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Abstract

We propose a novel easy-to-implement stroke detector

based on an efficient pixel intensity comparison to sur-

rounding pixels. Stroke-specific keypoints are efficiently de-

tected and text fragments are subsequently extracted by lo-

cal thresholding guided by keypoint properties. Classifica-

tion based on effectively calculated features then eliminates

non-text regions.

The stroke-specific keypoints produce 2 times less region

segmentations and still detect 25% more characters than

the commonly exploited MSER detector and the process is

4 times faster. After a novel efficient classification step, the

number of regions is reduced to 7 times less than the stan-

dard method and is still almost 3 times faster.

All stages of the proposed pipeline are scale- and

rotation-invariant and support a wide variety of scripts

(Latin, Hebrew, Chinese, etc.) and fonts. When the pro-

posed detector is plugged into a scene text localization and

recognition pipeline, a state-of-the-art text localization ac-

curacy is maintained whilst the processing time is signifi-

cantly reduced.

1. Introduction

Scene text localization and recognition, a.k.a. the text-

in-the-wild problem, is a key component of potential appli-

cations such as automated translation, image/video database

indexing or assistance to the visually impaired. So far, un-

like printed document OCR, no method has reached suffi-

cient accuracy and speed for a practical exploitation.

We propose a novel easy-to-implement stroke detector

which is significantly faster and produces significantly less

false detections than the detectors commonly used by scene

text localization methods. Following the observation that

text in virtually any script is formed of strokes, stroke key-

points are efficiently detected (see Figure 1) and then ex-

ploited to obtain stroke segmentations (see Figure 2).

As the second contribution, we propose an efficient clas-

sification step to eliminate regions which do not correspond

Figure 1: The FASText detector output. Stroke End Key-

points (SEK) marked red, Stroke Bend Keypoints (SBK)

marked blue.

to text fragments. Text fragment can be a single character,

a group of characters, a whole word or a part of a character.

The classifier exploits features already calculated in the de-

tection phase and an effectively approximated “strokeness”

feature, which plays an important role in the discrimination

between text fragments and a background clutter.

Last but not least, an efficient text clustering algorithm

based on text direction voting is proposed, in order to ag-

gregate detected regions into text line structures and to al-

low processing by subsequent stages (e.g. an OCR mod-

ule). When the proposed detector is plugged into a scene

text localization and recognition pipeline, the state-of-the-

art text localization results are maintained whilst the pro-

cessing time is significantly reduced.

The proposed detector has an application potential for

example in real-time scene text detection in a video stream

on mobile phones and embedded systems since a straight-

forward, single-thread non-optimized version of the algo-

rithm runs in near real-time. Since all stages are scale- and

rotation- invariant and they are not script-specific, a wide

variety of fonts and scripts such as Latin, Hebrew, and Chi-

nese can be detected - see Figure 11.
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Figure 2: Detected FASText keypoints are effectively ex-

ploited to produce stroke segmentations. Detected FASText

keypoints (left) and the resulting region segmentations pro-

duced by several keypoints selected for illustration purposes

(right).

The rest of the paper is organized as follows: in Sec-

tion 2, an overview of previously published methods is pre-

sented. Section 3 introduces the proposed text detection

method. The experimental evaluation is covered in Section

4. The paper is concluded in Section 5.

2. Previous Work

Scene text localization is a complex problem and sev-

eral strategies have emerged in the literature. The first ap-

proach is based on a sliding window which is shifted across

the image and at each position a presence of a charac-

ter [26, 2, 8] or a word [9] is checked by a classifier. The

main drawback of these methods is that the number of win-

dows that needs to be evaluated grows rapidly if text with

different parameters (scale, rotation, aspect) is to be found.

Typical processing time ranges from tens of seconds [26] to

minutes [9] per a single 1MPx image.

This is the main reason why the region-based ap-

proach [5, 28, 16] has become increasingly exploited as

text of different parameters can be detected in a single or

only a few passes. The recently most successful meth-

ods [17, 24, 31, 28, 10, 7] and the ICDAR Robust Reading

competition winner [30, 11] also fall into this category as

individual characters are found by the MSER detector [14].

Despite being faster than sliding-window methods, the

fastest region-based methods have running times ranging

from half a second to a second per a 1MPx image. The

main cause is that the region detector is not text-specific

and therefore the false detections require additional classifi-

cation step, which slows down the processing. Moreover in

the case of the most popular MSER detector, the processing

time of the detector itself is still around 0.3s for a 1MPx

pixel even though its complexity is linear in the number of

pixels [19]. Let us also note that the exact processing time

statistics for the published methods are not always avail-

able, because time is not measured as part of ICDAR Ro-

bust Reading competitions and not all authors publish this

information.

