
Active Object Localization with Deep Reinforcement Learning

Juan C. Caicedo

Fundación Universitaria Konrad Lorenz

Bogotá, Colombia

juanc.caicedor@konradlorenz.edu.co

Svetlana Lazebnik

University of Illinois at Urbana Champaign

Urbana, IL, USA

slazebni@illinois.edu

Abstract

We present an active detection model for localizing ob-

jects in scenes. The model is class-specific and allows an

agent to focus attention on candidate regions for identi-

fying the correct location of a target object. This agent

learns to deform a bounding box using simple transforma-

tion actions, with the goal of determining the most spe-

cific location of target objects following top-down reason-

ing. The proposed localization agent is trained using deep

reinforcement learning, and evaluated on the Pascal VOC

2007 dataset. We show that agents guided by the proposed

model are able to localize a single instance of an object af-

ter analyzing only between 11 and 25 regions in an image,

and obtain the best detection results among systems that do

not use object proposals for object localization.

1. Introduction

The process of localizing objects with bounding boxes

can be seen as a control problem with a sequence of steps to

refine the geometry of the box. Determining the exact loca-

tion of a target object in a scene requires active engagement

to understand the context, change the fixation point, identify

distinctive parts that support recognition, and determine the

correct proportions of the box.

During the last decade, the problem of object detection

or localization has been studied by the vision community

with the goal of recognizing the category of an object, and

identifying its spatial extent with a tight bounding box that

covers all its visible parts [10, 26]. This is a challenging

setup that requires computation and analysis in multiple im-

age regions, and a good example of a task driven by active

attention.

Important progress for improving the accuracy of ob-

ject detectors has been recently possible with Convolutional

Neural Networks (CNNs), which leverage big visual data

and deep learning for image categorization. A successful

model is the R-CNN detector proposed by Girshick et al.

[12, 25], which combines object proposals and CNN fea-

�1 ��  �� − 1 �� + 1 �� 

… … … … 

Actions 

States 

Steps 

Sequence of attended regions to localize the object 

Figure 1. A sequence of actions taken by the proposed algorithm

to localize a cow. The algorithm attends regions and decides how

to transform the bounding box to progressively localize the object.

tures to achieve state-of-the-art results in the Pascal and Im-

ageNet benchmarks. Several other works have proposed

the use of high-capacity CNNs to directly predict bound-

ing boxes under a regression setting also with good results

[27, 28, 9].

In this work, we propose a class-specific active detec-

tion model that learns to localize target objects known by

the system. The proposed model follows a top-down search

strategy, which starts by analyzing the whole scene and then

proceeds to narrow down the correct location of objects.

This is achieved by applying a sequence of transformations

to a box that initially covers a large region of the image and

is finally reduced to a tight bounding box. The sequence

of transformations is decided by an agent that analyzes the

content of the currently visible region to select the next best

action. Each transformation should keep the object inside

the visible region while cutting off as much background as

possible. Figure 1 illustrates some steps of the dynamic de-

cision process to localize a cow in an image.

The proposed approach is fundamentally different from

most localization strategies. In contrast to sliding windows,

our approach does not follow a fixed path to search objects;

instead, different objects in different scenes will end up in

different search paths. Unlike object proposal algorithms,

candidate regions in our approach are selected by a high-

level reasoning strategy instead of following low-level cues.

Also, compared to bounding box regression algorithms, our

approach does not localize objects following a single, struc-

12488



tured prediction method. We propose a dynamic attention-

action strategy that requires to pay attention to the contents

of the current region, and to transform the box in such a way

that the target object is progressively more focused.

To stimulate the attention of the proposed agent, we use

a reward function proportional to how well the current box

covers the target object. We incorporate the reward func-

tion in a reinforcement learning setting to learn a localiza-

tion policy, based on the DeepQNetwork algorithm [23]. As

a result, the trained agent can localize a single instance of

an object in about 11 steps, which means that the algorithm

can correctly find an object after processing only 11 regions

of the image. We conducted a comprehensive experimental

evaluation in the challenging Pascal VOC dataset, obtain-

ing competitive results in terms of precision and recall. In

what follows, we present and discuss the components of the

proposed approach and provide a detailed analysis of exper-

imental results.

