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Abstract

Hands appear very often in egocentric video, and their

appearance and pose give important cues about what peo-

ple are doing and what they are paying attention to. But

existing work in hand detection has made strong assump-

tions that work well in only simple scenarios, such as with

limited interaction with other people or in lab settings. We

develop methods to locate and distinguish between hands in

egocentric video using strong appearance models with Con-

volutional Neural Networks, and introduce a simple can-

didate region generation approach that outperforms exist-

ing techniques at a fraction of the computational cost. We

show how these high-quality bounding boxes can be used to

create accurate pixelwise hand regions, and as an applica-

tion, we investigate the extent to which hand segmentation

alone can distinguish between different activities. We eval-

uate these techniques on a new dataset of 48 first-person

videos of people interacting in realistic environments, with

pixel-level ground truth for over 15,000 hand instances.

1. Introduction

Wearable cameras are starting to catch on, with devices

like Google Glass, GoPro Hero, Narrative Clip, and others

hitting the consumer market in the last few years. These

products are being used to capture the adventures of sports

enthusiasts [36], to help people suffering from memory loss

by creating visual logs of their day [7], to enhance public

safety when worn by police officers [33], to collect data on

human behavior for scientific studies [4], or just for fun.

These devices record huge volumes of images and video,

so people will need automatic techniques to help browse,

search, and visualize the egocentric imagery they collect.

We need computer vision techniques that can handle the

challenges of first-person video, including highly dynamic

camera motion and poor imaging conditions.

While egocentric video captures a huge variety of ob-

jects, activities, and situations, one specific object is om-
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Figure 1: We present a CNN-based technique for detecting,

identifying, and segmenting hands in egocentric videos of

multiple people interacting with each other. To illustrate

one specific application, we show that hand segments alone

can be used for accurate activity recognition.

nipresent in nearly every frame: the hands. We use our

hands as our main channel of interaction with the physical

world, for manipulating objects, sensing the environment,

and expressing ourselves to other people. Our hands are

almost always in our field of view, and their pose and con-

figuration reflects what we are doing and what we intend to

do next. In addition, understanding the activities and inten-

tions of our social partners requires that we also detect their

hands, disambiguating them from our own. This means that

hand detection and tracking are fundamental problems of

egocentric vision, both for computers and people; in fact,

neuroscientists have discovered specific parts of the brain

that respond to identifying our own hands (since “feeling

of ownership of our limbs is a fundamental aspect of self-

consciousness” [8]). We believe that almost any egocentric

computer vision problem, from object detection to activity

recognition, will thus require accurate hand detection.

Recent work in egocentric computer vision on recog-
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nizing manipulated objects and activities has incorporated

hand pose either explicitly or implicitly [11, 26, 28], while

other work has specifically studied hand detection and seg-

mentation [6, 20, 21]. However, these pioneering papers

make assumptions that may limit their applicability in prac-

tice. Most work assumes that no other people appear in the

videos, so that all hands belong to the camera owner. For

instance, the hand segmentation of Li et al. [20,21] is based

on detecting skin pixels, not hands per se, so it would also

find faces or any other bare skin regions. But real-world

egocentric video is full of interactions with other people, so

multiple hands must be found and disambiguated from one

another. Lee et al. [18] allow for interacting people, but

only in a highly-constrained lab setting where hands can be

identified by their position within the egocentric frame.

In this paper we investigate hand detection, disambigua-

tion, and segmentation in first-person videos of interacting

people in realistic settings. Instead of making strong as-

sumptions such as that all skin pixels correspond to hands

or that the geometry of a scene is known ahead of time,

we instead detect and disambiguate hands using strong ap-

pearance models using Convolutional Neural Networks. To

make this efficient, we present a lightweight hand candidate

generation approach based on sampling from a proposal dis-

tribution, and show that it produces better coverage than ex-

isting approaches like selective search [35] at a fraction of

the computational cost. We then use these high-quality hand

detections to perform pixel-level segmentation, outperform-

ing existing first-person hand segmentation approaches. Fi-

nally, we test our hypothesis that hand configuration and

pose give powerful evidence about camera wearer activity,

showing that just these features alone yield impressive ac-

tivity recognition performance. To make these experiments

possible, we introduce a new dataset of 48 videos featur-

ing different participants interacting in a variety of activ-

ities and environments. The dataset includes high-quality

ground truth segmentation masks for over 15,000 hands.

