint to M ∈ [0, 1] to make the

original integer programming problem feasible. The result-

ing matrix M in (2) allows the labelling of each node v ∈ V
with mv(y) = argmaxc∈{1,...,4} M(c, v) (Fig. 4-(c)). No-

tice that the number of microvessel pixels detected is sig-

nificantly larger than the final number of MCSUs, as shown

in Fig. 4(b)-(c). This is because a microvessel is depicted

by a large set of red pixels in the IF image, and because of

the issues involved in the cutting and imaging of the tumour

tissue, as discussed in Sec. 1 and shown in Fig. 3.

The inference in the FLSSVM model is defined by:

(y∗, h∗) = arg max
y∈Y,h∈H

w⊤Ψ(x,y, h), (4)

where

Ψ(x,y, h) = [f
(1,1)
1 , ..., f

(1,1)
4 , ..., f

(1,K)
1 , ..., f

(1,K)
4 , f (2,1), ..., f (2,L)].

(5)
In (5), the unary features are defined as

f
(1,k)
c =

∑

v∈V

δ(mv(y)− c)φ(1,k)(c,x; θ(1,k)), (6)

where mv(y) ∈ {1, 2, 3, 4} denotes the label of node v ∈ V
from (2), δ(.) is the Dirac delta function and k ∈ {1, ...,K}

with φ(1,k)(c,x; θ(1,k)) = − logP (k)(c|xv, θ
(1,k)) repre-

senting the kth unary potential function in (1) that computes
the negative log probability of assigning class c to node v.
Also in (5), the binary features are defined as

f (2,l) =
∑

(v,t)∈E

φ(2,l)(cv , ct,x; θ
(2,l)), (7)

where l ∈ {1, ..., L}, φ(2,1)(cv, ct,x; θ
(2,l)) = (1 −

δ(cv − ct))g(cv, ct,x; θ
(2,l)) represents the binary poten-

tial function that computes the compatibility (indicated by

g(.)) between nodes v and t when their labels are dif-

ferent. For instance, we use the following binary po-

tential functions: 1) g(cv, ct,x; θ
(2,1)) = 1/‖iv − it‖

(where iv ∈ Ω denotes the position of node v in the im-

age), 2) g(cv, ct,x; θ
(2,2)) = 1/‖rv − rt‖ (where rv =

[P (k)(cv|x, θ
(1,k))]cv∈{1,...,4},k∈{1,...,K} ∈ R

4K is a vector

of the classifier responses for each class in node v); and 3)

g(cv, ct,x; θ
(2,3)) = 1/(‖iv − it‖ × ‖rv − rt‖) .

The learning process for FLSSVM is formulated by [14]:

minimise
w,{ξn}N

n=1

1

2
‖w‖2 +

C

N

N∑

n=1

ξn

subject to

(
max
hn∈H

w
⊤Ψ(xn,yn, hn)

)
−

(
w

⊤Ψ(xn, ŷn, ĥn)
)
≥ ∆(yn, ŷn)− ξn

ξn ≥ 0, ∀ŷn ∈ Y, ∀ĥn ∈ H, n = 1, ..., N,

(8)

where {ξn}
N
n=1 denotes the slack variables and

∆(yn, ŷn) =
∑3

c=1 |yn(c) − ŷn(c)| computes the

high-order loss between yn and ŷn. The learning algo-

rithm to solve (8) is the concave-convex procedure [35],

consisting of the following stages: 1) update the latent

variable hn for nth training sample using the latest estimate

for w, with maxhn∈H w⊤Ψ(xn,yn, hn); and 2) update

w with (8) with {hn}
N
n=1 from step 1. We use the cutting

plane algorithm [12] to estimate w, which iteratively

solves a loss augmented inference problem that inserts a

new constraint in the set of most violated constraints with

(ŷn, ĥn) = argmaxy∈Y,h∈H ∆(yn,y) + w⊤Ψ(x,y, h).
Both the loss augmented inference and the inference in (4)

are based on graph cuts (alpha expansion) [4], where the

high order loss function ∆(yn, ŷn) is integrated into graph

cuts based on the decomposition in [22].