2. Previous Works

Object localization has been successfully approached

with sliding window classifiers. A popular sliding window

method, based on HOG templates and SVM classifiers, has

been extensively used to localize objects [11, 21], parts of

objects [8, 20], discriminative patches [29, 17] and even

salient components of scenes [24]. Sliding windows are re-

lated to our work because they are category-specific local-

ization algorithms, which is also part of our design. How-

ever, unlike our work, sliding windows make an exhaustive

search over the location-scale space.

A recent trend for object localization is the generation of

category independent object proposals. Hosang et al. [15]

provide an in depth analysis of ten object proposal meth-

ods, whose goal is to generate the smallest set of candi-

date regions with the highest possible recall. Substantial

acceleration is achieved by reducing the set of candidates in

this way, compared to sliding windows. Nonetheless, ob-

ject detection based on proposals follows the same design

of window-based classification on a set of reduced regions,

which is still large (thousands of windows) for a single im-

age that may contain a few interesting objects.

Several works attempt to reduce the number of evaluated

regions during the detection process. For instance, Lam-

pert et al. [18] proposed a branch-and-bound algorithm to

find high-scoring regions only evaluating a few locations.

Recently, Gonzalez-Garcia et al. [13] proposed an active

search strategy to accelerate category-specific R-CNN de-

tectors. These methods are related to ours because they try

to optimize computational resources for localization. Also

related is the work of Divvala et al. [7], which uses context

to determine the localization of objects.

Visual attention models have been investigated with the

goal of predicting where an observer is likely to orient the

gaze (see [3] for a recent survey). These models are gener-

ally based on a saliency map that aggregates low-level fea-

tures to identify interesting regions. These models are de-

signed to predict human fixations and evaluate performance

with user studies [33], while our work aims to localize ob-

jects and we evaluate performance in this task.

There is recent interest in attention capabilities for vi-

sual recognition in the machine learning community. Xu et

al. [35] use a Recurrent Neural Network (RNN) to generate

captions for images, using an attention mechanism that ex-

plains where the system focused attention to predict words.

Mnih et al. [22] and Ba et al. [2] also used RNNs to select a

sequence of regions that need more attention, which are pro-

cessed at higher resolution for recognizing multiple charac-

ters. Interestingly, these models are trained with Reinforce-

ment Learning as we do; however, our work uses a simpler

architecture and intuitive actions to transform boxes.

3. Object Localization as a Dynamic Decision

Process

We cast the problem of object localization as a Markov

decision process (MDP) since this setting provides a for-

mal framework to model an agent that makes a sequence

of decisions. Our formulation considers a single image as

the environment, in which the agent transforms a bound-

ing box using a set of actions. The goal of the agent is to

land a tight box in a target object that can be observed in

the environment. The agent also has a state representation

with information of the currently visible region and past ac-

tions, and receives positive and negative rewards for each

decision made during the training phase. During testing,

the agent does not receive rewards and does not update the

model either, it just follows the learned policy.

Formally, the MDP has a set of actions A, a set of states

S, and a reward function R. This section presents details of

these three components, and the next section presents tech-

nical details of the training and testing strategies.

3.1. Localization Actions

The set of actions A is composed of eight transforma-

tions that can be applied to the box and one action to ter-

minate the search process. These actions are illustrated in

Figure 2, and are organized in four sub-sets: actions to move

the box in the horizontal and vertical axes, actions to change

scale, and actions to modify aspect ratio. In this way, the

agent has four degrees of freedom to transform the box dur-

ing any interaction with the environment.

A box is represented by the coordinates in pixels of its

two corners: b = [x1, y1, x2, y2]. Any of the transformation

actions make a discrete change to the box by a factor relative

to its current size in the following way:

αw = α ∗ (x2 − x1) αh = α ∗ (y2 − y1) (1)

2489



Right Left Up Down Bigger Smaller Fatter Taller Trigger 

Horizontal moves Vertical moves Scale changes Aspect ratio changes 

Figure 2. Illustration of the actions in the proposed MDP, giving 4

degrees of freedom to the agent for transforming boxes.

where α ∈ [0, 1]. Then, the transformations are obtained

by adding or removing αw or αh to the x or y coordinates,

depending on the desired effect. For instance, a horizontal

move to the right adds αw to x1 and xy , while decreasing

aspect ratio subtracts αw from x1, and adds it to x2. Note

that the origin in the image plane is located in the top-left

corner.