In summary, our contributions in this paper include:

1. deep models for hand detection and classification in

egocentric video, including fast domain-specific re-

gion proposals to dramatically cut computational cost;

2. a new technique for pixelwise hand segmentation;

3. a quantitative analysis of the power of hand location

and pose in recognizing activities; and

4. a large dataset of egocentric interactions with fine-

grained ground truth, which we have publicly released.

2. Related Work

Egocentric vision is becoming a popular research topic

in computer vision, with recent papers dedicated to summa-

rizing and describing events in life-logging photo data [19,

23, 32], recognizing handled objects [13, 27], and identify-

ing activities [11, 12, 26, 30]. Most of this work is based on

ideas from more traditional object and activity recognition,

but with innovations to address the particular challenges

of first-person imagery: highly dynamic and unpredictable

camera motion, unusual composition and viewpoints, and

noise from motion blur and poor illumination conditions.

Ren and Gu [27] were among the first to study hand de-

tection in first-person video, specifically in the context of

held object detection. They treat the problem as figure-

ground segmentation, identifying regions with irregular op-

tical flow patterns that may correspond to hands and held

objects, versus regions with coherent flow in the back-

ground. Fathi et al. [13] extended this work to incorporate

color features to segment hands from objects. The assump-

tion in these papers is that the background is static so that

optical flow can be used for segmentation. This assumption

is often violated in real-world egocentric video, where inter-

actions with other people create dynamic background envi-

ronments and include hands other than the camera owner’s.

Some very recent work has focused specifically on ego-

centric hand segmentation. Li and Kitani [20, 21] explicitly

addressed illumination variation, proposing a model rec-

ommendation approach that picks the best local color fea-

ture model for each environment using scene-level feature

probes. Their approach also assumes that there are no so-

cial interactions, so that the only hands in the video belong

to the camera owner, and does not attempt to distinguish

hands on a semantic level. They define a “hand” to include

contiguous skin regions up to the sleeves, so they are really

studying skin segmentation as opposed to trying to cleanly

segment only hands. This is an important distinction from

our work; we argue that in applications like hand pose clas-

sification or activity recognition, segmentations that are in-

variant to type of clothing are important.

Most relevant to our work is Lee et al. [18], which is the

only paper to our knowledge that attempts to model hands

in social interactions in first-person video. Their model en-

codes spatial arrangements to disambiguate hand types us-

ing a probablistic graphical model. However, they use a

simplistic appearance model and evaluate their method pri-

marily on highly constrained lab videos, and do not consider

hand segmentation or activity recognition as we do here.

Although not directly related, other work has dealt

specifically with hands in different domains. Mittal et

al. [24] developed a system that uses deformable part mod-

els and skin heuristics to detect hands in the PASCAL VOC

Person Layout challenge [10]. In contrast to egocentric im-

agery, these images are of people from a distance, and only

those with visible heads are annotated in the ground truth.

The system exploits these constraints by, for example, lim-

iting the size of hand detections and using head detections

to learn per-frame skin models. Another well-studied prob-

lem is hand pose estimation in 3D vision [9, 31], with some

work starting to consider first-person data. For instance, Lin
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Figure 2: Visualizations of our dataset and ground truth annotations. Left: Ground truth hand segmentation masks superim-

posed on sample frames from the dataset, where colors indicate the different hand types. Right: A random subset of cropped

hands according to ground truth segmentations (resized to square aspect ratios for ease of visualization).

et al. [22] show that the 3D shape of a grasping hand can

help improve recognition of the objects being grasped. We

also study pose in the context of interacting with (and thus

grasping) objects, but we do not require depth information.

