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Abstract

This paper presents a new wavefront propagation

method for dealing with the classic Eikonal equation. While

classic Dijkstra-like graph-based techniques achieve the so-

lution in O(M logM), they do not approximate the unique

physically relevant solution very well. Fast Marching Meth-

ods (FMM) were created to efficiently solve the continu-

ous problem. The proposed approximation tries to maintain

the complexity, in order to make the algorithm useful in a

wide range of contexts. The key idea behind our method is

the creation of ’mini wave-fronts’, which are combined to

propagate the solution. Experimental results show the im-

provement in the accuracy with respect to the state of the

art, while the average computational speed is maintained

in O(M logM), similar to the FMM techniques.

1. Introduction

In computer vision, a large number of applications re-

quire the definition of a method for solving the optimal-

trajectory problem. In early stages, graph-search algorithms

were used to solve the issue. For instance, A* and F* algo-

rithms were applied to compute distance maps [4] or road

detection [17]. Both methods suffer from ’metrication er-

rors’, since these algorithms consider the image as a graph,

where each pixel is a node. As Cohen and Kimmel [8]

clearly demonstrate, these methods always cause an error

in some direction, that will be invariant to the grid resolu-

tion.

To overcome this issue, Cohen and Kimmel [8] pro-

posed to deal with the continuous optimal trajectory prob-

lem, whose motion is governed by a partial differential

equation known as the Hamilton-Jacobi equation. In com-

puter vision, when dealing with path planning, a Hamilton-

Jacobi formula called the Eikonal equation is found to be

very useful. It is a first-order nonlinear PDE whose solu-

tion tracks the motion of a monotonically advancing front.

Several methods have been proposed to solve this equation,

being the Fast Marching Method (FMM), the Fast Sweep-

ing Method (FSM) and their variants the most stable and

consistent ones.

More complex algorithms can solve a more general

equation, the static Hamilton-Jacobi equation. That is the

case of the Ordered Upwind Method [22], or, more recently,

by the works of Bornemann et al. [5] and Mirebeau [18].

This equation introduces the concept of anisotropic forces,

where the direction of the motion is taken into account. Al-

though recent approaches in medical imaging deals with

this problem [14, 19, 16, 3], they deal with a simplified ver-

sion.

Eikonal Equation Solvers: The FMM introduced by

Sethian [20] defines a wavefront propagation method that

is consistent with the continuous case, while introducing

order in the propagation causes this one-pass algorithm

to maintain the classic graph search algorithm complexity,

O(M logM), being M the number of nodes in the model.

Several approaches improve either the complexity (O(M)
in [15, 23]) or the accuracy of the model [21, 7, 10, 9, 13, 1].

The Fast Sweeping Method (FSM) [25] was also intro-

duced to solve the Eikonal equation. It is an iterative algo-

rithm that removes the FMM one-pass condition. The algo-

rithm finds the numerical solution by alternating sweepings

in predetermined directions, while computing the solution

using a nonlinear upwinding method. Similar to the FMM,

it is possible to increase its accuracy by introducing high

order schemes into the finite difference upwinding scheme

[24].

Both FMM and FSM solve the Eikonal equation using

the same upwinding procedure, providing the same results.

They only differ in the technique used to decide which node

should be updated. According to [13], the main advantage

of using the FMM over existing techniques is that the tech-

nique keeps order in the selection of which point should be

computed next.

In this paper we present a new front propagation method

to solve the optimal-trajectory problem in cartesian grids.

Based in the idea of front-propagation techniques, we
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develop an algorithm, the Wavefront Marching Method

(WMM), that is able to increase the accuracy of the so-

lution, while the computational complexity is reduced to

O(M logM) in the average case. To do that, we take ad-

vantage of the direction of the speed motion, instead of us-

ing a pure isotropic algorithm. Our idea is to create “mini”

propagation sections that are used to update the wavefront.

This paper is organized as follows: section 2 explains the

fast marching methods, showing its limitations; section 3

describes our WMM methodology; finally, section 4 intro-

duces experimental results and section 5 offers some con-

clusions.