2.3. Deep Convolutional Neural Network (DCNN)

The DCNN model uses as input the maps produced by

the four classifiers from (1), which means that the input has

20 channels (four classifiers, each with the output results for

five classes), defined by p
(k)
c : Ω → [0, 1],

p(k)
c (i) =

{
P (k)(c|x(i), θ(1,k)) if t(i) = 1
0 if t(i) = 0

(9)

where k ∈ {1, 2, 3, 4} represents the classifier index, c ∈
{1, 2, 3, 4}, and t(i) = 1 indicates a microvessel pixel at
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Figure 4. The methodologies proposed in this paper receive as input the IF and HE images (a), then microvessel pixels are detected and

classified (first two frames in (b)). Then for the FLSSVM (top) the graph G is built and labelled using the initial graph Gini in order

to represent the MCSUs and form Ψ(.) for (4) and (8). For DCNN, a series of convolutional layers applied to the microvessel pixel

classification images produce a final map containing the MCSUs and their classes. From the outputs of FLSSVM and DCNN, it is trivial to

obtain the final annotation in (c). This figure is better visualised with a pdf reader - please zoom in the IF/HE images to notice the MCSU

annotations.

location i ∈ Ω. We also define a new class labelled as Back-
ground and indexed by c = 0 in (9) with an input defined

by p
(k)
0 (i) = 1 − t(i). This fifth class is needed because

we minimise a softmax (cross-entropy) loss function with
a regularisation term at the last stage of the DCNN, as ex-
plained below. The output consists of the number of MC-
SUs classified as N, CH and AH, and a set of five binary
maps oc : Ω → {0, 1}, where c ∈ {1, ..., 4} denotes loca-
tions i ∈ Ω containing an MCSU classified as N, CH, AH
or Ne, and c = 0 represents locations without an MCSU
(i.e., background). Recall that the location and classifica-
tion of MCSUs are not available from the training set, so
we use the optimisation in (2) to produce a proxy annota-
tion M that can be used in the DCNN training, where the
annotation at location i ∈ Ω is defined by

m(i) =

{
argmaxc∈{1,...,4} M(c, v) , if ∃v ∈ V s.t. iv = i

0 , otherwise,

(10)

where v ∈ V , which is the set of nodes of graph G(V, E),
formed as explained in Sec. 2.2. Fig. 5 shows an example

of the inputs p
(k)
c (using only one of the classifiers k ∈

{1, ..., 4}) and outputs for the DCNN, represented by five
binary maps mc : Ω → {0, 1}, where mc(i) = 1 if m(i) =
c, and zero otherwise. The error function being minimised
in the training of the last layer of the DCNN is the following
cross-entropy loss regularised by a high-order loss:

ℓ =

(

−
∑

i∈Ω

(
C∑

c=0

δ(m(i)− c) log
exp(W⊤

c x(i))
∑C

l=0 exp(W
⊤
l x(i))

))

+

(
3∑

c=1

(
∑

i∈Ω

δ(m(i)− c)−
∑

i∈Ω

δ(m̂(i)− c)

)2)

,

(11)

where the first term is the usual cross-entropy loss, and the
second term is a high-order error that computes the squared

difference between the number of MCSUs annotated and
classified as N, CH and AH, where the DCNN classifi-
cation result at image location i ∈ Ω is represented by

m̂(i) = argmaxc∈{0,...,4}
exp(W⊤

c x(i))
∑

C
l=0 exp(Wlx(i))

(assume here

that x(i) represents the input from the previous layer). The
main issue with the loss function (11) is the computation of
the derivative of δ(m̂(i) − c), so we propose an approx-
imation, consisting of a softmax with a temperature pa-

rameter τ , as in δ̃(m̂(i) − c) =
exp

(

W
⊤
c x(i)

τ

)

∑

C
l=0 exp

(

W⊤

l
x(i)

τ

) , with

0 < τ << 1. This approximation allows for the computa-
tion of the following derivative used in the DCNN training:

∂ℓ

∂Wj

= −

∑

i∈Ω

x(i)

(
δ(m(i)− j)−

exp(W⊤
j x(i))

∑
l exp(W

⊤
l
x(i))

)
+

∑

i∈Ω

2x(i)

(
3∑

c=1

(
δ(m(i)− c)− δ̃(m̂(i)− c)

)
×




exp

(
W

⊤

c x(i)

τ

)

∑
l exp

(
W⊤

l
x(i)

τ

) − δ(c− j)


×

exp

(
W

⊤

j x(i)

τ

)

∑
l exp

(
W⊤

l
x(i)

τ

)
)
.

