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Abstract

Most of the current boundary detection systems rely ex-

clusively on low-level features, such as color and texture.

However, perception studies suggest that humans employ

object-level reasoning when judging if a particular pixel

is a boundary. Inspired by this observation, in this work

we show how to predict boundaries by exploiting object-

level features from a pretrained object-classification net-

work. Our method can be viewed as a High-for-Low ap-

proach where high-level object features inform the low-level

boundary detection process. Our model achieves state-of-

the-art performance on an established boundary detection

benchmark and it is efficient to run.

Additionally, we show that due to the semantic nature of

our boundaries we can use them to aid a number of high-

level vision tasks. We demonstrate that by using our bound-

aries we improve the performance of state-of-the-art meth-

ods on the problems of semantic boundary labeling, seman-

tic segmentation and object proposal generation. We can

view this process as a Low-for-High scheme, where low-

level boundaries aid high-level vision tasks.

Thus, our contributions include a boundary detection

system that is accurate, efficient, generalizes well to mul-

tiple datasets, and is also shown to improve existing state-

of-the-art high-level vision methods on three distinct tasks.

1. Introduction

In the vision community, boundary detection has always

been considered a low-level problem. However, psycholog-

ical studies suggest that when a human observer perceives

boundaries, object level reasoning is used [13, 25, 17]. De-

spite these findings, most of the boundary detection meth-

ods rely exclusively on low-level color and gradient fea-

tures. In this work, we present a method that uses object-

level features to detect boundaries. We argue that using

object-level information to predict boundaries is more sim-

Low-Level Task High-Level Tasks

BD SBL SS OP

ODS MF AP PI-IOU MR

SotA 0.76 [27] 28.0 [11] 19.9 [11] 45.8 [5] 0.88 [31]

HFL 0.77 62.5 54.6 48.8 0.90

Table 1: Summary of results achieved by our proposed

method (HFL) and state-of-the-art methods (SotA). We pro-

vide results on four vision tasks: Boundary Detection (BD),

Semantic Boundary Labeling (SBL), Semantic Segmenta-

tion (SS), and Object Proposal (OP). The evaluation metrics

include ODS F-score for BD task, max F-score (MF) and

average precision (AP) for SBL task, per image intersec-

tion over union (PI-IOU) for SS task, and max recall (MR)

for OP task. Our method produces better results in each of

these tasks according to these metrics.

ilar to how humans reason. Our boundary detection scheme

can be viewed as a High-for-Low approach where we use

high-level object features as cues for a low-level boundary

detection process. Throughout the rest of the paper, we re-

fer to our proposed boundaries as High-for-Low boundaries

(HFL).

We present an efficient deep network that uses object-

level information to predict the boundaries. Our proposed

architecture reuses features from the sixteen convolutional

layers of the network of Simonyan et al. [29], which we

refer to as VGG net. The VGG net has been trained for

object classification, and therefore, reusing its features al-

lows our method to utilize high-level object information to

predict HFL boundaries. In the experimental section, we

demonstrate that using object-level features produces se-

mantically meaningful boundaries and also achieves above

state-of-the-art boundary detection accuracy.

Additionally, we demonstrate that we can successfully

apply our HFL boundaries to a number of high-level vision

tasks. We show that by using HFL boundaries we improve

the results of three existing state-of-the-art methods on the

tasks of semantic boundary labeling, semantic segmenta-
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tion and object proposal generation. Therefore, using HFL

boundaries to boost the results in high level vision tasks

can be viewed as a Low-for-High scheme, where boundaries

serve as low-level cues to aid high-level vision tasks.

We present the summarized results for the boundary de-

tection and the three mentioned high-level vision tasks in

Table 1. Specifically, we compare our proposed method and

an appropriate state-of-the-art method for that task. As the

results indicate, we achieve better results in each of the tasks

for each presented evaluation metric. We present more de-

tailed results for each of these tasks in the later sections.

In summary, our contributions are as follows. First, we

show that using object-level features for boundary detec-

tion produces perceptually informative boundaries that out-

perform prior state-of-the-art boundary detection methods.

Second, we demonstrate that we can use HFL boundaries

to enhance the performance on the high-level vision tasks

of semantic boundary labeling, semantic segmentation and

object proposal. Finally, our method can detect boundaries

in near-real time. Thus, we present a boundary detection

system that is accurate, efficient, and is also applicable to

high level vision tasks.