2. Fast Marching Method

The Eikonal equation is a problem defined by the equa-

tion

|∇T | = F, T (Γ0) = 0, (1)

This problem describes the evolution of a curve as a

function of time (T ), with speed F normal to any given

point in the space. p0 is the initial position, where the prop-

agation starts. The speed of motion has no orientation in-

formation, that is, it is an isotropic scenario. To introduce

order in the selection of the grid points during the computa-

tion of the solution, the algorithm takes into account the fact

that the time T at any point in the grid only depends on its

neighbors with smaller values. To do that, each grid point is

tagged with 3 possible labels, as explained in Algorithm 1.

Graphically, the Trial set contains all the nodes in the grid

that have, at least, one neighbour tagged as Alive, which are

the nodes that already have its minimum value. Finally, the

Far set contains all the nodes that are not reached yet by

using the upwinding procedure.

2.1. Multistencils Fast Marching Method

The two key points in this algorithm are the selection of

the neighborhood and the Ti,j computation. Several meth-

ods were proposed to improve the FMM. In this section we

are going to explain one of the most accurate, the Mul-

tistencils Fast Marching Method (MSFM) [13]. Whereas

classical FMM uses a 4-connected neighbors, MSFM also

includes the diagonal ones, increasing the number of neigh-

bors to 8.

The computation of the T value is divided in two dif-

ferent equations, depending if the stencil is aligned with

the natural coordinate system (that is, horizontal and verti-

cal), called S1 or if it is aligned with the diagonal neighbors

(S2). Moreover, two different finite difference schemes can

be used, first or second.

S1 Stencil Computation: Assuming we have a regular

grid, the first-order equation of this stencil aligned with the

Algorithm 1 Fast Marching method (FMM)

Definitions:

• Alive set: points of the grid for which T has been computed

and it will not be modified.

• Trial set: next points in the grid to be examined (4-

connectivity) for which a estimation of T is computed using

the points in alive set.

• Far set: the remaining points of the grid for which there is

not an estimate for T .

Initialization:

• For each point in the grid, let Ti,j = ∞ (large positive

value).

Put all points in the far set.

• Set the start point (i, j) = p0 to be zero:

Up0 = 0, and put it in the trial set.

Marching loop:

• Select p = (imin, jmin) from trial with the lowest value of

T .

• Put p in alive and remove it from the trial set.

• For each of the neighboring grid points (k, l) of

(imin, jmin):

– If (k, l) belongs to far set, then put (k, l) in trial set.

– If (k, l) is not in alive set, then compute Tk,l.

natural coordinate system is

2
∑

v=1

max

(

Ti,j − Tv

h
, 0

)2

= F 2
i,j , (2)

where h is the distance between nodes and

T1 = min(Ti−1,j , Ti+1,j), (3)

T2 = min(Ti,j−1, Ti,j+1). (4)

In a similar way, for a second-order approximation of the

directional derivative, this equation must be solved:

2
∑

v=1

max

(

3

2h
[Ti,j − Tv], 0

)2

= F 2
i,j , (5)

where

T1 = min

(

Ti−1,j − Ti−2,j

3
,
Ti+1,j − Ti+2,j

3

)

, (6)

T2 = min

(

Ti,j−1 − Ti,j−2

3
,
Ti,j+1 − Ti,j+2

3

)

. (7)

In both cases we have a quadratic equation to solve, re-

sulting in two solutions. However, we must check the solu-

tion satisfies the causality relationship, that is, the new value

is higher than the value of the neighbors used to compute it.
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Figure 1. Mini-wavefront sections. Starting at any pixel, eight

different sections can be computed, using an 8-connectivity. Each

wavefront section center is defined by a neighbor node.