We set α = 0.2 in all our experiments, since this value

gives a good trade-off between speed and localization ac-

curacy. In early exploration experiments we noticed that

smaller values make the agent slower to localize objects,

while larger values make it harder to place the box correctly.

Finally, the only action that does not transform the box

is a trigger to indicate that an object is correctly localized

by the current box. This action terminates the sequence of

the current search, and restarts the box in an initial position

to begin the search for a new object. The trigger also mod-

ifies the environment: it marks the region covered by the

box with a black cross as shown in the final frame of the top

two examples in Figure 6. This mark serves as a inhibition-

of-return (IoR) mechanism by which the currently attended

region is prevented from being attended again. IoR mech-

anisms have been widely used in visual attention models

(see [16] for a review) to suppress the attended location and

avoid endless attractions towards the most salient stimulus.

3.2. State

The state representation is a tuple (o, h), where o is a

feature vector of the observed region, and h is a vector with

the history of taken actions. The set of possible states S is

very large as it includes arbitrary boxes from a large set of

images, and is expanded with all the combinations of ac-

tions that lead to those boxes. Therefore, generalization is

important to design an effective state representation.

The feature vector o is extracted from the current region

using a pre-trained CNN following the architecture of Zeiler

and Fergus [36]. Any attended region by the agent is warped

to match the input of the network (224× 224) regardless of

its size and aspect ratio, following the technique proposed

by Girshick et al. [12]. We also expand the region to include

16 pixels of context around the original box. We forward the

region up to the layer 6 (fc6) and use the 4,096 dimensional

feature vector to represent its content.

The history vector h is a binary vector that informs which

actions have been used in the past. Each action in the his-

tory vector is represented by a 9-dimensional binary vector,

where all values are zero except the one corresponding to

the taken action. The history vector encodes 10 past ac-

tions, which means that h ∈ R
90. Although h is very low-

dimensional compared to o, it has enough energy to inform

what has happened in the past. This information demon-

strated to be useful to stabilize search trajectories that might

get stuck in repetitive cycles, improving average precision

by approximately 3 percent points. The history vector also

works better than appending a few more frames to the state

representation with the additional benefit of increasing di-

mensionality by a negligible factor.

3.3. Reward Function

The reward function R is proportional to the improve-

ment that the agent makes to localize an object after select-

ing a particular action. Improvement in our setup is mea-

sured using the Intersection-over-Union (IoU) between the

target object and the predicted box at any given time. More

specifically, the reward function is estimated using the dif-

ferential of IoU from one state to another. The reward func-

tion can be estimated during the training phase only because

it requires ground truth boxes to be calculated.

Let b be the box of an observable region, and g the

ground truth box for a target object. Then, IoU between b
and g is defined as IoU(b, g) = area(b ∩ g)/area(b ∪ g).

The reward function Ra(s, s
′) is granted to the agent

when it chooses the action a to move from state s to s′.
Each state s has an associated box b that contains the at-

tended region. Then, the reward is as follows1:

Ra(s, s
′) = sign (IoU(b′, g)− IoU(b, g)) (2)

Intuitively, equation 2 says that the reward is positive if

IoU improved from state s to state s′, and negative other-

wise. This reward scheme is binary r ∈ {−1,+1}, and ap-

plies to any action that transforms the box. Without quan-

tization, the difference in IoU is small enough to confuse

the agent about which actions are good or bad choices. Bi-

nary rewards communicate more clearly which transforma-

tions keep the object inside the box, and which ones take the

box away the target. In this way, the agent pays a penalty

for taking the box away the target, and is rewarded to keep

the target object in the visible region until there is no other

transformation that improves localization. In that case, the

best action to choose should be the trigger.

The trigger has a different reward scheme because it

leads to a terminal state that does not change the box, and

thus, the differential of IoU will always be zero for this ac-

tion. The reward for the trigger is a thresholding function

of IoU as follows:

1Notice that the ground truth box g is part of the environment and can-

not be modified by the agent.