3. EgoHands: A large egocentric hand dataset

We begin by presenting a new dataset of first-person

video of pairs of interacting people, each with synchro-

nized video from head-mounted cameras. Other first-person

video datasets that have been proposed [13, 21, 26, 28] are

designed to test recognition of activities or handled objects,

with minimal interaction with other people. In contrast, our

videos include more realistic and challenging social situa-

tions where multiple sets of hands appear in the view.

To create as realistic a dataset as possible while still giv-

ing some experimental control, we collected data from dif-

ferent pairs of four participants who sat facing each other

while engaged in different activities. We chose four activ-

ities that encourage interaction and hand motion: (1) play-

ing cards, specifically a simple version of Mau Mau [2]; (2)

playing chess, where for efficiency we encouraged partici-

pants to focus on speed rather than strategy; (3) solving a

24- or 48-piece jigsaw puzzle; and (4) playing Jenga [1],

which involves removing pieces from a 3d puzzle until it

collapses. Sample frames for each activity are shown in

Figure 1. We also varied context by collecting videos in

three different locations: a table in a conference room, a

patio table in an outdoor courtyard, and a coffee table in a

home. We recorded over multiple days and did not restrict

participant clothing so there is significant variety (e.g. both

short- and long-sleeved shirts, etc.). We systematically col-

lected data from four actors performing all four activities at

all three locations while randomly assigning participants to

one another for interaction, resulting in 4 × 4 × 3 = 48
unique combinations of videos. Each participant wore a

Google Glass, which recorded 720×1280 video at 30 Hz.

In post-processing, we synchronized the video pairs to

one another and cut them to be exactly 90 seconds (2,700

frames) each. For ground truth, we manually annotated a

random subset of 100 frames from each video (about one

frame per second) with pixel-level hand masks. Each hand

pixel was given one of four labels: the camera wearer’s left

or right hand (“own left” or “own right”), or the social part-

ner’s left or right hand (“other left” or “other right”). The

ground truth was created by six students who were told to

label any hand pixels they could see, including very small

hand regions caused by occlusion with objects or truncation

at frame boundaries. Importantly, we defined the “hand” to

stop at the wrist, in contrast to other work [20, 21] which

has also included arms up to the participant’s sleeves. We

believe our definition is more useful and realistic in prac-

tice: if the goal is to detect hand pose and activities, for

instance, the definition of what is a hand should not change

dramatically depending on what a participant is wearing.

In total, our dataset contains around 130,000 frames of

video, of which 4,800 frames have pixel-level ground truth

consisting of 15,053 hands. The partner’s hands appear in

the vast majority of frames (95.2% and 94.0% for left and

right, respectively), while the wearer’s hands are seen less

often (53.3% and 71.1% for left and right). This is likely be-

cause one’s own hands are more frequently outside the cam-

era’s field of view, but right hands occur more often because

people tend to align their attention with their dominant hand

(and all our participants were right-handed). Figure 2 shows

sample frames with ground truth.

To our knowledge, this is the largest dataset of hands in

egocentric video, and we have released it on the web1 with

ground truth accessible through a Matlab API that we pro-

vide. We randomly partitioned the set of videos into train-

ing, validation, and test groups, such that actors, activities

and locations are evenly distributed across partitions. This

partitioning with 36 training, 4 validation, and 8 test videos

is our “main split” that we use for most of our experiments.

1http://vision.soic.indiana.edu/egohands/
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4. Hand Detection

In principle, finding hands in first-person video frames

is simply an instantiation of one particular object detection

task, for which we could apply any general object detection

algorithm. But in practice, detecting hands requires some

special considerations. Hands are highly flexible objects

whose appearance and position can vary dramatically, but

nonetheless we need models that are strong enough to dis-

criminate between hand types (i.e., left vs. right hands, and

the camera wearer’s own hands vs. their social partner’s).