S2 Stencil Computation: The diagonal equations are

similar to the S1 stencil. The first-order equation is

2
∑

v=1

max

(

Ti,j − Tv√
2h

, 0

)2

= F 2
i,j , (8)

where

T1 = min(Ti−1,j−1, Ti+1,j+1), (9)

T2 = min(Ti+1,j−1, Ti−1,j+1), (10)

and the second-order equation:

2
∑

v=1

max

(

3

2
√
2h

[Ti,j − Tv], 0

)2

= F 2
i,j , (11)

where

T1 = min

(

Ti−1,j−1 − Ti−2,j−2

3
,
Ti+1,j+1 − Ti+2,j+2

3

)

,

(12)

T2 = min

(

Ti+1,j−1 − Ti+2,j−2

3
,
Ti−1,j+1 − Ti−2,j+2

3

)

.

(13)

3. Wavefront Marching Method

In order to solve the Eikonal equation, we propose

a different approach called Wavefront Marching Method

(WMM), where ’mini-wavefront’ sections are created and

combined to obtain the unique physically relevant solution.

Since our system is developed to be used in the computer

vision field, regular 8-connectivity grid is used.

Wavefront Structure: Eight different wavefront sections

can be defined, as we show in Fig. 1. Each section has an as-

sociated pixel node as its center, and other two nodes point-

ing the mini-wavefront boundaries. The boundary nodes are

neighbors to both the center node and the node which starts

the propagation.

We define S(p) = {(p, Tc); (pl, Tl); (pr, Tr)} as the

mini wavefront core information, where (p, Tc) is the po-

sition and the tentative value in the section center, respec-

tively, with (pl, Tl) and (pr, Tr) their equivalent in the mini

wavefront boundaries. Interpolation techniques can also be

used to calculate T (p) along the wavefront. For a more

detailed explanation, see Section 3.3. Finally, we define

TS(p)(pn) as the tentative value in pn if the solution is prop-

agated from the wavefront section S(p).

Algorithm 2 Wavefront Marching Method (WMM)

Definitions:

• Trial set: pairs (S,R(S)), consisting in the next mini wave-

front sections S ready to be evaluated by using the value

R(S), which is an estimation of the quality of the section.

• Far set: the remaining points of the grid without a calculated

estimate for U .

Initialization:

• For each point in the grid, let Ui,j = ∞ (large positive

value). Put all points in the far set.

• Set the start point (i, j) = p0 to be zero:

Up0 = 0, create the starting pair (S(p0).R(S(p0))) =
({(p0, 0); (p0, 0); (p0, 0)}, 0) and put it in the Trial set.

Marching loop:

• Select S(p) = {(p, Tc); (pl, Tl); (pr, Tr)} from Trial with

the lowest value of R and remove it from the set.

• For each 8-connectivity neighbor pn, compute the mini

wavefront sections S(pn) and their quality measure

R(S(pn)) using the upwinding criterion, and put them into

the Trial set.

Algorithm: In algorithm 2 a description of the method is

presented. In essence, WMM differs from the FMM by the

use of mini wavefront sections instead of nodes to create the

minimal action surface U . In our case, the Alive set contains

all the mini wavefront sections S that were examined.

During this procedure, when the algorithm adds new

mini wavefront sections to the Trial set, we have to deter-

mine the quality measure R(S(p)). This is done by using

the equation

R(S(p)) = min
ps∈S(p)

T (ps) + ‖ps − p‖ǫ, (14)

where ǫ is an infinitesimal value and ps ∈ {p, pl, pr}, the

nodes contained within the wavefront section. R(S(p))
is, basically, the lower value in the mini wavefront section

S(p). The inclusion of the infinitesimal value is related to

the idea of introducing order in the selection of the wave-

front sections. To illustrate this idea we can think of the

following example: two sections, S(pa), and S(pb), with

the same lower value. In the first section, the lower value
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is located into its center node, while in the second one is

located into one of its boundaries. The inclusion of the

infinitesimal value guarantees that WMM chooses first the

mini wavefront sections which lower value is placed closest

to its node center.

In the final step, when adding the mini wavefront section

S(pn) into the Trial set, we have to check the minimal ac-

tion surface value T (pn). If TS(p)(pn) < T (pn), we have

to follow these steps:

1. Put T (pn) = TS(p)(pn).

2. Remove any other mini wavefront section in the Trial

set where its node center is pn.