2. Related Work

Most of the contour detection methods predict bound-

aries based purely on color, text, or other low-level features.

We can divide these methods into three broad categories:

spectral methods, supervised discriminative methods and

deep learning based methods.

Spectral methods formulate contour detection problem

as an eigenvalue problem. The solution to this problem is

then used to reason about the boundaries. The most success-

ful approaches in this genre are the MCG detector [2], gPb

detector [1], PMI detector [14], and Normalized Cuts [28].

Some of the notable discriminative boundary detection

methods include sketch tokens (ST) [18], structured edges

(SE) [6] and sparse code gradients (SCG) [23]. While SCG

use supervised SVM learning [4], the latter two methods

rely on a random forest classifier and models boundary de-

tection as a classification task.

Recently there have been attempts to apply deep learning

to the task of boundary detection. SCT [20] is a sparse cod-

ing approach that reconstructs an image using a learned dic-

tionary and then detect boundaries. Both N4 fields [10] and

DeepNet [16] approaches use Convolutional Neural Net-

works (CNNs) to predict edges. N4 fields rely on dictio-

nary learning and the use of the Nearest Neighbor algorithm

within a CNN framework while DeepNet uses a traditional

CNN architecture to predict contours.

The most similar to our approach is DeepEdge [3],

which uses a multi-scale bifurcated network to perform con-

tour detection using object-level features. However, we

show that our method achieves better results even without
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Figure 1: An illustration of our architecture (best viewed in

color). First we extract a set of candidate contour points.

Then we upsample the image and feed it through 16 convo-

lutional layers pretrained for object classification. For each

candidate point, we find its correspondence in each of the

feature maps and perform feature interpolation. This yields

a 5504-dimensional feature vector for each candidate point.

We feed each of these vectors to two fully connected layers

and store the predictions to produce a final boundary map.

the complicated multi-scale and bifurcated architecture of

DeepEdge. Additionally, unlike DeepEdge, our system can

run in near-real time.

In comparison to prior approaches, we offer several con-

tributions. First, we propose to use object-level informa-

tion to predict boundaries. We argue that such an approach

leads to semantic boundaries, which are more consistent

with humans reasoning. Second, we avoid feature engi-

neering by learning boundaries from human-annotated data.

Finally, we demonstrate excellent results for both low-level

and high-level vision tasks. For the boundary detection task,

our proposed HFL boundaries outperform all of the prior

methods according to both F-score metrics. Additionally,

we show that because HFL boundaries are based on object-

level features, they can be used to improve performance in

the high-level vision tasks of semantic boundary labeling,

semantic segmentation, and object proposal generation.

3. Boundary Detection

In this section, we describe our proposed architecture

and the specific details on how we predict HFL boundaries

using our method. The detailed illustration of our architec-

ture is presented in Figure 1.
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Figure 2: A visualization of selected convolutional feature maps from VGG network (resized to the input image dimension).

Because VGG was optimized for an object classification task, it produces high activation values on objects and their parts.

3.1. Selection of Candidate Contour Points

We first extract a set of candidate contour points with

a high recall. Due to its efficiency and high recall perfor-

mance, we use the SE edge detector [6]. In practice, we

could eliminate this step and simply try to predict bound-

aries at every pixel. However, selecting a set of initial candi-

date contour points, greatly reduces the computational cost.

Since our goal is to build a boundary detector that is both ac-

curate and efficient, we use these candidate points to speed

up the computation of our method.

3.2. Object-Level Features

After selecting candidate contour points, we up-sample

the original input image to a larger dimension (for example

1100×1100). The up-sampling is done to minimize the loss

of information due to the input shrinkage caused by pooling

at the different layers. Afterwards, we feed the up-sampled

image through 16 convolutional layers of the VGG net.

We use the VGG net as our model because it has been

trained to recognize a large number of object classes (the

1000 categories of the ImageNet dataset [24]) and thus en-

codes object-level features that apply to many classes. To

preserve specific location information we utilize only the

16 convolutional layers of the VGG net. We don’t use fully

connected layers because they don’t preserve spatial infor-

mation, which is crucial for accurate boundary detection.