Convolution Neural Networks (CNNs) offer very good

performance for classification tasks [17]. For object detec-

tion, the now-standard approach is to divide an image into

candidate windows, rescale each window to a fixed size,

fine-tune a CNN for window classification [14,34], and then

perform non-maximum suppression to combine the output

of the region-level classifier into object detection results.

Of course, the space of possible proposal windows is enor-

mous, so it is important to propose regions that capture as

many objects as possible in the fewest number of proposals.

In the context of detecting hands in egocentric views,

there are strong spatial biases to hand location and size [5,

18], because of the way people coordinate head and hand

movements: people are likely to center their active hand in

or near their visual field as they perform a task, for exam-

ple. We thus propose a simple approach to candidate win-

dow sampling that combines spatial biases and appearance

models in a unified probabilistic framework.

4.1. Generating Proposals Efficiently

Our primary motivation is to model the probability that

an object O appears in a region R of image I ,

P (O|R, I) ∝ P (I|R,O)P (R|O)P (O)

where P (O) is the object occurrence probability of the ob-

ject, P (R|O) is the prior distribution over the size, shape,

and position of regions containing O, and P (I|R,O) is an

appearance model evaluated at R for O. Given a parame-

terization that allows for sampling, high quality regions can

then be drawn from this distribution directly.

Here we assume regions are rectangular, so they are pa-

rameterized by an image coordinate and width and height.

For each of the four types of hands, we can then estimate

P (O) directly from the training data, and for P (R|O) we fit

a four-dimensional Gaussian kernel density estimator [15]

again using the ground truth. For the appearance model

P (I|R,O) we define a simple model that estimates the

probability that the central pixel of R is skin, based on a

non-parametric modeling of skin color in YUV color space

(disregarding the luminance channel). While simple, this

model lets us sample very efficiently, by drawing a hand

type O, and then sampling a bounding box from the KDE

of P (R|O), with the kernel weights adjusted by P (I|R,O).
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Figure 3: Hand coverage versus number of proposals per

frame, for various proposal methods. The mean and stan-

dard deviation (shaded) across five trials are shown.

To evaluate this candidate generation technique, we mea-

sured its coverage — the percentage of ground truth objects

that have a high enough overlap (intersection over union)

with the proposed windows to be counted as positive dur-

ing detection. This is an important measure because it is an

upper-bound on recall. Figure 3 shows coverage as a func-

tion of the number of proposed windows per frame for our

method and two other popular window proposal methods:

selective search [35] (which is the basis of the popular R-

CNN detector [14]) and objectness [3]. The baselines were

run using those authors’ code, with parameters tuned for

best results (for selective search, we used the “fast” settings

given by the authors but with k set to 50; for objectness,

we retrained the object-specific weights on our dataset). As

shown in the figure, our direct sampling technique (red solid

line) significantly outperforms either baseline (dashed green

and blue lines) at the same number of candidates. Sur-

prisingly, even our direct sampling without the appearance

model (red dotted line) performed significantly better than

objectness and about the same as selective search.

To further investigate the strength of the spatial consis-

tencies of egocentric interaction, we also subsampled the

baseline proposals biased by our learned model P (O|R, I).
For both baselines, incorporating our learned distribution

improved results significantly (solid blue and green lines),

to the extent that biased sampling from selective search per-

forms as well as our direct sampling for lower numbers of

proposals. However, our full technique offers a dramatic

speedup, producing 1500 windows per frame in just 0.078

seconds versus 4.38 and 7.22 seconds for selective search

and objectness. All coverage experiments were performed

on a machine with a 2.50GHz Intel Xeon processor.

4.2. Window Classification using CNNs

Given our accurate, efficient window proposal technique,

we can now use a standard CNN classification framework to

classify each proposal (after resizing to the fixed-sized in-
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put of the CNN). We used CaffeNet from the Caffe soft-

ware package [16] which is a slightly modified form of

AlexNet [17]. We also experimented with other network

designs such as GoogLeNet [34], but found that when com-

bined with our window proposal method, detection results

were practically identical.