3. Include the pair (R(S(pn)), S(pn)) into the Trial set.

3.1. Tentative value computation

Assume we have a wavefront section S(p) =
{(p, Tc); (pl, Tl); (pr, Tr)} and a reaching point ps. In or-

der to compute the given tentative value TS(p)(ps), clas-

sical FMM techniques use a linear approximation to com-

pute the accumulated cost, which weak solution is given by

Godunov [12] (Both FMM and MSFM use finite difference

schemes, resulting in the Eq. 2 or its variants). However,

this technique estimates the traveling cost using the speed

of motion F given in ps, resulting in a constant function.

Similar to the idea exposed in [2], we compute the solution

by approximating the integral between the reaching point

and the wavefront section in the direction of the motion.

Thus, we define two values, one per each wavefront section

T l
S(p)(ps) = min

0≤t≤1
T (plt) + ‖ps − plt‖

F (plt) + F (ps)

2
,

(15)

where plt = (1− t)p+ tpl, and

T r
S(p)(ps) = min

0≤t≤1
T (prt ) + ‖ps − prt‖

F (prt ) + F (ps)

2
,

(16)

where prt = (1 − t)p + tpr. Thus, the tentative value is

defined as

TS(p)(ps) = min(T l
S(p)(ps), T

r
S(p)(ps)). (17)

Thus, the key of this model is the way of selecting an

appropriate t value and how to compute its respective T (pt)
and F (pt) values. In this work, we present three different

techniques to solve the minimization problem for t selec-

tion. Furthermore, four different interpolation techniques

are evaluated to estimate both T and F values.

3.2. Minimization Techniques

To select the t value that minimizes Eqs. 15 and 16, we

propose 3 different approximations that will be evaluated in

experimental section.

p

sr

�

wavefront tangent

r + t(r - s)

Figure 2. Modified Hopf-Lax technique. r and s are the endpoints

of a wavefront section, whereas p is the point to be updated. Note

that for values t < 0 or t > 1, t must be bounded to fit within the

wavefront section.

Golden Section Search: Since our method solves the

Eikonal equation by propagating monotone advancing

fronts, it is clear to assume that the interpolation values

within a wavefront segment results in a strictly unimodal

function. The golden section search is a classic technique

for finding the extreme (minimum in this case) of this kind

of functions. However, this technique requires an iterative

search over the segment, reducing the computational speed

of the algorithm. Thus, we propose the additional evalua-

tion of other non-iterative approaches for finding the best t

value.

Modified Hopf-Lax Formula: A way to update T (pt)
in the Eikonal equation using the Hopf-Lax formula is ex-

plained in [5]. In our case, we are going to modified this

formula to take advantage of the interpolation techniques

used in our wavefront section. Let p be the node we are go-

ing to update, and r, s the endpoints of a wavefront section,

as explained in Fig. 2. Having d = s − r, the t value is

computed by solving the equation

At2 +Bt+ C = 0, (18)

where

A = d2y cos
2 δ − d2x sin

2 δ,

B = 2
[

(ry − py)dy cos
2 δ − (rx − px)dx sin

2 δ
]

,

C = (ry − py)
2 cos2 δ − (rx − px)

2 sin2 δ, (19)

cos δ =
T (s)− T (r)

‖s− r‖ ,

sin δ =
√

1− cos2 δ.

In essence, the formula calculates the intersection point

between the wavefront segment and the line starting in p

which follows the direction of the wavefront motion (cos δ).

Note that it must be narrowed, that is, t ∈ [0, 1].
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p

sr r + t(r - s)

cos Fp

Figure 3. Gradient technique. r and s are the endpoints of a

wavefront section, whereas p is the point to be updated. Note that

for values t < 0 or t > 1, t must be bounded to fit within the

wavefront section.

Reached point

Wavefront

Target frontwave
boundary points

Horizontal interpolation

Vertical interpolation

Figure 4. Interpolation techniques during an upwinding proce-

dure. 4 different interpolation segments are created.