We visualize some of the selected convolutional maps in

Figure 2. Note the high activation values around the var-

ious objects in the images, which confirms our hypothesis

that the VGG net encodes object specific information in its

convolutional feature maps.

3.3. Feature Interpolation

Similarly to [26, 12, 19], we perform feature interpo-

lation in deep layers. After the up-sampled image passes

through all 16 convolutional layers, for each selected can-

didate contour point we find its corresponding point in the

feature maps. Due to the dimension differences in convo-

lutional maps these correspondences are not exact. Thus

we perform feature interpolation by finding the four nearest

points and averaging their activation values. This is done

in each of the 5504 feature maps. Thus, this results in a

5504-dimensional vector for each candidate point.

We note that the interpolation of convolutional feature

maps is the crucial component that enables our system to

predict the boundaries efficiently. Without feature inter-

polation, our method would need to independently process

the candidate edge points by analyzing a small image patch

around each point, as for example done in DeepEdge [3]

which feeds one patch at a time through a deep network.

However, when the number of candidate points is large

(e.g., DeepEdge considers about 15K points at each of 4 dif-

ferent scales), their patches overlap significantly and thus a

large amount of computation is wasted by recalculating fil-

ter response values over the same pixels. Instead, we can

compute the features for all candidate points with a single

pass through the network by performing deep convolution

over the entire image (i.e., feeding the entire image rather

than one patch at a time) and then by interpolating the con-

volutional feature maps at the location of each candidate

edge point so as to produce its feature descriptor. Thanks to

this speedup, our method has a runtime of 1.2 seconds (us-

ing a K40 GPU), which is better than the runtimes of prior

deep-learning based edge detection methods [27, 10, 16, 3].

3.4. Learning to Predict Boundaries

After performing feature interpolation, we feed the

5504-dimensional feature vectors corresponding to each of

the candidate contour points to two fully connected layers

that are optimized to the human agreement criterion. To be

more precise, we define our prediction objective as a frac-

tion of human annotators agreeing on the presence of the

boundary at a particular pixel. Therefore, a learning objec-

tive aims at mimicking the judgement of the human labelers.

Finally, to detect HFL boundaries, we accumulate the

predictions from the fully connected layers for each of the
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candidate points and produce a boundary probability map

as illustrated in Figure 1.

3.5. Implementation Details

In this section, we describe the details behind the training

procedure of our model. We use the Caffe library [15] to

implement our network architecture.

In the training stage, we freeze the weights in all of the

convolutional layers. To learn the weights in the two fully

connected layers we train our model to optimize the least

squares error of the regression criterion that we described

in the previous subsection. To enforce regularization we set

a dropout rate of 0.5 in the fully connected layers.

Our training dataset includes 80K points from the

BSDS500 dataset [22]. As described in the previous sub-

section, the labels represent the fraction of human annota-

tors agreeing on the boundary presence. We divide the la-

bel space into four quartiles, and select an equal number of

samples for each quartile to balance the training dataset. In

addition to the training dataset, we also sample a hold-out

dataset of size 40, 000. We use this for the hard-positive

mining [21] in order to reduce the number of false-negative

predictions.

For the first 25 epochs we train the network on the orig-

inal 80, 000 training samples. After the first 25 epochs, we

test the network on the hold-out dataset and detect false neg-

ative predictions made by our network. We then augment

the original 80, 000 training samples with the false nega-

tives and the same number of randomly selected true nega-

tives. For the remaining 25 epochs, we train the network on

this augmented dataset.

3.6. Boundary Detection Results

In this section, we present our results on the BSDS500

dataset [22], which is the most established benchmark for

boundary detection. The quality of the predicted bound-

aries is evaluated using three standard measures: fixed con-

tour threshold (ODS), per-image best threshold (OIS), and

average precision (AP).

We compare our approach to the state-of-the-art based

on two different sets of BSDS500 ground truth boundaries.

First, we evaluate the accuracy by matching each of the

predicted boundary pixels with the ground truth boundaries

that were annotated by any of the human annotators. This

set of ground truth boundaries is referred to as “any”. We

present the results for “any” ground truth boundaries in the

lower half of Table 2. As indicated by the results, HFL

boundaries outperform all the prior methods according to

both F-score measures.