The observation that text is formed of strokes has been

first exploited in the context of text detection in the wild

by Epsthein et al. [5] and more recently by Neumann and

Matas [18]. In both cases this observation was used to to de-

sign a discriminative feature for classification of regions ob-

tained by a standard, non text-specific detector. The method

of Epsthein et al. detects candidate regions using the Canny

edge detector [3]. Pairs of parallel edges are used to esti-

mate the stroke width and to group pixels into regions on

the basis of a similar stroke width value. The main draw-

backs are the method’s sensitivity to noise and motion blur

(as it relies on successful edge detection) and the relative

slowness - the authors state the average processing time is

0.94s per a 1MPx image of the ICDAR 2011 dataset.

The method of Neumann and Matas [18] exploits the

MSER detector and then classifies the detected MSERs as

either a character, a multi-character or background using the

“strokness” feature. The method achieves state-of-the-art

results in scene text localization and provides text recogni-

tion output, but as in the previous case the main drawback

is its reliance on a detector which is not text-specific. The

average processing time for both the text localization and

recognition stages is 0.8s per image.

Other methods focus only on recognition of text manu-

ally found by a human annotator, either as cropped char-

acters [4, 12] or cropped words [27, 15, 20, 2, 29, 13], thus

assuming there might exist a text localization method with a

100% accuracy. In the latest ICDAR Robust Reading com-

petition [11], the winner [2] was able to correctly recognize

82.8% of the cropped words.

We refer the reader to the latest ICDAR Robust Read-

ing competition results [11] for a more thorough scene text

methods survey.

3. The Proposed Method

3.1. FASText Keypoint Detector

The proposed FASText keypoint detector is, as the name

suggests, inspired by the well-known FAST corner detec-

tor by Rosten and Drummond [21, 22]. The standard FAST

fires on certain letters’ corners (e.g. the letter “L” or “P”) or

corners of character stroke endings if the character is suffi-

ciently thick (e.g. the ending of the letter “l”), but is unable

to detect characters whose stroke does not have a corner

or an ending (e.g. the letter “O” or the digit “8”). More-

over, in a typical scene image the standard FAST detector

produces many false (non-text) and repeated detections (see
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Figure 3: The Stroke Ending Keypoint (left) and the Stroke

Bend Keypoint (right). Pixels in the Ps set marked red, pix-

els in the Pb set in white. Inner pixels Pi for the connectivity

test in purple.

Figure 4: The proposed pipeline. The average processing

time and the imprecision (number of false and repeated de-

tections) for a 1MPx image denoted below each stage.

Section 4.1), which unnecessarily slows down the process-

ing.

Considering we are only interested in detecting char-

acter strokes, two novel keypoint classes are introduced:

the Stroke Ending Keypoint (SEK) fires on a stroke ending,

whilst the Stroke Bend Keypoint (SBK) fires on a curved seg-

ment of a stroke (see Figure 3).

For each pixel p in an image, pixel intensities I around

a circle of 12 pixels x ∈ {1 . . . 12} are examined and each

pixel x is assigned one of three labels

L(p, x) =







d, Ix ≤ Ip −m (darker)
s, Ip −m < Ix < Ip +m (similar)
b, Ix ≥ Ip +m (brighter)

(1)

where m is a margin, which is a parameter of the detector.

Let Pd, Ps, Pb denote the sets of pixels that are labeled

as darker, similar and brighter. Pixel p is a Stroke Ending

Keypoint (SEK) if there exists two contiguous sets Ps and

Pd (or Ps and Pb) such that |Ps| ∈ {1, 2, 3} and |Pd| =
12 − |Ps| (or |Pb| = 12 − |Ps|) and the two sets form a

partition. In other words, the pixel p is a SEK if there exists

a contiguous circle segment of at least 9 pixels which are

darker (or brighter) than the pixel p, whilst the remaining

pixels of the circle have a similar intensity to the pixel p.

The keypoint can be either positive or negative, depending

on whether the intensity of the stroke is higher or lower than

the background.

