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Abstract

Several recent works have shown that image descriptors

produced by deep convolutional neural networks provide

state-of-the-art performance for image classification and

retrieval problems. It has also been shown that the acti-

vations from the convolutional layers can be interpreted as

local features describing particular image regions. These

local features can be aggregated using aggregation ap-

proaches developed for local features (e.g. Fisher vectors),

thus providing new powerful global descriptors.

In this paper we investigate possible ways to aggregate

local deep features to produce compact global descrip-

tors for image retrieval. First, we show that deep fea-

tures and traditional hand-engineered features have quite

different distributions of pairwise similarities, hence exist-

ing aggregation methods have to be carefully re-evaluated.

Such re-evaluation reveals that in contrast to shallow fea-

tures, the simple aggregation method based on sum pooling

provides arguably the best performance for deep convolu-

tional features. This method is efficient, has few parameters,

and bears little risk of overfitting when e.g. learning the

PCA matrix. Overall, the new compact global descriptor

improves the state-of-the-art on four common benchmarks

considerably.

1. Introduction

Image descriptors based on the activations within deep

convolutional neural networks (CNNs) [13] have emerged

as state-of-the-art generic descriptors for visual recogni-

tion [18, 21, 4]. Several recent works [2, 21, 7] proposed

to use the outputs of last fully-connected network layers as

global image descriptors and demonstrate their advantage

over prior state-of-the-art when the dimensionality of de-

scriptors is limited.

Recently, research attention shifted from the features ex-

tracted from the fully-connected layers to the features from

the deep convolutional layers of CNNs [5, 22, 14] (below

we refer to these features as deep convolutional features).

These features possess very useful properties, e.g. they can

be extracted straightforwardly and efficiently from an im-

age of any size and aspect ratio. Also, features from the

convolutional layers have a natural interpretation as descrip-

tors of local image regions corresponding to receptive fields

of the particular features. Such features can thus be con-

sidered as an analogy of “shallow” hand-crafted features

such as dense SIFT [16, 26]. Perhaps inspired by this anal-

ogy, [15] suggested to use such features to identify mean-

ingful object parts, while [5] proposed to use Fisher vector

[23] constructed on these local features to produce a global

image descriptor that provides state-of-the-art classification

performance on external datasets.

The focus of this paper is image retrieval and in par-

ticular the construction of global descriptors for image re-

trieval. Following recent papers [2, 7, 21, 22], we con-

sider descriptors based on activations of pretrained deep

CNNs, and specifically deep convolutional layers of CNNs.

Given the emerging perception of the features in the convo-

lutional layers as “new dense SIFT” [15, 22, 5, 14], it seems

natural to reuse state-of-the-art embedding-and-aggregation

frameworks for dense SIFT such as VLAD [9], Fisher vec-

tors [19] or triangular embedding [10], and apply them to

deep convolutional features. Our first contribution is the

evaluation of these approaches (specifically, Fisher vectors

and triangular embeddings) alongside simpler aggregation

schemes such as sum pooling and max pooling.

Perhaps surprisingly, we have found that the relative per-

formance of the aggregation methods for deep convolu-

tional features is rather different from the case of shallow

descriptors. In particular, a simple global descriptor based

on sum pooling aggregation without high-dimensional em-

bedding and with simple postprocessing performs remark-

ably well. Such descriptors based on sum-pooled convolu-

tional features (SPoC descriptors) improve considerably the

state-of-the-art for compact global descriptors on standard

retrieval datasets, and perform much better than deep global

descriptors for retrieval previously suggested in [2, 7, 22].

In addition to the excellent retrieval accuracy, SPoC features

are efficient to compute, simple to implement and have al-
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most no hyperparameters to tune.

Importantly, SPoC features perform better than Fisher

vector and triangular embeddings of deep convolutional fea-

tures. This is in sharp contrast to the dense SIFT case, where

sum pooling of raw features does not produce a competi-

tive global descriptor. We further investigate why the per-

formance of deep convolutional features is different from

shallow features (SIFT), and show that the preliminary em-

bedding step is not needed for deep convolutional features

because of their higher discriminative ability and different

distribution properties. Both qualitative explanation and ex-

perimental confirmations for this claim are provided.

