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Abstract

Rotation search has become a core routine for solving

many computer vision problems. The aim is to rotationally

align two input point sets with correspondences. Recently,

there is significant interest in developing globally optimal

rotation search algorithms. A notable weakness of global

algorithms, however, is their relatively high computational

cost, especially on large problem sizes and data with a high

proportion of outliers. In this paper, we propose a novel

outlier removal technique for rotation search. Our method

guarantees that any correspondence it discards as an out-

lier does not exist in the inlier set of the globally optimal

rotation for the original data. Based on simple geometric

operations, our algorithm is deterministic and fast. Used as

a preprocessor to prune a large portion of the outliers from

the input data, our method enables substantial speed-up

of rotation search algorithms without compromising global

optimality. We demonstrate the efficacy of our method in

various synthetic and real data experiments1.

1. Introduction

Given two point sets X = {xi}
N
i=1 and Y = {yi}

N
i=1

in 3D, we aim to find the 3D rotation R that aligns them,

i.e., such that Rxi ≈ yi for all i. Here, each (xi,yi) is

a pair of matching points. If there are no false matching

points or outliers, the best rotation in the least squares sense

can be obtained analytically [10, 1]. Otherwise, we seek the

rotation that agrees with as many of the pairs as possible

maximize
R, I⊆H

|I|

subject to ∠(Rxi,yi) ≤ ǫ, ∀i ∈ I,
(1)

where agreement is up to the inlier threshold ǫ. Here, H =
{1, . . . , N} indexes the set of all point matches, and ∠(·, ·)
denotes the angular distance. The optimal R∗ is consistent

with the largest possible subset I∗ ⊆ H of the data. Note

that given I∗ we can easily find R∗ and vice versa, thus, we

may quote I∗ or R∗ as the solution without ambiguity.

1Implementation is provided in the supplementary material.

RANSAC [6] can be applied to approximately solve (1).

Candidate rotations are hypothesized from randomly sam-

pled minimal subsets of two point matches [10] and evalu-

ated. Although RANSAC is very efficient, in general it does

not provide the optimal solution I∗. Formally, let Ĩ ⊆ H
be the result of RANSAC. We have that |Ĩ| ≤ |I∗|, and in

general Ĩ * I∗, i.e., genuine inliers may be discarded.

Hartley and Kahl [7] pioneered branch-and-bound (BnB)

as a viable technique for rotation search. BnB systemati-

cally partitions and prunes the rotation space until the so-

lution is found. Their algorithm was extended to include a

robust formulation [2] such as the one we use in (1). Un-

like RANSAC, BnB is guaranteed to find the globally op-

timal result. The solution of many computer vision prob-

lems have benefited from BnB rotation search as a subrou-

tine [5, 7, 15, 9, 13]; such as essential matrix and cam-

era pose estimation, hand-eye calibration, panoramic image

stitching, and point cloud registration.

Another class of global algorithms [12, 4] leverage on

the fact that the solution to (1) is equal to the solution of

the same problem on a subset ofH of size at most d, where

d is 3 for rotation search. The result R∗ is found by enu-

merating all
(

N
p

)

subsets of H for all p ≤ d and solving

each subset for R analytically (note that this differs from

“standard” RANSAC which solves for R via least squares

on subsets of size two). These algorithms have been demon-

strated successfully on similar applications.

A general weakness of global algorithms, however, is

their high computational cost, especially for data with large

sizes N and high outlier contamination rates. In the case

of [4], the number of unique subsets to test is enormous

even for moderate N (e.g., for N = 500 there are ≥ 20
million 3-subsets). An outlier rate in excess of 95% is also

frequently encountered in practice, e.g., in point cloud reg-

istration where 3D keypoint detection and matching tech-

niques [17, 14, 18] are much less accurate than their 2D

counterparts such as SIFT and SURF. These factors lead to

significant runtimes of BnB rotation search.

Our contribution is a novel guaranteed outlier removal

technique for rotation search. Specifically, our method is

able to reduce H to a subset H′ of point matches, in a way
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that any (xi,yi) discarded by reducingH toH′ is a genuine

outlier, i.e., any (xi,yi) that is removed does not belong to

I∗. More formally, our method ensures that I∗ ⊆ H′ ⊆ H,

which is a result RANSAC cannot guarantee.