We found that certain adjustments to the default Caffe

training procedure were important both to convergence and

the performance of our networks. Only 3% of our proposed

windows are positive so to avoid converging to the trivial

majority classifier, we construct each training batch to con-

tain an equal number of samples from each class. Also, we

disabled Caffe’s feature that augments the training data with

horizontally and vertically flipped versions of exemplar im-

ages, since this reduced the classifier’s ability to differenti-

ate between left and right hands, for example.

The full detection pipeline consists of generating spa-

tially sampled window proposals, classifying the window

crops with the fine-tuned CNN, and performing per-class

non-maximum suppression for each test frame. Each of

these components has a number of free parameters that must

be learned. For our window proposal method, we esti-

mate the spatial and appearance distributions from ground

truth annotations in the training set and sample 2,500 win-

dows per frame to provide a high coverage. The CNN

weights are initialized from CaffeNet excluding the final

fully-connected layer which is set using a zero-mean Gaus-

sian. We then fine-tune the network using stochastic gradi-

ent descent with a learning rate of 0.001 and momentum of

0.999. The network was trained until the validation set error

converged. The overlap thresholds for non-max suppression

were optimized for each class based on average precision on

the validation set. To keep our technique as general as pos-

sible, we do not take advantage of the constraint that each

hand type should appear at most once in a given frame, al-

though this is an interesting direction for future work.

4.3. Detection Results

We evaluate the effectiveness of our detection pipeline in

two contexts: detecting hands of any type, and then detect-

ing hands of specific types (“own left”, “own right”, etc.).

In both cases, we use the PASCAL VOC criteria for scor-

ing detections (that the intersection over union between the

ground truth bounding box and detected bounding box is

greater than 0.5). Figure 4 shows precision-recall curves

for both tasks, applied to the “main split” discussed in Sec-

tion 3. For the general hand detection task (left), we obtain

an average precision (AP) of 0.807 using our candidate win-

dow sampling approach, which is significantly higher than

the 0.763 for selective search and 0.568 for objectness.

The right pane of Figure 4 shows Precision-Recall curves

for distinguishing between the four hand types. For compar-

ison, we also plot the performance of Lee et al. [18] on our
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Figure 4: Precision-Recall curves for detecting hands. Left:

General hand detection results with other window-proposal

methods as baselines. Right: Results for detecting four dif-

ferent hand types compared with Lee et al. [18].

dataset. Direct comparison is not possible as their technique

only estimates hand centroid positions, not bounding boxes;

we make the comparison as favorable to them as possible

by scoring a centroid as correct if it falls anywhere in the

ground truth bounding box. They also generate only a sin-

gle MAP estimate per frame, so performance is a P-R point

instead of a curve. Our method outperforms significantly,

likely due to our much stronger appearance models.

There is a curious asymmetry in our hand type de-

tections, with our approach achieving significantly better

results for the social partner’s hands versus the camera

owner’s. Figure 5 gives insight on why this may be, pre-

senting detection results from randomly-chosen frames of

the test set. Hands of the camera wearer tend to have many

more duplicate detections on subparts of the hands (e.g. in

row 2, column 2 of the figure). We attribute this tendency

to how frequently “own” hands are truncated by the frame

boundaries and thus appear as single or only a few fingers

in the dataset. Including these partial detections alongside

fully visible hands during training encourages the network

to model both appearances to minimize error. While this

does result in a loss of precision, the system gains the abil-

ity to robustly detect hands that are occluded or only par-

tially in the frame (e.g. row 3, column 3) which is often the

case for egocentric video, due to the relatively narrow field

of view of most cameras compared to that of humans.

Error analysis. A related question is whether the errors are

primarily caused by failure to detect hands of different types

or confusion between hand types once a hand is detected.

An analysis of the per-window classifications showed that

only 2% of hand windows are mislabelled as other hands.

Similarly for detection, 99% of undetected hands at a re-

call of 70% are due to confusion with the background class.