Recently, there has been some criticism raised about

the procedure for boundary detection evaluation on the

BSDS500 dataset. One issue with the BSDS500 dataset

involves the so called “orphan” boundaries: the bound-

Consensus GT ODS OIS AP FPS

SCG [23] 0.6 0.64 0.56 1/280

DeepNet [16] 0.61 0.64 0.61 1/5‡

PMI [14] 0.61 0.68 0.56 1/900

DeepEdge [3] 0.62 0.64 0.64 1/1000‡

N4-fields [10] 0.64 0.67 0.64 1/6‡

HFL 0.65 0.68 0.67 5/6‡

Any GT ODS OIS AP FPS

SE [6] 0.75 0.77 0.80 2.5

MCG [2] 0.75 0.78 0.76 1/24

N4-fields [10] 0.75 0.77 0.78 1/6‡

DeepEdge [3] 0.75 0.77 0.81 1/1000‡

MSC [30] 0.76 0.78 0.79 -

DeepContour [27] 0.76 0.77 0.8 1/30‡

HFL 0.77 0.79 0.8 5/6‡

Table 2: Boundary detection results on BSDS500 bench-

mark. Upper half of the table illustrates the results for “con-

sensus” ground-truth criterion while the lower half of the

table depicts the results for “any” ground-truth criterion. In

both cases, our method outperforms all prior methods ac-

cording to both ODS (optimal dataset scale) and OIS (op-

timal image scale) metrics. We also report the run-time of

our method (‡ GPU time) in the FPS column (frames per

second), which shows that our algorithm is faster than prior

approaches based on deep learning [27, 10, 16, 3].

Figure 5: Qualitative results on the BSDS benchmark. The

first column of images represent input images. The second

column illustrates SE [6], while the third column depicts

HFL boundaries. Notice that SE boundaries are predicted

with low confidence if there is no significant change in color

between the object and the background. Instead, because

our model is defined in terms of object-level features, it can

predict object boundaries with high confidence even if there

is no significant color variation in the scene.

aries that are marked by only one or two human annota-

tors. These “orphan” boundaries comprise around 30% of

BSDS500 dataset but most of them are considered uninfor-

mative. However, the standard evaluation benchmark re-

wards the methods that predict these boundaries. To resolve
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Figure 6: We train a linear regression model and visualize

its weight magnitudes in order to understand which features

are used most heavily in the boundary prediction (this linear

regression is used only for the visualization purposes and

not for the accuracy analysis). Note how heavily weighted

features lie in the deepest layers of the network, i.e., the lay-

ers that are most closely associated with object information.

this issue we also evaluate our HFL boundaries on the so

called “consensus” set of ground truth boundaries. These

“consensus” boundaries involve only boundaries that are

marked by all of the human annotators and hence, are con-

sidered perceptually meaningful. In the upper half of Ta-

ble 2, we present the results achieved by our method on the

“consensus” set of the ground truth boundaries. Our HFL

boundaries outperform or tie all the prior methods in each

of the three evaluation metrics, thus suggesting that HFL

boundaries are similar to the boundaries that humans anno-

tated. We also report the runtimes in Table 2 and note that

our method runs faster than previous deep-learning based

edge detection systems [27, 10, 16, 3].

Our proposed model computes a highly nonlinear func-

tion of the 5504-dimensional feature vector of each candi-

date point. Thus, it is difficult to assess which features are

used most heavily by our edge predictor. However, we can

gain a better insight by replacing the nonlinear function with

a simple linear model. In Fig. 6 we show the weight mag-

nitudes of a simple linear regression model (we stress that

this linear model is used only for feature visualization pur-

poses). From this Figure, we observe that many important

features are located in the deepest layers of the VGG net-

work. As shown in [7], these layers encode high-level ob-

ject information, which confirms our hypothesis that high-

level information is useful for boundary detection.

Finally, we present some qualitative results achieved by

our method in Figure 5. These examples illustrate the effec-

tive advantage that HFL boundaries provide over another

state-of-the-art edge detection system, the SE system [6].

Specifically, observe the parts of the image where there is a

boundary that separates an object from the background but

where the color change is pretty small. Notice that because

the SE boundary detection is based on low-level color and

texture features, it captures these boundaries with very low

confidence. In comparison, because HFL boundaries rely

on object-level features, it detects these boundaries with

high confidence.