2490



Rω(s, s
′) =

{

+η if IoU(b, g) ≥ τ
−η otherwise

(3)

where ω is the trigger action, η is the trigger reward, set

to 3.0 in our experiments, and τ is a threshold that indicates

the minimum IoU allowed to consider the attended region

as a positive detection. The standard threshold for object

detection evaluation is 0.5, but we used τ = 0.6 during

training to encourage better localization. A larger value for

τ has a negative effect in performance because the agent

learns that only clearly visible objects are worth the trigger,

and tends to avoid truncated or naturally occluded objects.

Finally, the proposed reward scheme implicitly considers

the number of steps as a cost because of the way in which

Q-learning models the discount of future rewards (positive

and negative). The agent follows a greedy strategy, which

prefers short sequences because any unnecessary step pays

a penalty that reduces the accumulated utility.

4. Finding a Localization Policy with Rein-

forcement Learning

The goal of the agent is to transform a bounding box

by selecting actions in a way that maximizes the sum of

the rewards received during an interaction with the environ-

ment (an episode). The core problem is to find a policy

that guides the decision making process of this agent. A

policy is a function π(s) that specifies the action a to be

chosen when the current state is s. Since we do not have

the state transition probabilities and the reward function is

data-dependent, the problem is formulated as a reinforce-

ment learning problem using Q-learning [31].

In our work, we follow the deep Q-learning algorithm

recently proposed by Mnih et al. [23]. This approach es-

timates the action-value function using a neural network,

and has several advantages over previous Q-learning meth-

ods. First, the output of the Q-network has as many units

as actions in the problem. This makes the model efficient

because the input image is forwarded through the network

only once to estimate the value of all possible actions. Sec-

ond, the algorithm incorporates a replay-memory to collect

various experiences and learns from them in the long run. In

this way, transitions in the replay-memory are used in many

model updates resulting in greater data efficiency. Third,

to update the model the algorithm selects transitions from

the replay-memory uniformly at random to break short-term

correlations between states. This makes the algorithm more

stable and prevents divergence of the parameters. After

learning the action-value function Q(s, a), the policy that

the agent follows is to select the action a with the maximum

estimated value.

Size: 224 pixels 

4096 

units 

1024 

units 

1024 

units 

9 

actions 

Layer 6 Layer 1 Layer 2 Output 

Pre-trained  CNN Deep QNetwork 

action 

history 

Input region 

5 conv 

layers 

Figure 3. Architecture of the proposed QNetwork. The input re-

gion is first warped to 224 × 224 pixels and processed by a pre-

trained CNN with 5 convolutional layers and 1 fully connected

layer. The output of the CNN is concatenated with the action his-

tory vector to complete the state representation. It is processed by

the Q-network which predicts the value of the 9 actions.

4.1. Qlearning for Object Localization

We use a Q-network that takes as input the state repre-

sentation discussed in section 3.2 and gives as output the

value of the nine actions presented in section 3.1. We train

category specific Q-networks following the architecture il-

lustrated in Figure 3. Notice that in our design we do not

learn the full feature hierarchy of the convolutional net-

work; instead, we rely on a pre-trained CNN.

Using a pre-trained CNN has two advantages: First,

learning the Q function is faster because we need to up-

date the parameters of the Q-Network only, while using the

deep CNN just as a feed-forward feature extractor. Second,

the hierarchy of features is trained with a larger dataset,

leveraging generic discriminative features in our method.

Learning the full hierarchy of features is possible under the

deep Q-learning framework, and we hypothesize that per-

formance could be improved because the learned features

would be adapted for the localization task instead of classi-

fication. However, this mainly requires larger object detec-

tion datasets, so we leave this possibility for future work.

4.2. Training Localization Agents

The parameters of the Q-network are initialized at ran-

dom. Then, the agent is set to interact with the environment

in multiple episodes, each presenting a different training im-

age. The policy followed during training is ǫ-greedy [31],

which gradually shifts from exploration to exploitation ac-

cording to the value of ǫ. During exploration, the agent se-

lects actions randomly to observe different transitions and

collects a varied set of experiences. During exploitation,

the agent selects actions greedily according to the learned

policy, and learns from its own successes and mistakes.