We pose our technique as an efficient preprocessor to

the rotation search problem (1). Based on simple geometric

operations, our method is deterministic and fast. By aggres-

sively reducing the population of true outliers (almost 90%
can be eliminated), our method significantly accelerates the

global algorithms. For example, using our method before

BnB reduces the overall runtime by an order of magnitude.

Note that the global solution to the reduced data H′ equals

the global solution I∗ to the originalH.

Our work is closest in spirit to Svärm et al. [16], who

proposed a technique for camera localization from 2D-3D

correspondences. In their work, the usage of gravitational

sensors reduces camera localization to a 3DOF problem

(2D translation and 1D rotation). Their approach also con-

ducts a guaranteed outlier rejection scheme for the 2D-3D

point matches, before a globally optimal algorithm is in-

voked. Since our target problem (3DOF rotation search)

differs from Svärm et al.’s, the core geometric motivations

and operations of the two works are vastly different.

2. Guaranteed outlier removal

Using the angular distance renders the norm of the points

irrelevant. Henceforth, we take all the points to have unit

norm. The rotation search problem (1) can be rewritten as

maximize
k∈H

fk, (2)

where fk is defined as the maximum objective value of the

subproblem Pk, with k = 1, . . . , N :

maximize
Rk, Ik⊆H\{k}

|Ik|+ 1

subject to ∠(Rkxi,yi) ≤ ǫ, ∀i ∈ Ik,

∠(Rkxk,yk) ≤ ǫ.

(Pk)

In words, Pk seeks the rotation Rk that agrees with as many

of the data as possible, given that Rk must align (xk,yk).
Our reformulation (2) does not make the original prob-

lem (1) any easier - its utility derives from clarifying how

an upper bound on fk allows to identify outliers.

Let l ≤ |I∗| be a lower bound for the solution of the

rotation search problem (1). Our outlier removal technique

depends on the ability to calculate an upper bound f̂k for

the result of each Pk, i.e., f̂k ≥ fk. Given the lower and

upper bound values, the following result can be established.

Proposition 1 If f̂k < l, then (xk,yk) is a true outlier, i.e.,

k does not exist in the solution I∗ to (1).

Proof The proof is by contradiction. If k is in I∗, then we

must have that fk = |I∗|. However, if we are given that

f̂k < l, then fk < l ≤ |I∗|, which contradicts the previous

condition. Hence, k cannot exist in I∗. �

Our main algorithm (Sec. 4) applies Proposition 1 itera-

tively for k = 1, . . . , N to remove outliers. Our main con-

tribution is an efficient algorithm to calculate a tight upper

bound f̂k for Pk (Sec. 3) for each k. As a by-product, our

upper bound algorithm also computes a tight lower bound l
for (1) to enable efficient removal of true outliers.

3. Efficient algorithm for upper bound

Recall that any candidate rotation Rk to solve Pk must

bring xk within angular distance ǫ from yk, i.e.,

∠(Rkxk,yk) ≤ ǫ. (3)

We interpret Rk by decomposing it into two rotations

Rk = AB (4)

where we define B as a rotation that honors the condition

∠(Bxk,yk) ≤ ǫ, (5)

and A as a rotation about axis Bxk. Since A leaves Bxk

unchanged, the condition (5) and hence constraint (3) are

always satisfied. Fig. 1(a) illustrates this interpretation.

Solving Pk thus amounts to finding the combination of

the rotation B (a 2DOF problem, given (5)) and the rotation

angle of A (a total of 3DOF) that maximize the objective.

3.1. The ideal case

In the absence of noise and outliers, xi can be aligned

exactly with yi for all i. Based on (4), we denote the rota-

tion that solves Pk under this ideal case as

R̂k = ÂB̂, (6)

which can be solved as follows (refer also to Fig. 1(a)).