Generally, our predictions tend to be nearly uniform for

windows with ambiguous hand types, which are then re-

moved by reasonable decision thresholds and non-max sup-

pression. The qualitative results in Figure 5 also suggest

that there is little confusion between different hand types.
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Figure 5: Randomly-chosen frames with hand detection results, for own left, own right, other left, and other right hands,

at a detection threshold where recall was 0.7. Thick and thin rectangles denote true and false positives, respectively.

Generalizing across actors, activities, and locations. We

next tested how well our classifiers generalize across dif-

ferent activities, different people, and different locations.

To do this, we generated three different types of partition-

ings of our dataset across each dimension, where each split

leaves out all videos containing a specific (first-person) ac-

tor, activity, or location during training, and tests only on the

held-out videos. We also split on actor pairs and activities

jointly, creating 18 divisions (as not all pairs did all activi-

ties). This stricter task requires the method to detect hands

of people it has never seen doing activities it has never seen.

Table 1 summarizes our results, again in terms of average

precision (AP), with averages across splits weighted by the

number of hand instances. The table shows that the detector

generalizes robustly across actors, with APs in a tight range

from 0.790 to 0.826 no matter which actor was held out.

This suggests that our classifier may have learned general

characteristics of human hands instead of specific proper-

ties of our particular participants, although our sample size

of four people is small and includes limited diversity (rep-

resenting three different ethnicities but all were male). For

locations, the courtyard and office environments were ro-

bust, but AP dropped to 0.648 when testing on the home

data. A possible explanation is that the viewpoint of partici-

pants in this location is significantly different, because they

were seated on the floor around a low table instead of sitting

in chairs. For activities, three of the four (cards, puzzle, and

chess) show about the same precision when held out, but

Jenga had significantly lower AP (0.665). The Jenga videos

contain frequent partial occlusions, and the tower itself is

prone to be mistaken for hands that it occludes (e.g. row 3,

column 3 of Figure 5). Finally, splitting across actor pairs

and activities results in a sharper decrease in AP, although

they are still quite reasonable given the much smaller (about

6x) training sets caused by this strict partitioning of the data.

Own hands Other hands

All hands Left Right Left Right

Main split 0.807 0.640 0.727 0.813 0.781

All activities but:

cards 0.768 0.606 0.776 0.708 0.732

chess 0.851 0.712 0.788 0.821 0.808

Jenga 0.665 0.644 0.693 0.583 0.502

puzzle 0.803 0.747 0.813 0.675 0.681

weighted average 0.772 0.675 0.768 0.699 0.686

All actors but:

B 0.799 0.669 0.773 0.779 0.796

H 0.816 0.718 0.772 0.756 0.740

S 0.790 0.709 0.798 0.799 0.696

T 0.826 0.689 0.783 0.770 0.789

weighted average 0.807 0.700 0.782 0.776 0.756

All locations but:

courtyard 0.790 0.702 0.785 0.755 0.755

office 0.772 0.659 0.757 0.794 0.687

home 0.648 0.558 0.703 0.538 0.591

weighted average 0.737 0.639 0.748 0.698 0.678

Split across actor pairs and activities

weighted average 0.627 0.492 0.598 0.513 0.542

Table 1: Hand detection accuracy when holding out individ-

ual activities, participants, and locations, in terms of aver-

age precision. For example, the training set for all activities

but cards included all videos not containing card playing,

while the test set consisted only of card playing videos.

5. Segmenting Hands

While simply detecting hands may be sufficient for some

applications, pixelwise segmentation is often more useful,

especially for applications like hand pose recognition and

in-hand object detection [22]. Once we have accurately lo-

calized hands using the above approach, segmentation is

relatively straightforward, as we show in this section. We

use our detector both to focus segmentation on local image
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regions, and to provide semantic labels for the segments.

Our goal in this section is to label each pixel as belong-

ing either to the background or to a specific hand class. We

assume most pixels inside a box produced by our detector

correspond with a hand, albeit with a significant number

of background pixels caused both by detector error and be-

cause hands rarely fill a bounding rectangle. This assump-

tion allows us to apply a well-known semi-supervised seg-

mentation algorithm, GrabCut [29], to our problem. Given

an approximate foreground mask, GrabCut improves the

segmentation by iteratively refining appearance models of

the foreground and background pixels, and relabeling fore-

ground and background using a Markov Random Field.