In our work, exploration does not proceed with random

2491



actions. Instead, we use a guided exploration strategy fol-

lowing the principles of apprenticeship learning [1, 6, 19],

which is based on demonstrations made by an expert to the

agent. Since the environment knows the ground truth boxes,

and the reward function is calculated with respect to the IoU

with the current box, we can identify which actions will give

positive and negative rewards. Then, during exploration, the

agent is allowed to choose one random action from the set

of positive actions 2. Notice that for one particular state s,

there might be multiple positive actions because there is no

single path to localize an object. Using this strategy, the

algorithm terminates in a small number of epochs.

The ǫ-greedy training strategy is run for 15 epochs, each

completed after the agent has had interaction with all train-

ing images. During the first 5 epochs, ǫ is annealed linearly

from 1.0 to 0.1 to progressively let the agent use its own

learned model. After the fifth epoch, ǫ is fixed to 0.1 so the

agent adjusts the model parameters from experiences pro-

duced by its own decisions. The parameters are updated

using stochastic gradient descent and the back-propagation

algorithm, and we also use dropout regularization [30].

4.3. Testing a Localization Agent

Once an agent is trained with the procedure described

above, it learns to attend regions that contain objects of the

target category. Since we do not know the number of ob-

jects present in a single image beforehand, we let the agent

run for a maximum of 200 steps, so only 200 regions are

evaluated per test image. An alternative to stop the search

after a fixed number of steps is to include an extra termina-

tion action to let the agent indicate when the search is done.

However, additional actions introduce new errors and make

the problem more difficult to learn. We simplified the model

with a minimum set of actions to act locally in time.

At each step, the agent makes a decision to transform the

current box or selects the trigger to indicate that an object

has been found. When the trigger is used, the search for

other objects continues from a new box that covers a large

portion of the image. The search for objects is restarted

from the beginning due to two possible events: the agent

used the trigger, or 40 steps passed without using the trig-

ger. We found that 40 steps are enough to localize most

objects, even the smaller ones, and when it takes longer is

usually because the agent is stuck searching in an ambigu-

ous region. Restarting the box helps to take a new perspec-

tive of the scene. The very first box covers the entire scene,

and after any restarting event, the new box has a reduced

size set to 75% of the image size, and is placed in one of the

four corners of the image always in the same order (from

top-left to right-bottom).

2Or any action if this set of positive actions is empty

5. Experiments and Results

We evaluated the performance of the proposed model us-

ing the Pascal VOC dataset. The localization method is

sensitive to the amount of data used for training, and for

that reason, we used the combined training sets of 2007 and

2012. Using this joint set, results improved nearly 10% rel-

ative to using either one alone. We evaluate performance on

the test set of VOC 2007 and report our findings under this

setting.

5.1. Evaluation of Precision

As an object detector, our algorithm can be evaluated in

two modes: 1) All attended regions (AAR), a detector that

scores all regions processed by the agent during a search

episode. This is useful to consider well-localized regions

that were not explicitly marked by the agent as detections.

2) Terminal regions (TR), a detector that only considers re-

gions in which the agent explicitly used the trigger to in-

dicate the presence of an object. In both cases, we use an

external linear SVM trained with the same procedure as R-

CNN (with hard-negative mining on region proposals using

the VOC2012 training set) to score the attended regions.

This classifier is useful to rerank candidate regions assum-

ing that our model generates object proposals. The scores

computed by the Q-network are not useful for object detec-

tion evaluation because they estimate the value of actions

instead of discriminative scores.

We compare performance with other methods recently

proposed in the literature. Table 1 presents detailed, per-

category Average Precision (AP) for all systems. The only

baseline method that does not use CNN features is the DPM

system [11]. MultiBox [9] and DetNet [32] predict bound-

ing boxes from input images using deep CNNs with a re-

gression objective, and the work of Zou et al. [38] adapts

the regionlets framework with CNN features too. Finally,

we compare with the R-CNN system [12] configured with a

network architecture that has the same number of layers as

ours, and without bounding box regression.