(12)

The DCNN model considered in this work consists of 6
convolutional layers with activation functions based on the

rectified linear unit (ReLU) [17], except for the last layer,

which uses the loss in (11), as shown in Fig. 4. The input

image comprises 4 × 5 channels with the five classes esti-

mated by four classifiers, and is resized to 100 × 100 and

normalized by subtracting the mean. Stages 1-6 use: 1) 10

(5× 5) filters, 2) 10 (5× 5) filters, 3) 50 (5× 5) filters, 4)

100 (5 × 5) filters, 5) 100 (5 × 5) filters, and 6) 5 (5 × 5)
filters. This produces an output with five channels (repre-

senting classes {0, ..., 4}) of size 80× 80. Training is based
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Figure 5. Inputs and outputs for the DCNN.

on backpropagation and inference consists of a feedforward

procedure [13].

3. Experimental Setup

The images used in the experiment is based on the

material prepared by Maftei et al. [15], comprising five

xenografted human squamous cell carcinoma lines of the

head and neck (FaDu), transplanted subcutaneously into

the right hind leg of mice. Each tumour cryosection was

scanned and photographed with AxioVision 4.7 and the

multidimensional and mosaix modules, where the IF images

were acquired using three stainings and then the cover slip

was removed to stain the same slice with HE to prepare the

HE image. For IF image, the green regions were obtained

with Pimonidazole to visualise hypoxia, red regions were

obtained with CD31 to visualise microvessels, and blue re-

gions were acquired with Hoechst 33342 to display perfu-

sion. This process generates a total of 89 pairs of IF and HE

images from eight tumours. The training of the microves-

sel pixel classifiers {P (k)(c|x(i), θ(1,k))}4k=1 in (1) uses 16

pairs of IF/HE images from two tumours, from which we

annotate 1000 microvessel pixels per image, according to

the approach described in Sec. 2.1, and the training of the

FLSSVM and DCNN models uses the remaining 73 pairs

of IF/HE images from six tumours, from which we have

manual annotations in terms of the final number of nor-

moxic, chronic hypoxic and acute hypoxic MCSUs. It is

worth noting that the location and individual classification

of MCSUs are not available in the manual annotation for

any of the images above. Finally, the IF and HE images

are registered [21] and downsampled to have a size close

to 1000 × 1000 pixels, such that the resolution is approx-

imately 10µm per pixel, and the vital tumour tissue seg-

mentation mask v is used to mask out the majority of the

necrotic regions of the images.

The experiment is based on a six-fold cross validation,

where we use the image pairs of five tumours to train and

the images from remaining left-out tumour to test (for each

of the six tumours). For the FLSSVM, the inference to

estimate y∗ and h∗ in (4) and the loss augmented infer-

ence in (8) to estimate ŷn and ĥn are based on graph cuts

(alpha-expansion) [4] using a set of possible values for h
in H = {0.5, 1, 1.5, 2}. Note that during inference, graph

cuts produces a labelling for the graph G, but we only take

the number of normoxic, chronic hypoxic and acute hy-

poxic MCSUs to form a vector ŷ ∈ N
3, which is subse-

quently used to build Ψ(x, ŷ, h) from the optimisation in

(2). For the DCNN training [31], we set temperature pa-

rameter τ = 0.01 in (12) and run the training for 100 epochs

using mini-batches of size 10, learning rate 0.001, and mo-

mentum 0.9.

The quantitative experiment assesses the correlation of

the number and proportion of MCSU classes (only for N,

CH and AH) between manual and estimated annotations

from the proposed FLSSVM and DCNN models in the six

test sets (for the six fold cross validation) with the Bland

Altman plots [1], which display the number of samples,

sum of squared error (SSE), Pearson r-value squared (r2),

linear regression, and p-value. Finally, we also report the

inference running time using an un-optimised Matlab code

running on a 2.3 GHz Intel Core i7 with 8GB of RAM and

Nvidia GeForce 650M.