First, find a rotation B̂ that aligns xk exactly with yk, i.e.,

B̂xk = yk. (7)

For example, take B̂ as the rotation that maps xk to yk with

the minimum geodesic motion. To solve for Â, take any

i 6= k, then find the angle θ̂ of rotation about axis B̂xk that

maps B̂xi to yi. Then Â = exp (θ̂B̂xk), where exp (·) is

the exponential map as defined in [8, Eq. (3)]. The above

steps affirm that rotation estimation requires a minimum of

two point matches [10].
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(a) (b) (c)

Figure 1. (a) Interpreting rotation Rk according to (4). (b) The uncertainty region Lk(xi) (15). (c) This figure shows Sδ(θ)(Aθ,yk
B̂xi)

intersecting with Sǫ(yi) for a particular θ. We wish to find a bounding interval Θi ⊂ [−π, π] on θ for which the intersection is non-empty.

3.2. Uncertainty bound

In the usual case, we must contend with noise and out-

liers. The aim of this section is to establish a bound on the

position of xi when acted upon by the set of feasible rota-

tions Rk, i.e., those that satisfy (3) for Pk.

The set of B that maintain (5) cause Bxk to lie within a

spherical region of angular radius ǫ centered at yk, i.e.,

Bxk ∈ Sǫ(yk), (8)

where Sǫ(yk) := {x |∠(x,yk) ≤ ǫ} and ‖x‖ = 1. (9)

Since Bxk is the rotation axis of A, the interior of Sǫ(yk)
also represents the set of possible rotation axes for A. Fur-

ther, for any i 6= k, we can establish

∠(Bxi, B̂xi) = ∠(Bxk, B̂xk) (10)

= ∠(Bxk,yk) ≤ ǫ, (11)

where (10) is based on the fact that applying the same pair of

rotations on different points will transport the points across

the same angular distance. Hence, (11) also shows that the

set of feasible B cause Bxi to lie in a spherical region, i.e.,

Bxi ∈ Sǫ(B̂xi). (12)

Fig. 1(a) also shows Sǫ(yk) and Sǫ(B̂xi). The bound on

Rkxi can thus be analysed based on these two regions.

To make explicit the dependence of A on a rotation axis

a and angle θ, we now denote it as Aθ,a, where

Aθ,a = exp (θa). (13)

Let p be an arbitrary unit-norm point. Define

circ(p,a) := {Aθ,ap | θ ∈ [−π, π]} (14)

as the circle traced by p when acted upon by rotation Aθ,a

for all θ at a particular axis a.

The set of possible positions of Rkxi is then defined by

Lk(xi) := {circ(p,a) | p ∈ Sǫ(B̂xi),a ∈ Sǫ(yk)}. (15)

Fig. 1(b) illustrates this feasible region, which exists on the

unit sphere. The region is bounded within the two circles

circ(pn,an) and circ(pf ,af ), (16)

which are highlighted in Fig. 1(b). Intuitively, pn and an
(resp. pf and af ) are the closest (resp. farthest) pair of

points from Sǫ(B̂xi) and Sǫ(yk). Mathematically,

pn = exp
(

ǫB̂xi × yk/‖B̂xi × yk‖
)

B̂xi; (17)

an = exp
(

ǫyk × B̂xi/‖yk × B̂xi‖
)

yk; (18)

pf = exp
(

ǫyk × B̂xi/‖yk × B̂xi‖
)

B̂xi; and (19)

af = exp
(

ǫB̂xi × yk/‖B̂xi × yk‖
)

yk. (20)

Note that if B̂xi is antipodal to yk, the feasible region re-

duces to the spherical region S3ǫ(B̂xi).

Result 1 For any i 6= k, if Sǫ(yi) does not intersect with

Lk(xi), then (xi,yi) cannot be aligned by any rotation Rk

that satisfies (3). The correspondence (xi,yi) can then be

safely removed without affecting the result fk of Pk.

3.3. Reducing the uncertainty

For each point match (xi,yi) that survives the pruning

by Result 1, we reduce its uncertainty bound (15) into an

angular interval. This reduction is crucial for our efficient

upper bound algorithm to be introduced in Sec. 3.4.

Consider rotating an arbitrary unit-norm point p with

Aθ,u for a fixed angle θ and an axis u ∈ Sǫ(yk). We wish

to bound the possible locations of Aθ,up given the uncer-

tainty in u. To this end, we establish

max
u∈Sǫ(yk)

∠(Aθ,up,Aθ,yk
p) ≤ max

u∈Sǫ(yk)
‖θu− θyk‖2

= 2|θ| sin(ǫ/2), (21)

2167