Overall, the R-CNN system still has the best perfor-

mance and remains as a strong baseline. The major draw-

back of R-CNN is that it relies on a large number of object

proposals to reach that performance, and demands signifi-

cant computing power. MultiBox and Regionlets attempt to

leverage deep CNNs in more efficient ways, by using only

a few boxes to make predictions or avoiding re-computing

features multiple times. Our approach also aims to localize

objects by attending to a small number of regions, and this

has an impact in performance. However, our result is sig-

nificantly better than the other baseline methods, reaching

46.1 MAP, while the next best reaches 40.2 MAP.

The main difference in performance between the TR and

the ARR settings is that the first one only ranks regions ex-

plicitly marked by the agent with the trigger action. The

2492



Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP

DPM [11] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

MultiBox [9] 41.3 27.7 30.5 17.6 3.2 45.4 36.2 53.5 6.9 25.6 27.3 46.4 31.2 29.7 37.5 7.4 29.8 21.1 43.6 22.5 29.2

DetNet [32] 29.2 35.2 19.4 16.7 3.7 53.2 50.2 27.2 10.2 34.8 30.2 28.2 46.6 41.7 26.2 10.3 32.8 26.8 39.8 47.0 30.5

Regionlets [38] 44.6 55.6 24.7 23.5 6.3 49.4 51.0 57.5 14.3 35.9 45.9 41.3 61.9 54.7 44.1 16.0 28.6 41.7 63.2 44.2 40.2

Ours TR 57.9 56.7 38.4 33.0 17.5 51.1 52.7 53.0 17.8 39.1 47.1 52.2 58.0 57.0 45.2 19.3 42.2 35.5 54.8 49.0 43.9

Ours AAR 55.5 61.9 38.4 36.5 21.4 56.5 58.8 55.9 21.4 40.4 46.3 54.2 56.9 55.9 45.7 21.1 47.1 41.5 54.7 51.4 46.1

R-CNN [12] 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

Table 1. Average Precision (AP) per category in the Pascal VOC 2007 test set. The DPM system is the only baseline that does not use CNN

features. R-CNN is the only method that uses object proposals. Our system is significantly better at localizing objects than other recent

systems that predict bounding boxes from CNN features without object proposals. Numbers in bold are the second best result per column,

and underlined numbers are the overall best result.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# proposals

re
c
a

ll 
a

t 
Io

U
 t

h
re

s
h

o
ld

 0
.5

0

 

Bing

EdgeBoxes

Ours

SelectiveSearch

Gaussian

Sliding window

Uniform

Figure 4. Recall as a function of the number of proposed regions.

Solid lines are state-of-the-art methods, and dashed lines are sim-

ple baselines. Our approach is significantly better at early recall:

only 10 proposals per image reach 50% recall. The tendency

is also fundamentally different: overall recall does not depend

strongly on a large number of proposed regions. Notice that our

approach is not a category-independent region proposal algorithm.

difference in performance is 2.2 percent points, which is

relatively small, considering that TR proposes an average

of only 1.3 regions per category per image (including true

and false positives in all test images). Both settings require

the same computational effort3, because the agent has to at-

tend the same number of regions. However, TR is able to

identify which of those regions are promising objects with

very high accuracy.

5.2. Evaluation of Recall

All the regions attended by the agent can be understood

as object proposal candidates, so we evaluate them follow-

ing the methodology proposed by Hosang et al. [15]. Over-

all, our method running for 200 steps per category, pro-

3The cost of the classifier is negligible compared to the cost of feature

extraction and analysis.

0 25 50 75 100 
0 

100 

200 

612 

Mean: 25.6 

94% of the 

distribution 

270 

No action required for 11% of the detections 

Number of actions 
F

re
q

u
e

n
cy

 

5,147 total 

detections 

 

Median: 11 

Figure 5. Distribution of detections explicitly marked by the agent

as a function of the number of actions required to reach the object.

For each action, one region in the image needs to be processed.

Most detections can be obtained with about 11 actions only.

cesses a total of 4,000 candidates per image reaching 71%

of recall. This is between 10 and 25 points less recall than

most methods achieve at a similar number of proposals.

However, the recall of our proposals is significantly supe-

rior for the top 100 candidates per image.

For this evaluation we score attended regions using the

Q-values predicted by the agent, and we add a large con-

stant only to those regions for which the agent used the

trigger. This gives priority to regions that the agent con-

siders correctly localized objects. We use this scoring func-

tion instead of the classification scores for fairness in the

evaluation [4], since other methods rank proposals using

an estimated objectness score, and high Q-values can be

interpreted in the same way. Figure 4 shows the number

of proposals vs. recall for several baseline proposal meth-

ods. In this evaluation, we include selective search [34],

BING [5] and EdgeBoxes [37]. The results show that our

method reaches 50% of recall with just 10 proposals per im-

age, while all the other methods are around or below 30%.