4. Results

The Bland Altman plots for the proposed FLSSVM and

DCNN considering the number and proportion of MCSU

classes are shown in Figure 6. Note that with respect to

the number of MCSU classes, DCNN produces a correla-

tion coefficient r2 = 0.85 and error SSE = 49, while

FLSSVM has r2 = 0.79 and SSE = 73, but both method-

ologies produce comparable results when considering the

proportion of MCSU classes (measured by the percentage

of each of the classes N, CH and AH), with r2 ≈ 0.85
and SSE ≈ 9. For the four graphs in Figure 6, the p-

values obtained is significantly smaller than 0.01, show-

ing strong correlation results. An additional experiment

has been conducted using the loss function in (11) with-

out the high-order loss regularisation, which means that the

loss is the usual un-regularised cross-entropy loss. This ex-

periment serves the purpose of testing the validity of the

proposed high-order loss for training the DCNN, and the

results show that all MCSUs are classified as background

(i.e., c = 0 in Sec. 2.3) with this un-regularised loss func-

tion, which makes sense since this is the most dominant la-

bel in the DCNN training. Fig. 7 shows the manual and esti-

mated annotations of 10 different (test) images produced by

the proposed methodologies, allowing a qualitative compar-

ison between them not only in terms of the final annotation

numbers, but also with respect to the distribution of MCSU

classes in the image. Finally, the inference running time of

each stage of both methods are as follows (mean average

from all test images): microvessel detection (0.03s), mi-

crovessel classification (157s), FLSSVM - from microves-

sels to Ψ(x,y, h) (26s), FLSSVM inference in (4) (3.5s),

and DCNN inference (0.35s). Thus, the running time for
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a) FLSSVM (number of MCSU classes) b) FLSSVM (percentage of MCSU classes)

c) DCNN (number of MCSU classes) d) DCNN (percentage of MCSU classes)

Figure 6. Bland Altman graphs of the class numbers (left) and proportion (right) results for the FLSSVM (top) and DCNN (bottom).

FLSSVM is 186.53s and for DCNN is 157.38s.

5. Discussion and Conclusion

Both FLSSVM and DCNN show quantitative results

with relatively large correlation coefficients and small errors

and p-values << 0.01, indicating strong correlation results

with the manual annotations. Nevertheless, comparing the

results produced by the two proposed methodologies, we

can conclude that quantitatively, DCNN produces more ac-

curate results than FLSSVM. However, when looking at the

MCSU classification in Fig. 7, we notice that the classifica-

tion produced by FLSSVM is more coherent with the visual

appearance of the MCSU classes shown in Fig. 2. For ex-

ample, in all IF images of Fig. 7, it is expected that large re-

gions stained in red/blue are annotated with normoxic MC-

SUs , which is clearly the case for FLSSVM, but not for

DCNN. Similarly, regions in IF images showing a transition

between blue to green should show chronic hypoxic MC-

SUs, also clearly seen in the results by FLSSVM, but not

by DCNN. Furthermore, green regions in IF images, must

display a relatively large number of acute hypoxic MCSUs,

which is the case for FLSVMM, but not for DCNN. Fi-

nally, necrotic regions appear mostly in the boundaries of

the necrotic mask (seen in the image as regions within the

tumour tissue without any MCSUs), which is the case for

FLSSVM, but not for DCNN. Also, the distribution of MC-

SUs produced by FLSSVM seems to be more adequate,

since the MCSUs are more equally spaced instead of be-

ing clustered in some regions of the image. For instance,

notice the top region of case 4, where FLSSVM detects

a string of MCSUs, while DCNN misses that and instead

clusters the MCSUs away from this top region. We believe

that the DCNN does not produce adequate qualitative re-

sults because of the lack of a spatial prior for the MCSUs,

such as the one used in the FLSSVM model. Nevertheless,

in terms of the number and proportion of MCSU classes, it

is indeed possible to notice the superiority of DCNN, par-

ticularly in cases 1-4 of Fig. 7. It is important to reiterate the

validity of the cross-entropy loss function regularised by the

proposed high-order loss in (11) given the experiment dis-

cussed in Sec. 4 that shows that all MCSUs are classified as

background when the DCNN model is trained with an un-

regularised loss function. Finally, the DCNN shows a faster

inference, where the main bottleneck is the classification of

microvessel pixels, given the large number of microvessels

detected from the original IF image.
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