4. High-Level Vision Applications

In this section, we describe our proposed Low-for-High

pipeline: using low-level boundaries to aid a number of

high-level vision tasks. We focus on the tasks of semantic

boundary labeling, semantic segmentation and object pro-

posal generation. We show that using HFL boundaries im-

proves the performance of state-of-the-art methods in each

of these high-level vision tasks.

4.1. Semantic Boundary Labeling

The task of semantic boundary labeling requires not only

to predict the boundaries but also to associate a specific

object class to each of the boundaries. This implies that

given our predicted boundaries we also need to label them

with object class information. We approach this problem

by adopting the ideas from the recent work on Fully Con-

volutional Networks (FCN) [19]. Given an input image,

we concurrently feed it to our boundary-predicting network

(described in Section 3), and also through the FCN that was

pretrained for 20 Pascal VOC classes and the background

class. While our proposed network produces HFL bound-

aries, the FCN model predicts class probabilities for each

of the pixels. We can then merge the two output maps as

follows. For a given boundary point we consider a 9 × 9
grid around that point from each of the 21 FCN object-class

probability maps. We calculate the maximum value inside

each grid, and then label the boundary at a given pixel with

the object-class that corresponds to the maximum probabil-

ity across these 21 maps. We apply this procedure for each

of the boundary points, in order to associate object-class

labels to the boundaries. Note that we consider the grids

around the boundary pixel because the output of the FCN

has a poor localization, and considering the grids rather than

individual pixels leads to higher accuracy.

We can also merge HFL boundaries with the state-of-

the-art DeepLab-CRF segmentation [5] to obtain higher ac-

curacy. We do this in a similar fashion as just described.

First, around a given boundary point we extract a 9 × 9
grid from the DeepLab-CRF segmentation. We then com-

pute the mode value in the grid (excluding the background

class), and use the object-class corresponding to the mode

value as a label for the given boundary point. We do this for

each of the boundary points. By merging HFL boundaries

and the output of FCN or DeepLab-CRF, we get semantic

boundaries that are highly localized and also contain object-

specific information.

4.1.1 Semantic Boundary Labeling Results

In this section, we present semantic boundary labeling re-

sults on the SBD dataset [11], which includes ground truth

boundaries that are also labeled with one of 20 Pascal VOC

classes. The boundary detection accuracy for each class is
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Method (Metric) aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

InvDet (MF) 42.6 49.5 15.7 16.8 36.7 43.0 40.8 22.6 18.1 26.6 10.2 18.0 35.2 29.4 48.2 14.3 26.8 11.2 22.2 32.0 28.0

HFL-FC8 (MF) 71.6 59.6 68.0 54.1 57.2 68.0 58.8 69.3 43.3 65.8 33.3 67.9 67.5 62.2 69.0 43.8 68.5 33.9 57.7 54.8 58.7

HFL-CRF (MF) 73.9 61.4 74.6 57.2 58.8 70.4 61.6 71.9 46.5 72.3 36.2 71.1 73.0 68.1 70.3 44.4 73.2 42.6 62.4 60.1 62.5

InvDet (AP) 38.4 29.6 9.6 9.9 24.2 33.6 31.3 17.3 10.7 16.4 3.7 12.1 28.5 20.4 45.7 7.6 16.1 5.7 14.6 22.7 19.9

HFL-FC8 (AP) 66.0 50.7 58.9 40.6 47.1 62.9 51.0 59.0 25.6 54.6 15.3 57.8 57.3 55.9 62.2 27.5 55.6 18.0 50.1 40.6 47.8

HFL-CRF (AP) 71.2 55.2 69.3 45.7 48.9 71.1 56.8 65.7 29.1 65.9 17.7 64.5 68.3 64.7 65.9 29.1 66.5 25.7 60.0 49.8 54.6

Table 3: Results of semantic boundary labeling on the SBD benchmark using the Max F-score (MF) and Average Precision

(AP) metrics. Our method (HFL) outperforms Inverse Detectors [11] for all 20 categories according to both metrics. Note

that using the CRF output to label the boundaries produces better results than using the outputs from the FC8 layer of FCN.

evaluated using the maximum F-score (MF), and average

precision (AP) measures.

Labeling boundaries with the semantic object informa-

tion is a novel and still relatively unexplored problem.