Overall, this paper introduces and evaluates a new sim-

ple and compact global image descriptor and investigates

the reasons underlying its success. The descriptor outper-

forms the existing methods on the common retrieval bench-

marks. For example, the performance of 0.66 mAP on the

Oxford dataset with 256-dimensional representation (when

using entire images during query process) is achieved.

2. Related work

Descriptor aggregation. The problem of aggregating a

set of local descriptors (such as SIFT) into a global one has

been studied extensively. The best known approaches are

VLAD [9], Fisher Vectors [19], and, more recently, trian-

gular embedding [10], which constitutes state-of-the-art for

“hand-crafted” features like SIFT.

Let us review the ideas behind these schemes (using the

notation from [10]). An image I is represented by a set

of features {x1, . . . , xn} ⊂ R
d. The goal is to combine

these features into a discriminative global representation

ψ(I). Discriminativity here means that the representations

of two images with the same object or scene are more sim-

ilar (e.g. w.r.t. cosine similarity) than the representations of

two unrelated images. Apart from discriminativity, most ap-

plications have a preference towards more compact global

descriptors, which is also a focus of our work here. Con-

sequently, the dimensionality of ψ(I) is reduced by PCA

followed by certain normalization procedures.

The common way to produce a representation ψ(I)
includes two steps, namely embedding and aggregation

(optionally followed by PCA). The embedding step maps

each individual feature x into a higher dimensional vector

φ(x) ∈ R
D. Then the aggregation of mapped features

{φ(x1), . . . , φ(xn)} ⊂ R
D is performed. One possible

choice for this step is a simple summation ψ(I) =
∑

φ(xi)
but more advanced methods (e.g. democratic kernel [10])

are possible.

The existing frameworks differ in the choice of the map-

ping φ. For example, VLAD precomputes a codebook

of K centroids {c1, . . . , cK} and then maps x to vector

φVL(x) = [0 0 . . . , (x − ck) . . . , 0] ∈ R
K×d, where

k is the number of the closest centroid to x. The pipeline

for Fisher vector embedding is similar except that it uses

the soft probabilistic quantization instead of hard quantiza-

tion in VLAD. It also includes the second-order informa-

tion about the residuals of individual features into embed-

ding. Triangulation Embedding [10] also uses cluster cen-

troids and embeds an individual feature x by a concatena-

tion of normalized differences between it and cluster cen-

troids φTE(x) =
[

x−c1
||x−c1||

, . . . , x−cK
||x−cK ||

]

. Then the embed-

dings φTE(x) are centered, whitened and normalized.

The rationale behind the embedding step is to improve

the discriminative ability of individual features. Without

such embedding, a pair of SIFT features xi, xj coming from

unrelated images have a considerable chance of having a

large value of the scalar product 〈xi, xj〉. This becomes

a source of accidental false positive matches between lo-

cal features, and, if the dataset is big enough, between im-

ages (as the similarity between resulting global descriptors

is aggregated from similarities between pairs of local fea-

tures [3, 25]). The embedding methods φ(·) are typically

designed to suppress such false positives. For instance,

VLAD embedding suppresses all matches between pairs of

features that are adjacent to different centroids in the code-

book (making the corresponding scalar product zero). Sim-

ilar analysis can be performed for other embeddings.

Suppressing false positives with high-dimensional map-

pings has certain drawbacks. First, such mapping can also

suppress true positive matches between local features. Sec-

ond, the embedding usually includes learning a lot of pa-

rameters that can suffer from overfitting if the statistics of

training and test sets differ. Likewise, as the representations

ψ(I) can be very high-dimensional, it may require hold-out

data with similar statistics to learn reliable PCA and whiten-

ing matrices. For this reason [10] proposes to use PCA rota-

tion and power-normalization instead of whitening. Finally,

high-dimensional embeddings are computationally intense

compared to simpler aggregation schemes.