Using the same notation, pixel p is a Stroke Bend

Keypoint (SBK) if there exists four contiguous sets

Ps, P
′
s, Pd, P

′
d or (Ps, P

′
s, Pb, P

′
b) such that |Ps|, |P

′
s| ∈

{1, 2, 3} and |Pd| > 6, |P ′
d| = 12 − |Pd| − |Ps| − |P

′
s|

(or |Pb| > 6, |P ′
b| = 12 − |P ′

b| − |Ps| − |P
′
s|). The pixel p

is a SBK if there is a contiguous circle segment of at least

6 pixels which are darker (or brighter) than the pixel p, two

distinct circle segments which have similar intensity to the

pixel p and the remaining pixels on the circle are darker (or

brighter) than the pixel p.

The implementation of the aforementioned tests is

straightforward and the tests can be computed by a single

pass around the 12 pixel circle. The computational com-

plexity of the detector is reduced even further (by the factor

of 2) by inserting a rule, which examines the opposite pixels

and tests that all opposite pixels are brighter than Ip +m or

darker than Ip − m. An opposite pixel is the pixel which

lies directly opposite on the 12 pixel circle. If none of the

conditions is met, the pixel p cannot be a FASText keypoint

and is quickly rejected without any further processing.

The final verification step of the FASText detector is a

connectivity test, which ensures the inner circle pixels Pi

between the pixel p and the pixels Ps also satisfy the inten-

sity margin, i.e. Ip − m < Ix < Ip + m ∀x ∈ Pi (see

Figure 3). The purpose of the test is to eliminate false detec-

tions, because if the pixel p is placed on a stroke, the pixels

in the Ps partitioning(s) must be connected to it. Let us note

that this test does not represent any significant overhead, as

in the worst case only 3 pixels have to be examined.

In order to eliminate FASText keypoints which lie close

to each other, a simple non-maximum suppression is per-

formed on a 3 × 3 neighborhood. Only the keypoint with

the highest contrast (i.e. max(Ix−Ip) : x ∈ Pb respectively

max(Ip − Ix) : x ∈ Pd) is kept.

The detector parameter values were found experimen-

tally using the ICDAR 2013 Training dataset [11] contain-

ing 4784 characters in 229 images. A character is consid-

ered detected, if there is at least one keypoint whose posi-

tion intersects with the the character ground truth segmen-

tation. The value of each parameter was chosen to obtain

the best trade-off between the detector imprecision and the

number of missed characters (recall).

The detector imprecision is calculated as
|D|
|GT | , where

|D| is the number of detections and |GT | is the number of

characters in the ground truth. For example, the impreci-

sion of 10 implies that a detector produces 10 times more

detections than characters in the ground truth.

The FASText detector has four parameters: circle size,

margin, scaling factor and the maximum number of key-

points per image. The most important parameter is the cir-
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Figure 6: The scaling parameter f controls the trade-off
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The value used in experiments marked by the red cross.

cle size, whose default value of 12 pixels is lower than the

original FAST [21] value of 16 pixels to allow detection

of characters (strokes) which are close to each other (see

Figure 5). Let us note that a circle size smaller than 12 pix-

els is not possible because of the connectivity test.

The margin m parameter controls the trade-off between

imprecision (the number of false and repeated detections)

and the number of missed characters (see Figure 5). The

margin value used in the experiments was m = 13.

Since the FASText detector is only triggered by strokes

whose width is comparable to the pixel circle radius (i.e.

two or three pixel wide), the keypoints are detected in an

image scale-space to allow detection of wider strokes. Each

level of the pyramid is calculated from the previous one by

reducing the image size by the scaling factor f (in our im-

plementation, bilinear approximation was used for image

resizing). The scaling factor f used in the experiments was

1.6 (see Figure 6).

The last parameter of the detector is the maximum num-

ber of keypoints per image. An input image is partitioned

into uniformly-sized cells (see Figure 4) and the number of

detected keypoints in each cell is limited by ordering the

keypoints by their contrast and eliminating the keypoints

whose position in the ordered set is above the cell limit. The

value of 4000 keypoints per image was chosen as a value

commonly used by standard keypoint detectors [23].

3.2. Keypoint Region Segmentation

As successfully demonstrated by the methods based on

MSERs [17, 30], individual characters can be segmented

from the background using a threshold value unique for

each character (in MSERs, the threshold value is found as

the center of the region stability interval).

In the proposed method, the threshold value is found

directly from the FASText keypoint. Given a positive

FASText keypoint p and its associated set of darker pixels

Pd, the segmentation threshold θp is the intensity value just

above the intensity of the darkest pixel in Pd

θp = max(Ix) + 1 |x ∈ Pd (2)

Similarly, for a negative FASText keypoint, the segmen-

tation threshold θp is the intensity value just below the in-

tensity of the darkest pixel in Pb

θp = min(Ix)− 1 |x ∈ Pb (3)

The threshold value θp is then effectively exploited by

a standard flood-fill algorithm [25] to generate a stroke for

each FASText keypoint.