Gradient Formula: To solve the Eikonal equation, clas-

sical trajectory solver algorithms using isotropic forces tend

to simplify the speed of motion to its absolute value, as

shown in Eq. 1. However, the direction of the speed of

motion can be used to obtain the t value, as shown in Fig.

3. Similar to the modified hopf-lax formula, we select the

intersection point between the wavefront segment and the

line starting in p which follows the direction of the speed of

motion. Formally, let F = (Fx, Fy) be the speed of motion,

the formula is given by

t = max

(

min

(

Fy(rx − px)− Fx(ry − py)

Fxdy − Fydx
, 1

)

, 0

)

.

(20)

3.3. Interpolation Techniques

As mentioned in Algorithm 2, with every mini wave-

front section S(pi,j), we update the p neighbors using an

8-connectivity. Since we are using a regular grid, we have

four different segments with 3 values each, as exposed in

Fig 4. Thus, 4 different interpolation segments are defined.

Four different interpolation techniques were developed to

compute T (pt). Since the computation differs whether the

wavefront is in the corner or not, below we are going to ex-

plain how to compute T (pt) in both cases, that is, pi+1,j

and pi+1,j+1. F (pt) value computation is analogue.

Linear Interpolation: T (pt) value computation is de-

fined as

T l
S(pi+1,j)

(pt) = (1− t)Ti+1,j + tTi+1,j−1, (21)

T r
S(pi+1,j)

(pt) = (1− t)Ti+1,j + tTi+1,j+1 (22)

for the wavefront centered in pi+1,j and

T l
S(pi+1,j+1)

(pt) = (1− t)Ti+1,j+1 + tTi+1,j , (23)

T r
S(pi+1,j+1)

(pt) = (1− t)Ti+1,j+1 + tTi,j+1 (24)

when it is centered in pi+1,j+1.

Quadratic Interpolation: T (pt) value computation

value is defined as

T d
s (pt) = adst

2 + bdst+ cds , (25)

where d = {l, r} and s = {S(pi+1,j), S(pi+1,j+1)}. In our

examples,

alS(pi+1,j)
= Ti+1,j−1 − blS(pi+1,j)

− Ti+1,j ,

blS(pi+1,j)
=

Ti+1,j−1 − Ti+1,j+1

2
,

arS(pi+1,j)
= Ti+1,j+1 − brS(pi+1,j)

− Ti+1,j , (26)

brS(pi+1,j)
=

Ti+1,j+1 − Ti+1,j−1

2
,

cdS(pi+1,j)
= Ti+1,j

for the wavefront centered in xi+1,j and

alS(pi+1,j+1)
= Ti+1,j−1 − blS(pi+1,j+1)

− Ti+1,j+1,

blS(pi+1,j+1)
=

4(Ti+1,j − Ti+1,j+1)− Ti+1,j−1

2
,

arS(pi+1,j+1)
= Ti+1,j+1 − brS(pi+1,j+1)

− Ti+1,j+1, (27)

brS(pi+1,j+1)
=

4(Ti,j+1 − Ti+1,j+1)− Ti−1,j+1

2
,

cdS(pi+1,j+1)
= Ti+1,j+1

in the upper-right corner case.

Spline Interpolation: A cubic approximation can be

achieved using piecewise interpolation. To do so, we pro-

pose to use a natural spline. Unfortunately, the problem

of the spline interpolation is that monotonicity is not pre-

served, causing the interpolation to have lower values than

its endpoints. Negative values can also be achieved, as it

can be seen in Fig. 5. Thus, we have to check if the result is

higher than any of its endpoints. If not, linear interpolation

is used to compute the T (pt) value.

Monotone Piecewise Cubic Hermite Interpolation: As

mentioned before, monotonicity is not preserved using

spline interpolation. A different way to solve this issue is

the use of a Monotone Piecewise Cubic Hermite Interpola-

tion [11]. The model is similar to the classic Cubic Hermite

Interpolation. It only differs in the tangents computation.
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Figure 5. Interpolation techniques over a limit situation. Spline

technique produces negative results, which is forbidden in this

kind of algorithms. On the contrary, PCHIP preserves monotonic-

ity.