Therefore, we found only one other approach (Inverse De-

tectors) that tried to tackle this problem [11]. The ba-

sic idea behind Inverse Detectors consists of several steps.

First, generic boundaries in the image are detected. Then,

a number of object proposal boxes are generated. These

two sources of information are then used to construct the

features. Finally, a separate classifier is used to label the

boundaries with the object-specific information.

Table 3 shows that our approach significantly outper-

forms Inverse Detectors according to both the maximum F-

score and the average precision metrics for all twenty cat-

egories. As described in Section 4.1 we evaluate the two

variants of our method. Denoted by HFL-FC8 is the vari-

ant for which we label HFL boundaries with the outputs

from the last layer (FC8) of the pretrained FCN. We denote

with HFL-CRF the result of labeling our boundaries with

the output from the DeepLab-CRF [5]. Among these two

variants, we show that the latter one produces better results.

This is expected since the CRF framework enforces spatial

coherence in the semantic segments.

In Figure 7, we present some of the qualitative results

produced by our method. We note that even with multiple

objects in the image, our method successfully recognizes

and localizes boundaries of each of the classes.

4.2. Semantic Segmentation

For the semantic segmentation task, we propose to

enhance the DeepLab-CRF [5] with our predicted HFL

boundaries. DeepLab-CRF is a system comprised of a Fully

Convolutional Network (described in Section 4.1) and a

dense CRF applied on top of FCN predictions.

Specifically, in the CRF, the authors propose to use

a Gaussian kernel and a bilateral term including position

and color terms as the CRF features (see [5]). While in

most cases the proposed scheme works well, DeepLab-CRF

sometimes produces segmentations that are not spatially co-

herent, particularly for images containing small object re-

Figure 7: A visualization of the predicted semantic bound-

ary labels. Images in the first column are input examples.

Columns two and three show semantic HFL boundaries of

different object classes. Note that even with multiple ob-

jects appearing simultaneously, our method outputs precise

semantic boundaries.

gions.

We propose to address this issue by adding features

based on our predicted HFL boundaries in the CRF frame-

work. Note that we use predicted boundaries from Section 3

and not the boundaries labeled with the object information

that we obtained in Section 4.1. We use the Normalized

Cut [28] framework to generate our features.

First, we construct a pixel-wise affinity matrix W using

our HFL boundaries. We measure the similarity between

two pixels as:

Wij = exp (−max
p2ij

{
M(p)2

σ2
})

where Wij represents the similarity between pixels i and

j, p denotes the boundary point along the line segment ij
connecting pixels i and j, M depicts the magnitude of the

boundary at pixel p, and σ denotes the smoothness parame-

ter, which is usually set to 14% of the maximum boundary

value in the image.

The intuitive idea is that two pixels are similar (i.e.

Wij = 1) if there is no boundary crossing the line con-

necting these two pixels (i.e. M(p) = 0 ∀p ∈ ij) or if the

boundary strength is low. We note that it is not necessary

to build a full affinity matrix W . We build a sparse affin-
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Metric Method (Dataset) aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

PP-IOU

DL-CRF (VOC) 78.6 41.1 83.5 75.3 72.9 83.1 76.6 80.8 37.8 72.1 66.5 64.7 65.8 75.7 80.5 34.4 75.9 47.4 86.6 77.9 68.9

DL-CRF+HFL (VOC) 77.9 41.2 83.1 74.4 73.2 85.5 76.1 80.6 35.7 71.0 66.6 64.3 65.9 75.2 80.2 32.8 75.2 47.0 87.1 77.9 68.5

DL-CRF (SBD) 74.2 68.0 81.9 64.6 71.8 86.3 78.3 84.3 41.6 78.0 49.9 82.0 78.5 77.1 80.1 54.3 75.6 49.8 79.5 70.1 71.4

DL-CRF+HFL (SBD) 75.1 69.2 81.6 64.8 71.3 86.4 78.1 84.1 41.2 77.8 50.4 81.6 78.2 78.5 80.7 53.8 74.9 49.1 79.5 70.4 71.4