3.3. Region Classification

In order to reduce the still relatively high false detection

rate of the FASText detector (the average imprecision is 25
regions to one ground truth character) and to make the pro-

cessing in the subsequent stages faster, an efficient classifi-

cation stage is inserted to filter the output of the proposed

detector.

Drawing inspiration from a successful MSER segmenta-

tion classifier [18], four rotation- and scale-invariant fea-

tures are employed by a Gentle AdaBoost classifier [6] to

classify FASText regions as either a text fragment (typically

a character) or a background clutter: compactness, convex

hull area ratio, holes area ratio and the Character Stroke

Area (CSA). All features are efficiently calculated as part

of the segmentation process (see Section 3.2), with the ex-

ception of the Character Stroke Area feature.

The Character Stroke Area (CSA) feature is based on the

observation that a character can be drawn by taking a brush

with a diameter of the stroke width and drawing through

middle points of the character (see Figure 7 left). Since the

area of an ideal stroke is the product of the stroke width

and the length of the stroke, the “strokeness” of a region
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Figure 8: Character Stroke Area (CSA) approximation by

FASText keypoints. Initial Stroke Ending Keypoint (a).

First Stroke Straight Keypoint found (b). Next Stroke

Straight Keypoint found (c). All Stroke Straight Keypoints

found, stroke length illustrated by the red line (d).

is estimated by calculating the ratio between the Character

Strokes Area and the number of pixels in the region. The

ratio therefore estimates the proportion of the region pixels

which are part of a character stroke and allows to efficiently

discriminate between text fragments (characters, groups of

characters, whole words or parts of characters) and a back-

ground clutter (see Figure 9).

In the original form [18], a distance map and an iterative

NMS is employed to calculate the character strokes area.

Since the high computational complexity of such process

represents a significant overhead, we propose an approx-

imate but significantly faster calculation of the Character

Strokes Area feature.

Given a region r, a set of Stroke Straight Keypoints

(SSK) is found for each Stroke Ending Keypoint (SEK) p

which intersects with the region r using the following iter-

ative algorithm (see Figure 8):

1. Start with the Stroke Ending Keypoint p

2. Move the point p to the darkest (brightest) pixel of the

Ps pixels (always in the direction away from the stroke

ending)

3. The point p is a Stroke Straight Keypoint (SSK) if

there are four contiguous partitionings Ps, P
′
s, Pd, P

′
d

or (Ps, P
′
s, Pb, P

′
b) such that |Ps|, |P

′
s| ∈ {1, 2, 3} and

|Pd| > 3, |P ′
d| = 12 − |Pd| − |Ps| − |P

′
s| (or |Pb| >

3, |P ′
b| = 12− |P ′

b| − |Ps| − |P
′
s|)
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Figure 9: The impact of the Character Strokes Area (CSA)

feature in the region classification. The original classi-

fier [18] (blue), the proposed classifier with the approxi-

mated CSA feature (green), a classifier without the CSA

feature (red)

4. If the point p is a SSK, repeat from the step 2, other-

wise terminate

The character strokes area As(r) of the region r is then

calculated as

As(r) =
∑

p∈SSKr

3|Ps|p +
∑

p∈SBKr

3
(

|Ps|p + |Ps|
′
p

)

(4)

where SSKr and SBKr is the set of Stroke Straight respec-

tively Stroke Bend Keypoints intersecting with the region

r and |Ps|p (|Ps|
′
p) is the size of the partitioning Ps (P ′

s)

associated with the keypoint p.

The proposed approximate algorithm is almost 60 times

faster (see Figure 7 right), yet the impact on the classifica-

tion accuracy is negligible (see Figure 9).

3.4. Text Clustering

In this stage, the unordered set of FASText regions clas-

sified as text fragments is clustered into ordered sequences,

where each cluster (sequence) shares the same text direc-

tion in the image. In other words, individual characters (or

groups of characters or their parts) are clustered together to

form lines of text.