4. Experimental Results

To make a significant evaluation of our method, we

tested it against state-of-the-art methods using two exper-

imental approaches present in the literature. In first place,

we provide some analytical results that shows both the ac-

curacy and the velocity of our method. Finally, we also pro-

vide a segmentation experiment, which is more related to

the computer vision field. The code and test of both meth-

ods can be downloaded in our webpage1.

Analytical Results: In order to test their accuracy, differ-

ent speed models are performed, where the exact analytical

solution (which we call Ta) is known. The speed is derived

from the following equation

F1 = ∇Ta (28)

for our WMM model using gradient minimization, and

F2 = ∇|Ta| (29)

for the other models. In the following tables, our WMM

follows this nomenclature: the minimization technique is

mentioned in the superscripts:

• g: gradient

• h: modified hopf-lax

• s: golden section search

On the other hand, interpolation techniques are mentioned

in the subscript, as follows:

• l: linear

• q: quadratic

• s: spline

• p: pchip

1Available at https://github.com/braisCB/WMM/

As first experiment, we compute the accuracy of the

models under a speed function that corresponds to an mov-

ing front from the starting point (x0, y0) with an unit speed,

and we compare the results against two well-known tech-

niques, the 2nd order FMM version (FMM2), and its most

recent variant, the 2nd order MSFM (MSFM2) developed

Hassouna and Farag [13]. To make a fair comparison, both

methods were implemented in the same language, c++. The

size of the grid is 101 × 101 and hx = hy = 1. In Ta-

ble 1 some error norms are shown from different starting

points. Although the linear interpolation using hopf-lax

minimization is not able to overcome the MSFM method,

all the other interpolation techniques can overcome them.

Note that, contrary to the FMM and the MSFM versions

we are testing, our method does not use any second order

scheme.

Our model is also capable to work with anisotropic grids.

In Table 2 we test our method using a linear speed function,

using different grid configurations, whether it is isotropic

(hx = hy = 1) or not (hx = 0.1 and hy = 0.2). As

our model approximates the integral between the reaching

point and the wavefront section, the use of anisotropic grids

does not affect the behavior of the model, unlike MSFM.

It is also noticeable that the gradient minimization and the

golden section search obtains similar results. This proves

gradient minimization as a good choice to be used, since

the difference in the computational cost between these two

techniques is really high.

Finally, we test our algorithm against a recent technique

developed by Appia and Yezzi [2]. Using the test they pro-

vide against two different cosine functions, which is shown

in Table 3, our algorithm is capable to find similar results,

whereas the computational cost of our algorithm is lower.

Furthermore, we found that our method, using quadratic in-

terpolation, performs even faster than the MSFM. This is a

remarkable achievement, since our method clearly outper-

forms MSFM accuracy. As in [2], the computational time

is achieved on a 500 × 500 grid. It was measured using a

computer with a 3.20 GHz Processor.

We conclude that our method not only obtains the best

accuracy results in most of the provided tests, but also is

one of the fastest. To our knowledge, the WMM has the

best balance between accuracy and efficiency. Note that, al-

though our implementation has a O(M logM) complexity,

it can be reduced to O(M) by implementing the trial set as

an untidy priority queue [23].

Image Segmentation: We test our methodology in a com-

puter vision scenario related with medical imaging in or-

der to illustrate the applicability of these techniques in real-

world problems. In particular, techniques are tested for seg-

mentation of a brain tumor in a brain CT image, as shown
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Table 1. Error norms of the equation
√

(x− x0)2 + (y − y0)2 from different source points of a grid of size 101× 101.