In more detail, for each detected hand bounding box, we

use the simple color skin model described in Section 4.1 to

estimate an initial foreground mask. We use an aggressive

threshold so that all pixels within the box are marked fore-

ground except those having very low probability of being

skin. Note that we avoid running GrabCut on the entire im-

age because arms, faces, and other hands would confuse the

background color model. Instead, we use a padded region

around the bounding box, ensuring that only local back-

ground content is modeled. We take the union of the output

masks for all detected boxes as the final segmentation.

Segmentation results. Using the skin color model learned

for the training set, we detected hands and produced seg-

mentations for each frame in our test set. To put our results

in context, we ran the publicly-available pixelwise hand de-

tector of Li et al. [21], which was designed for first per-

son data. We trained their technique with 900 randomly-

sampled frames from our training set. As we mentioned

before, that paper defines “hand” to include any skin re-

gions connected to a hand, including the entire arm if it is

exposed. To enable a direct comparison to our more lit-

eral definition of hand detection, we took the intersection

between its output and our padded bounding boxes.

Table 2 presents segmentation accuracy, in terms of pix-

elwise intersection over union between the estimated seg-

mentation mask and the ground truth annotations. Our tech-

nique achieves significantly better accuracy than the base-

line of [21] (0.556 versus 0.478). A similar trend is present

across the stricter actor pair and activity data splits. Figure 6

shows our segmentations on some randomly-sampled test

frames. Examining the differences between our approach

and the baseline lends some insight. Our GrabCut-based

approach looks only at local image color distributions and

leans heavily on the quality of our detections. The baseline

method, however, learns classifiers that must perform well

across an entire frame which is complicated by the close

visual similarity between hands and other visible skin.

Failure modes. Our method has two main possible failure

modes: failure to properly detect hand bounding boxes, and

Own hands Other hands

Left Right Left Right Average

Main split

Ours 0.515 0.579 0.560 0.569 0.556

Li et al. [21] 0.395 0.478 0.534 0.505 0.478

Split across actor pairs and activities

Ours 0.357 0.477 0.367 0.398 0.400

Li et al. 0.243 0.420 0.361 0.387 0.353

Table 2: Hand segmentation results, in terms of intersection

over union with ground truth.

Figure 6: Hand segmentation results on random frames,

zoomed into areas containing hands.

inaccuracy in distinguishing hand pixels from background

within the boxes. To analyze the influence of each, we per-

form an ablation study based on the ground truth annota-

tions. Applying our segmentation approach to the ground

truth detection boxes instead of the output of the hand clas-

sifier, our results rose from 0.556 to 0.73. On the other

hand, taking the output of our hand detector but using the

ground truth segmentation masks (by taking the intersection

with the detected boxes) achieved 0.76. Each of the studies

improve over our fully automatic approach by roughly 30-

35%, indicating that neither detection nor segmentation is

individually to blame for the decrease in accuracy, and that

there is room for future work to improve upon both.

6. Hand-based Activity Recognition

We now investigate one particular application of hand

detection and segmentation in first-person video: activity

recognition. Interacting with different objects affords dif-

ferent types of hand grasps, the taxonomies of which have

been throughly studied [25]. Moreover, when multiple ac-

tors are interacting, it seems likely that the absolute and

relative position of hands within in the field of view also

reveals evidence about the activity that the actors are per-

forming. An interesting question is whether activities can

be detected based on hand pose information alone, without

using any information about the appearance or identity of

handled objects or the rest of the scene. Aside from aca-
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demic interest, focusing on hands independently of scene

could be valuable in recognition systems: while it may be

impossible to model or anticipate every single handled ob-

ject or visual environment, we have shown that it is very

possible to accurately detect and segment hands. To what

extent could hand pose alone solve activity recognition in

first-person views?