Let us denote the set of text fragment regions as R. For

each region ri ∈ R, all regions rj ∈ R are found, such that

ri and rj are neighbors. Two regions ri and rj are neigh-

bors, denoted N(ri, rj), if their centroids are sufficiently

close to each other (normalized by their area) and they have

a comparable scale:

N(ri, rj) =











1, ‖c(ri)− c(rj)‖ < α
√

max(A(ri), A(rj))

max
(

A(ri)
A(rj)

,
A(rj)
A(ri)

)

< β

0, otherwise
(5)
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where c(r) is the centroid of the region r and A(r) is

the convex hull area of the region r. The parameter val-

ues α = 4 and β = 10 were chosen experimentally and

they provide sufficient tolerance for a vast majority of typo-

graphical models (see Figure 10a). Since the region neigh-

bor search is a simple search in a 2D space of points (cen-

troids), it can be effectively implemented by partitioning the

image into smaller cells and always considering regions just

in the closest cells. Alternatively, one could use a standard

(approximate) nearest-neighbor algorithm.

Each pair of neighboring regions then casts a vote for

their text direction, where the text direction and position is

given by the line which passes through the two centroids of

the neighboring pair (see Figure 10b). Exploiting the Hough

transform [1], each vote for a text direction is represented in

the polar system ρ = x sin(θ)+y cos(θ), so that vertical text

lines can also be detected.

The two-dimensional parameter space (ρ, θ) is quantized

into a fixed-sized matrix, so that small differences in the line

parameters are eliminated and the text directions with the

highest number of votes (i.e. the directions with the highest

number of supporting pairs) can be easily found as local

maxima in the matrix (see Figure 10c).

Each local maximum with its parameters (ρ, θ) then un-

ambiguously induces a text cluster by simply taking all re-

gions whose centroid lies on the line (ρ, θ) (or the distance

is smaller than the quantization error) and ordering them in

the direction of the line.

Since one region lies on multiple lines with different pa-

rameters (ρ, θ), the local maxima are processed in a de-

creasing order of number of their votes and each region is

allowed to be included only in a single text cluster. This

process ensures that longer text lines are preferred over

shorter ones and that intra-line text clusters are eliminated

(see Figure 10d).

4. Experiments

4.1. Character Detection

In the first experiment, the character detection ability of

the FASText keypoint detector is compared with existing

detectors. The evaluation uses the standard ICDAR 2013

Test dataset (which is commonly used for text localization

evaluation - see Section 4.2) containing 6393 characters in

255 images annotated at the pixel level, i.e. ground truth

character segmentations are provided.

In Table 1, keypoints detected by the FASText and the

FAST detector [21] are compared by processing all images

in the dataset and calculating keypoint statistics for each

detector (see Figure 12 for a visual comparison on a sam-

ple image). The total number of detections is almost iden-

tical for both detectors, but the proposed FASText detec-

tor misses 3 times less characters (only 111 characters are

missed against 328 missed characters by the FAST detec-

(a) (b)
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Figure 10: Regions are clustered to form lines of text. A

selected region r and the radius of neighbor search (a). All

neighboring pairs of the region r and their corresponding

text directions (b). Quantized text direction votes in the

(ρ, θ) parameter space (c). Final text line clusters (d).

Figure 12: Keypoints detected by the FAST (left) and by

the FASText detector (right). The size of the mark is pro-

portional to the scale where the keypoint was detected.

|D| |D|
|GT | |FN | t [ms]

FAST [21] 608992 105.1 328 29.62

FASText 574713 99.1 111 24.77

Table 1: Keypoints detected on characters in the ICDAR

2013 dataset. The number of detected keypoints |D|, im-

precision
|D|
|GT | , the number of characters without a keypoint

|FN | and the average time per image t.

tor). A character is considered missed by a detector, if no

pixel in the ground truth segmentation coincides with a key-

point. The FASText detector is also 20% faster than the

FAST detector.

In Table 2, region segmentations produced by the de-

tectors commonly used in scene text localization are com-
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Figure 11: Scene text images with different scripts, fonts and orientations. Source images (top row), detected FASText

keypoints (middle row) and resulting text segmentations (bottom row). Best viewed zoomed in color.

|D| |D|
|GT | |FN | t [ms]

MSER [14] 401972 69.4 1128 328.09

CSER [16] 636729 109.9 657 1068.41

FASText 215325 37.2 857 82.01

FASText+AdaBoost 62394 10.8 1240 122.10

Table 2: Detected region segmentations in the ICDAR 2013

dataset. The number of region segmentations |D|, impreci-

sion
|D|
|GT | , the number of characters without a valid region

segmentation |FN | and the average time per image t.

pared with the region segmentations produced by the pro-

posed detector on all images in the ICDAR dataset. Both

the standalone FASText detector and the FASText detector

with the subsequent classification stage (see Section 3.3)

are included, whilst the FAST detector is not included as it

does not produce region segmentations. A character is con-

sidered as detected by a detector, if the detector produces a

region segmentation, whose bounding-box overlap with the

character ground truth bounding-box is above 60%. If no

such region exists, a character is considered missed.