This evaluation emphasizes two important points: first,

our method uses category-specific knowledge to find ob-

jects, and this is clearly an advantage over category-

independent proposals, but is also a drawback since objects

that cannot be recognized given the feature representation

are never localized. Second, the main challenge of our ap-

proach is to improve overall recall, that is, to localize ev-

2493



Figure 6. Example sequences observed by the agent and the ac-

tions selected to focus objects. Regions are warped in the same

way as they are fed to the CNN. Actions keep the object in the

center of the box. More examples in the supplementary material.

Last row: example Inhibition of Return marks placed during test.

ery single object without missing any instance. Notice that

more candidates do not improve recall as much as other

methods do, so we hypothesize that fixing overall recall will

improve early recall even more.

To illustrate this result further, we plot the distribution of

correctly detected objects according to the number of steps

necessary to localize them in Figure 5. The distribution has

a long tail, with 83% of detections requiring less than 50

steps to be obtained, and an average of 25.6. A more robust

statistic for long-tailed distributions is the median, which

in our experiments is just 11 steps, indicating that most of

the correct detections happen around that number of steps.

Also, the agent is able to localize 11% of the objects imme-

diately without processing more regions, because they are

big instances that occupy most of the image.

5.3. Qualitative Evaluation

We present a number of example sequences of regions

that the agent attended to localize objects. Figure 7 shows

two example scenes with multiple objects, and presents

green boxes where a correct detection was explicitly marked

by the agent. The plot to the left presents the evolution

of IoU as the agent transforms the bounding box. These

plots show that correct detections are usually obtained with

a small number of steps increasing IoU with the ground

truth rapidly. Points of the plots that oscillate below the

minimum accepted threshold (0.5) indicate periods of the

search process that were difficult or confusing to the agent.

Figure 6 shows sequences of attended regions as seen by

the agent, as well as the actions selected in each step. No-

tice that the actions chosen attempt to keep the object in the

center of the box, and also that the final object appears to

have normalized scale and aspect ratio. The top two exam-

1 

2 

3 
4 

2 

3 

4 

1 

Time (actions) 

In
te

rs
e

ct
io

n
 O

v
e

r 
U

n
io

n
 

0.5 

1.0 

0.0 
35 45 82 141 

2 

3 

4 1 

Time (actions) 

In
te

rs
e

ct
io

n
 O

v
e

r 
U

n
io

n
 

0.5 

1.0 

0.0 
9 23 86 179 

1 

2 

3 4 

Figure 7. Examples of multiple objects localized by the agent in a

single scene. Numbers in yellow indicate the order in which each

instance was localized. Notice that IoU between the attended re-

gion and ground truth increases quickly before the trigger is used.

2 

1 

Time (actions) 

In
te

rs
e

ct
io

n
 O

v
e

r 
U

n
io

n
 

0.5 

1.0 

0.0 
7 32 200 

1 

2 
3 

3 

correct 

error 

missed 

4 

1 

Time (actions) 

In
te

rs
e

ct
io

n
 O

v
e

r 
U

n
io

n
 

0.5 

1.0 

0.0 
15 33 100 200 

6 

2 

3 
5 

1 2 3 4 
5 6 

123 147 

correct error missed 

Figure 8. Examples of images with common mistakes that include:

duplicated detections due to objects not fully covered by the IoR

mark, and missed objects due to size or other difficult patterns.

ples also show the IoR mark that is placed in the environ-

ment after the agent triggers a detection. The reader can find

more examples and videos in the supplementary material.

5.4. Error Modes

We also evaluate performance using the diagnostic tool

proposed by Hoiem et al. [14]. In summary, object local-

ization is the most frequent error of our system, and it is

sensitive to object size. Here we include the report of sensi-

tivity to characteristics of objects in Figure 9, and compare

to the R-CNN system. Our system is more sensitive to the

size of objects than any other characteristic, which is mainly

explained by the difficulty of the agent to attend cluttered re-

2494