To address this question, we fine-tuned another CNN to

classify whole frames as one of our four different activities.

To prevent the classifier from seeing any information other

than hands, we used the ground truth segmentation to mask

out all non-hand background (see bottom right of Figure 1).

The network saw 900 frames per activity across 36 videos

during training and 100 per activity across four videos for

validation. The classifier achieved 66.4% per-frame classi-

fication accuracy, or roughly 2.7 times random chance, on

our test dataset with non-hand regions blacked out. While

these results are not perfect, they do confirm a strong con-

nection between activities and hand location and pose.

To evaluate how well the technique would work in an

automated system, we reran the above experiment using the

output of our segmentation instead of the ground truth for

the test set. The per-frame activity classification accuracy

falls from 66.4% to 50.9%, but this is still roughly twice ran-

dom chance. This decline is caused by two types of errors,

of course: incorrect information about the spatial configu-

ration of the hands due to imperfect detection, and incorrect

hand pose information due to imperfect segmentation. We

once again investigated the relative effect of these errors,

similar to the ablation study described in Section 5, and

found that replacing either detection or segmentation with

ground truth increased the fully automatic performance by

about nine percentage points. This suggests that capturing

the spatial arrangement of hands and correctly predicting

their pose are equally important to per-frame activity recog-

nition using only hand information.

Incorporating temporal constraints. So far we have con-

sidered each frame independently, but of course much in-

formation about activity lies in the temporal dynamics of

the hands over time. We tried a simple voting-based ap-

proach to incorporate some of this temporal structure: we

classify each individual frame in the context of a fixed-size

temporal window centered on the frame. Scores across the

window are summed, and the frame is labeled as the high-

est scoring class. To again compare with the ground truth

informed upper bound, we only consider labeled frames, so

a window of k frames spans approximately k seconds.

Table 3 presents the results. Temporal information

increases activity recognition accuracy significantly, with

even a window of 5 frames improving results from 0.664

to 0.764 when using ground truth segmentations, and from

0.509 to 0.618 using the fully automatic system. Accuracy

continues to improve with increasing window size, with 50

Window size (k)

1 5 15 30 50

Main split

Segmentation mask 0.509 0.618 0.680 0.724 0.734

Ground truth mask 0.664 0.764 0.851 0.900 0.929

Split across actor pairs (average)

Segmentation mask 0.570 0.639 0.679 0.687 0.671

Ground truth mask 0.661 0.742 0.790 0.814 0.847

Table 3: Activity recognition accuracy from hand masks,

using a temporal window of k frames. See text for details.

frames achieving 0.929 with the ground truth and 0.734 for

the automatic segmentations. This improvement is likely

due to two factors: certain hand poses may be more distinc-

tive than others, and segmentation errors in any given frame

can be disregarded as outliers. We also show results aver-

aged over stricter splits, such that any actor seen in testing

is not seen in training. This partitioning reduces the number

of splits with enough test data to two, since not all pairs per-

formed all activities. Though limited in scope, the results of

this strict task are similar to the “main split.”

Our results suggest that hand segmentation could deliver

high activity recognition accuracy without the need to rec-

ognize objects or backgrounds; however, our ground truth

experiments show that automated approaches would benefit

from increased segmentation accuracy.

7. Conclusion and Future Work

We showed how to detect and distinguish hands in first

person video, by combining CNN-based classification with

fast candidate generation based on sampling from a joint

model of hand appearance and geometry. We then showed

that these detections could also be used to yield state-of-the-

art hand pose segmentation. We explored the potential of

these segmentations by showing that activities can be suc-

cessfully recognied in our first-person dataset based on the

configuration and pose of hands alone. Finally, we intro-

duced a novel first-person dataset with dynamic interactions

between people, along with fine-grained ground truth.

In future work, we plan to generalize our hand-based ac-

tivity recognition to larger sets of activities, including fine-

grained actions (e.g. picking up vs. laying down a card). We

will also consider more challenging social situations, e.g.

with multiple interacting people moving around the room.
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