Time T (p)
√

(x− x0)2 + (y − y0)2

Source Point(s) (51, 51) (1, 1) (21, 24) and (65, 74)

Method/error L1 L2 L∞ L1 L2 L∞ L1 L2 L∞

FMM2 0.35278 0.14826 0.58027 0.34672 0.14823 0.58630 0.30025 0.11017 0.53609
MSFM2 0.06927 0.00771 0.21550 0.05882 0.00444 0.21233 0.07458 0.00985 0.42054

WMMh
l 0.11823 0.01978 0.27562 0.13979 0.02829 0.33306 0.13118 0.02359 0.30854

WMMh
q 0.01510 0.00035 0.03493 0.05378 0.00507 0.12078 0.01395 0.00030 0.04375

WMMh
s 0.03217 0.00170 0.09128 0.05943 0.00616 0.16179 0.03330 0.00182 0.10126

WMMh
p 0.01585 0.00039 0.03716 0.05004 0.00343 0.09171 0.02215 0.00118 0.22218

Table 2. Error norms of the equation
(x−x0)

2

100
+ (y−y0)

2

20
from an anisotropic grid of size 101× 101 with (51, 51) as source point.

Time T (p)
(x− x0)

2

100
+

(y − y0)
2

20
(hx, hy) (1, 1) (0.1, 0.2)

Method/error L1 L2 L∞ L1 L2 L∞

FMM2 0.11405 0.01317 0.12011 0.38843 0.24317 0.09889
MSFM2 0.04725 0.00250 0.10465 0.01754 0.02293 0.05277
WMM

g

l 0.09001 0.00995 0.17887 0.00254 9.07e− 6 0.00856
WMMg

q 0.01667 0.00057 0.12465 0.00415 2.96e− 5 0.02811
WMMg

s 0.02584 0.00085 0.05493 0.00071 6.32e− 7 0.00151
WMMg

p 0.01999 0.00248 0.47550 0.00027 2.77e− 7 0.00476
WMMs

l 0.08928 0.00980 0.17922 0.00221 6.58e− 6 0.00659
WMMs

q 0.01189 0.00040 0.11776 0.00279 1.38e− 5 0.00922
WMMs

s 0.02159 0.00060 0.04451 0.00059 4.80e− 7 0.00138

WMMs
p 0.01876 0.00277 0.49845 0.00035 3.80e− 7 0.00526

FMM 2nd order

(a) FMM2

MSFM 2nd order

(b) MSFM2

WMM spline hopf−lax

(c) WMMg
s

WMM spline gradient

(d) WMMh
s

Figure 7. A comparison of segmentation starting in two different points (red and green contours). Each initial point is marked with a cross.

2nd order FMM and MSFM fail to provide an accurate segmentation. Its accuracy depends on the chosen starting point. On the contrary,

our method obtains good results in every situation.

in Fig. 6. We use as speed of motion

Fx(p) =
cos(∇It)

1 + |∇I|2 ,

Fy(p) =
sin(∇It)

1 + |∇I|2 , (30)

where I is the intensity image. This equation helps the fast

marching methods to propagate the solution along the zones

with higher gradients. Once T is computed, we detect the

saddle points as described in [8]. A saddle point is a point

such that it is possible to reach the initial point by using

back-propagation over two different paths. This allows us

to obtain a closed contour. Unfortunately, the number of

saddle points is really high in this kind of image. We select

only one saddle point: the one that minimizes the Chan-

Vese energy [6].

We deliberately decide to use this example because of

its simplicity. Nonetheless, 2nd order methods fail to pro-

vide a good solution. Fig 7 shows the overlay results of two

different segmentations using two different starting points.

2nd order FMM and MSFM fail to provide the same re-

sult in both segmentations, because the 2nd order scheme

check in both algorithm is too relaxed. Classic higher or-

der techniques require the values that are two pixels away

to be lower than the immediate neighbor. The condition is

used to make sure the value in the immediate neighbor was

obtained by using the two pixels away pixel, which hap-

pens in ideal scenarios, where the direction of the motion
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Table 3. Error norms from a grid of size 50× 50 with (26, 26) as source point, and ordered by their computational times. 1 Times obtained

using a slower machine [2]. (Only for ordering purposes). Our method is highlighted with blue rows. The best accuracies are presented in

bold type.