PI-IOU

DL-CRF (VOC) 46.1 28.0 48.5 54.5 45.5 57.6 34.1 47.3 19.5 61.4 41.6 42.5 34.4 61.8 62.1 22.1 50.5 41.0 61.2 31.9 44.6

DL-CRF+HFL (VOC) 47.5 27.6 50.4 63.5 47.7 57.9 38.7 47.2 21.1 57.3 41.2 43.7 36.0 66.4 61.1 21.3 53.9 42.1 70.9 34.6 46.5

DL-CRF (SBD) 59.4 36.5 58.0 38.6 32.0 58.1 44.7 59.6 25.8 51.8 28.1 59.0 46.9 50.3 61.8 22.2 45.9 33.4 62.1 41.0 45.8

DL-CRF+HFL (SBD) 63.4 42.5 58.4 41.3 32.5 61.2 45.7 61.4 28.4 55.5 31.5 61.4 51.8 54.6 62.1 24.9 52.6 34.2 67.1 45.1 48.8

Table 4: Semantic segmentation results on the SBD and VOC 2007 datasets. We measure the results according to PP-IOU

(per pixel) and PI-IOU (per image) evaluation metrics. We denote the original DeepLab-CRF system and our proposed

modification as DL-CRF and DL-CRF+HFL, respectively. According to the PP-IOU metric, our proposed features (DL-

CRF+HFL) yield almost equivalent results as the original DeepLab-CRF system. However, based on PI-IOU metric, our

proposed features improve the mean accuracy by 3% and 1.9% on SBD and VOC 2007 datasets respectively.

ity matrix connecting every pair of pixels i and j that have

distance 5 or less from each other.

After building a boundary-based affinity matrix W we

set Dii =
P

i 6=j Wij and compute eigenvectors v of the

generalized eigenvalue system:

(D−W)v = λDv

We then resize the eigenvectors v to the original image

dimensions, and use them as additional features to the CRF

part of DeepLab-CRF system. In our experiments, we use

the 16 eigenvectors corresponding to the smallest eigenval-

ues, which results in 16 extra feature channels.

Note that the eigenvectors contain soft segmentation in-

formation. Because HFL boundaries predict object-level

contours with high confidence, the eigenvectors often cap-

ture regions corresponding to objects. We visualize a few

selected eigenvectors in Figure 8. In the experimental sec-

tion, we demonstrate that our proposed features make the

output produced by DeepLab-CRF more spatially coherent

and improve the segmentation accuracy according to one of

the metrics.

We also note that our proposed features are applica-

ble to any generic method that incorporates CRF. For in-

stance, even if DeepLab-CRF used an improved DeepLab

network architecture, our features would still be beneficial

because they contribute directly to the CRF part and not the

DeepLab network part of the system.

4.2.1 Semantic Segmentation Results

In this section, we present semantic segmentation results

on the SBD [11] and also Pascal VOC 2007 [8] datasets,

which both provide ground truth segmentations for 20 Pas-

cal VOC classes. We evaluate the results in terms of two

metrics. The first metric measures the accuracy in terms of

pixel intersection-over-union averaged per pixel (PP-IOU)

across the 20 classes. According to this metric, the accuracy

is computed on a per pixel basis. As a result, the images that

contain large object regions are given more importance.

Figure 8: In this figure, the first column depicts an input

image while the second and third columns illustrate two se-

lected eigenvectors for that image. The eigenvectors contain

soft segmentation information. Because HFL boundaries

capture object-level boundaries, the resulting eigenvectors

primarily segment regions corresponding to the objects.

We observe that while DeepLab-CRF works well on the

images containing large object regions, it produces spatially

disjoint outputs for the images with smaller and object re-

gions (see Figure 9). This issue is often being overlooked,

because according to the PP-IOU metric, the images with

large object regions are given more importance and thus

contribute more to the accuracy. However, certain appli-

cations may require accurate segmentation of small objects.

Therefore, in addition to PP-IOU, we also consider the PI-

IOU metric (pixel intersection-over-union averaged per im-

age across the 20 classes), which gives equal weight to each

of the images.

For both of the metrics we compare the semantic seg-

mentation results of a pure DeepLab-CRF [5] and also a

modification of DeepLab-CRF with our proposed features

added to the CRF framework. We present the results for

both of the metrics in Table 4.