The FASText detector produces 2 times less region seg-

mentations and still detects 25% more characters than the

commonly exploited MSER detector [14] and at the same

time it is 4 times faster. The FASText detector with the

proposed subsequent classification phase produces approx-

imately 7 times less region segmentations and is almost 3
times faster than the MSER detector. Timings are given for

a 2.4GHz PC using a single thread, all stages are included.

4.2. Text Localization and Recognition

In order to evaluate scene text localization ability of

the proposed detector with the state-of-the-art text local-

ization methods, which are mostly built around the MSER

detector [14], we have replaced the initial stages (MSER

detection, character classification and the text line forma-

tion) of the MSER-based pipeline [18] with the proposed

method. The resulting experimental pipeline thus consists

of the FASText detector with the proposed region classifi-

cation and the text clustering, followed by the local iterative

segmentation refinement and character recognition adopted

from the original pipeline.

First, the pipeline was evaluated on the most cited

ICDAR 2013 Robust Reading Dataset [11] which consists

of 1189 words and 6393 letters in 255 images. There are

many challenging text instances in the dataset (reflections,

text written on complicated backgrounds, textures which re-

semble characters), but on the other hand the text is English

only, it is mostly horizontal and the view is typically cen-

tered around the text area (see examples in Figure 13).

Using the same evaluation protocol as the ICDAR 2013

Robust Reading competition [11], the text localization ac-

curacy compares favorably with the state-of-the-art meth-

ods (see Table 3), whilst the proposed method is signifi-

cantly faster - in text localization (tl), the proposed pipeline

is 3 times faster than the best method.

Let us note that the text localization recall and precision

of all the listed methods should be interpreted with caution,

as the standard evaluation protocol has known issues - for

instance, failing to detect 3 characters in a word of 6 char-

acters can still result in a 100% recall, whereas detecting all
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Figure 13: Text localization and recognition examples on

the ICDAR 2013 dataset.

method R P F tl tr t

proposed pipeline 69.3 84.0 76.8 0.15 0.4 0.55

Neumann and Matas [18] 72.4 81.8 77.1 0.4 0.4 0.8

Zamberletti et al. [31] 70.0 85.6 77.0 0.75 N/A N/A

Yin et al. [30] 68.3 86.3 76.2 0.43 N/A N/A

ICDAR 2013 winner [11] 66.4 88.5 75.9 ? ? ?

Table 3: Text localization results and average processing

times on the ICDAR 2013 dataset. Recall R, precision P ,

f-measure F , localization time tl, recognition time tr and

the total processing time t (in seconds).

characters but missing the dot above the character “i” can

result in a 0% recall.

In the second experiment, the pipeline (without the text

recognition stage) was qualitatively evaluated on a dataset

with a wide variety of scripts, fonts and text orientations.

As demonstrated in the Figure 11, the FASText keypoint

detector is able to detect many different scripts, fonts and

orientations and it together with the subsequent steps can

Figure 14: FASText detection and segmentation failures

caused by low image contrast and by nonexistence of a

threshold in the intensity channel. Best viewed in color.

be easily exploited to produce text segmentations.

5. Conclusion

A novel easy-to-implement stroke detector was pro-

posed. The detector is significantly faster and produces

significantly less false detections than the commonly used

MSER detector. The detector efficiently produces character

strokes segmentations, which are exploited in a subsequent

classification phase based on features effectively calculated

as part of the segmentation process. Additionally, an effi-

cient text clustering algorithm based on text direction vot-

ing is proposed. The text detection and clustering is scale-

and rotation-invariant and supports wide variety of scripts

and fonts.

The proposed FASText detector produces 2 times less

region segmentations and still detects 25% more characters

than the commonly exploited MSER [14] detector and it is

4 times faster, despite the fact it was implemented only in a

single thread and the code was not optimized. The FASText

detector with the proposed subsequent classification phase

produces approximately 7 times less region segmentations

and is almost 3 times faster than the MSER detector. When

the proposed detector is plugged into a scene text localiza-

tion and recognition pipeline, the pipeline maintains state-

of-the-art text localization results whilst reducing the pro-

cessing time.

The main failure reasons for failure are low image con-

trast, nonexistence of a threshold in the intensity channel

and characters very close to each other (see Figure 14).
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