Time T (p) 1− cos(x−x0

20 ) cos(y−y0

20 ) 1− cos(x−x0

20 ) cos(y−y0

10 ) Time (s)

Method/error L1 L2 L∞ L1 L2 L∞

FMM2 2.46e− 2 6.73e− 4 0.0380 4.37e− 2 2.07e− 3 0.1060 0.23
Tsitsiklis 2.14e− 2 4.89e− 4 0.0281 3.81e− 2 1.57e− 3 0.0825 (0.26)1

WMMg
q 1.00e− 3 1.93e− 6 0.0032 1.69e− 3 2.64e− 5 0.0811 0.32

WMM
g
l 1.45e− 3 2.76e− 6 0.0032 3.87e− 3 4.16e− 5 0.0852 0.33

WMMh
q 1.77e− 2 4.90e− 4 0.0452 1.83e− 2 4.97e− 4 0.1076 0.36

WMMh
l 1.64e− 2 4.36e− 4 0.0438 1.84e− 2 5.03e− 4 0.1075 0.37

MSFM2 2.36e− 2 6.07e− 4 0.0349 4.23e− 2 1.94e− 3 0.1007 0.37
WMMg

p 4.40e− 4 3.28e− 7 0.0015 1.31e− 3 2.05e− 5 0.0749 0.40
WMMh

p 1.64e− 2 4.35e− 4 0.0437 1.82e− 2 4.97e− 4 0.1075 0.43
WMMg

s 2.98e− 4 1.38e− 7 0.0008 1.71e− 3 2.68e− 5 0.0819 0.44
WMMh

s 1.64e− 2 4.35e− 4 0.0438 1.83e− 3 4.97e− 4 0.1075 0.44
Linear8 2.25e− 3 6.82e− 6 0.0046 4.46e− 3 3.43e− 5 0.0596 (0.52)1

Bilinear8 2.74e− 3 9.42e− 6 0.0052 5.01e− 3 4.10e− 5 0.0607 (0.65)1

IsoLinear8 2.25e− 3 6.82e− 6 0.0046 4.03e− 3 3.11e− 5 0.0596 (0.91)1

WMMs
q 8.97e− 4 1.68e− 6 0.0040 1.23e− 3 2.04e− 5 0.0803 0.93

WMMs
l 1.50e− 3 2.98e− 6 0.0034 3.70e− 3 3.67e− 5 0.0819 1.16

WMMs
p 4.58e− 4 3.45e− 7 0.0012 1.76e− 3 1.86e− 5 0.0785 1.31

Up8 2.99e− 4 1.96e− 7 0.0014 1.54e− 3 7.81e− 6 0.0289 (1.421)
UpSG 1.96e− 3 4.15e− 6 0.0035 1.20e− 2 1.94e− 4 0.0566 (1.421)

WMMs
s 2.70e− 4 1.19e− 7 0.0008 1.41e− 3 2.14e− 5 0.0813 2.00

Figure 6. Brain test image.

has no sudden changes. However, when dealing with im-

ages this condition is too relaxed, since every edge is just

a sudden orientation change, causing 2nd or even 3rd order

schemes behavior to choose as values that not belongs to the

same propagation orientation. On the contrary, our method,

even using interpolation techniques, is able to preserve the

same shape, since only the immediate neighbors are taking

into account in the updating procedure, making the WMM

a more suitable algorithm to be used in the image domain.

5. Conclusion

In this paper we present a new methodology for improv-

ing the existent marching method techniques under mono-

tonically advancing fronts. Our approach creates wave-

front sections that are used to update each neighbor’s value.

We introduce three different variants to solve the updat-

ing procedure. We also show that interpolation techniques

can reduce the error of the algorithm. Experimental re-

sults demonstrate how our method achieve the highest bal-

ance between robustness and velocity, usually outperform-

ing state-of-the-art in both parameters simultaneously.

As a future development, we plan to extend our algo-

rithm to work with anisotropic forces in a similar way the

Ordered Upwind Method does. We think an extension in

our model enables it to solve the classical static Hamilton-

Jacobi equation without significantly increasing the compu-

tational cost of our model. Furthermore, we would like to

extend our algorithm to work with 3D images.
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