Based on these results, we observe that according to

the first metric (PP-IOU), our proposed features yield al-

most equivalent results as the original DeepLab-CRF sys-

tem. However, according to the second metric (PI-IOU) our

features yield an average improvement of 3% and 1.9% in
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Figure 9: An illustration of the more challenging semantic

segmentation examples. The first column depicts the pre-

dictions achieved by DeepLab-CRF, while the second col-

umn illustrates the results after adding our proposed fea-

tures to the CRF framework. The last column represents

ground truth segmentations. Notice how our proposed fea-

tures render the predicted semantic segments more spatially

coherent and overall more accurate.

SBD and VOC 2007 datasets respectively.

We also visualize the qualitative results produced by both

approaches in Figure 9. Notice how our proposed features

make the segmentations look smoother relative to the seg-

mentations produced by the original DeepLab-CRF system.

Once again, we want to stress that our HFL features

are applicable to any method that uses the CRF. Therefore,

based on the results presented in this section, we believe that

our proposed features could be beneficial in a wide array of

problems that involve the use of the CRF framework.

4.3. Object Proposals

Finally, we show that our method produces object-level

boundaries that can be successfully exploited in an object

proposal scheme. Specifically we adopt the EdgeBoxes ap-

proach [31], which can be applied to any generic bound-

aries to produce a list of object proposal boxes. The origi-

nal EdgeBoxes method uses SE boundaries to generate the

boxes. However, SE boundaries are predicted using low-

level color and texture features, rather than object-level

features. Thus, here we validate the hypothesis that the

EdgeBoxes proposals can be improved by replacing the SE

boundaries with our HFL boundaries.

4.3.1 Object Proposal Results

In this section, we present object proposal results on the

Pascal VOC 2012 dataset [9]. We evaluate the quality of

bounding-box proposals according to three metrics: area

under the curve (AUC), the number of proposals needed to

reach recall of 75%, and the maximum recall over 5000 ob-

ject bounding-boxes. Additionally, we compute the accu-

racy for each of the metrics for three different intersection

Method
IoU 0.65 IoU 0.7 IoU 0.75

AUC N@75% Recall AUC N@75% Recall AUC N@75% Recall

SE 0.52 413 0.93 0.47 658 0.88 0.41 inf 0.75

HFL 0.53 365 0.95 0.48 583 0.9 0.41 2685 0.77

Table 5: Comparison of object proposal results. We

compare the quality of object proposals using Structured

Edges [6] and HFL boundaries. We evaluate the perfor-

mance for three different IOU values and demonstrate that

using HFL boundaries produces better results for each eval-

uation metric and for each IOU value.

over union (IOU) values: 0.65, 0.7, and 0.75. We present

these results in Table 5. As described in Section 4.3, we use

EdgeBoxes [31], a package that uses generic boundaries, to

generate object proposals. We compare the quality of the

generated object proposals when using SE boundaries and

HFL boundaries. We demonstrate that for each IOU value

and for each of the three evaluation metrics, HFL bound-

aries produce better or equivalent results. This confirms our

hypothesis that HFL boundaries can be used effectively for

high-level vision tasks such as generating object proposals.

5. Conclusions

In this work, we presented an efficient architecture that

uses object-level information to predict semantically mean-

ingful boundaries. Most prior edge detection methods rely

exclusively on low-level features, such as color or texture, to

detect the boundaries. However, perception studies suggest

that humans employ object-level reasoning when deciding

whether a given pixel is a boundary [13, 25, 17]. Thus,

we propose a system that focuses on the semantic object-

level cues rather than low level image information to detect

the boundaries. For this reason we refer to our boundary

detection scheme as a High-for-Low approach, where high-

level object features inform the low-level boundary detec-

tion process. In this paper we demonstrated that our pro-

posed method produces boundaries that accurately separate

objects and the background in the image and also achieve

higher F-score compared to any prior work.

Additionally, we showed that, because HFL boundaries

are based on object-level features, they can be employed to

aid a number of high level vision tasks in a Low-for-High

fashion. We use our boundaries to boost the accuracy of

state-of-the-art methods on the high-level vision tasks of se-

mantic boundary labeling, semantic segmentation, and ob-

ject proposals generation. We show that using HFL bound-

aries leads to better results in each of these tasks.

To conclude, our boundary detection method is accurate,

efficient, applicable to a variety of datasets, and also useful

for multiple high-level vision tasks. We plan to release the

source code for HFL upon the publication of the paper .
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