Despite these drawbacks, high-dimensional embeddings

are invariably used with features like SIFT, since without

them the discriminativity of the resulting global descrip-

tors is unacceptingly low. In this paper, we demonstrate

that in contrast to SIFT, the similarities of raw deep con-

volutional features are reliable enough to be used without

embedding. Simple sum-pooling aggregation performed on

unembedded features thus provides the performance which

is comparable with high-dimensional embeddings. Elimi-

nating the embedding step simplifies the descriptor, leads

to faster computation, avoids problems with overfitting, and

overall leads to a new state-of-the-art compact descriptor

for image retrieval.

Deep descriptors for retrieval. Several prior works

have considered the use of deep features for image retrieval.

Thus, the seminal work [12] have presented qualitative ex-

amples of retrieval using deep features extracted from fully-
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Figure 1. Randomly selected examples of image patches that are matched by individual deep features (top row), by original SIFT features

(middle row) or by Fisher Vector-embedded SIFT features (bottom row). For deep features only the centers of corresponding receptive

fields are shown. Overall, the matches produced by deep features has much lower false positive rate.

connected layers. After that, [2] has extensively evaluated

the performance of such features with and without fine-

tuning on related dataset, and overall reported that PCA-

compressed deep features can outperform compact descrip-

tors computed on traditional SIFT-like features.

Simultaneously, in [7] an even more performant desrip-

tors were suggested based on extracting different fragments

of the image, passing them through a CNN and then us-

ing VLAD-embedding [9] to aggregate the activations of

a fully-connected layer. Related to that, the work [21] re-

ported very good retrieval results using sets of few dozen

features from fully-connected layers of a CNN, without ag-

gregating them into a global desriptor.

Finally, the recent works [1, 22] evaluated image re-

trieval descriptors obtained by the max pooling aggregation

of the last convolutional layer. Here, we show that using

sum pooling to aggregate features on the last convolutional

layer leads to much better performance. This is consistent

with the interpretation of sum pooling aggregation as an

implementation of the simplest match kernel [3], which is

lacking in the case of max pooling.

Overall, compared to previous works [2, 7, 21, 1, 22] we

show that a number of design choices within our descrp-

tor (SPoC) lead to a big boost in descriptor accuracy and

efficiency. Compared to those works, we also discuss and

analyze the connection to the body of work on descriptor

aggregation and evaluate several important aggregation al-

ternatives.

3. Deep features aggregation

In this section, we first compare the distribution proper-

ties of deep convolutional features and SIFTs and highlight

their differences. Based on these differences, we propose

a new global image descriptor that avoids the embedding

step necessary for SIFTs and discuss several design choices

associated with this descriptor.

In our experiments, deep convolutional features are ex-

tracted by passing an image I through a pretrained deep net-

work, and considering the output of the last convolutional

layer. Let this layer consist of C feature maps each having

height H and width W . Then the input image I is repre-

sented with a set of H ×W C-dimensional vectors, which

are the deep convolutional features we work with.

3.1. Properties of local feature similarities

As was analysed in e.g. [10] individual similarities of

raw SIFT features are not reliable, i.e. unrelated image

patches can result in very close SIFT features. Deep fea-

tures are expected to be much more powerful as they are

learned from massive amount of data in a supervised man-
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ner. To confirm this, we have performed a comparison of

the properties of similarities computed on the features in

the form of two experiments.

Experiment 1 looks at patches matched by the three

types of descriptors (Figure 1). To find these patches we

proceed as follows:

• For each image in the Oxford Buildings dataset we ex-

tract both deep features and dense SIFT features.

• We embed SIFT features via Fisher vector embedding

with 64 components.

• For each feature type (deep convolutional, original

SIFT, embedded SIFT), for each query image we com-

pute cosine similarity between its features and the fea-

tures of all other images in the dataset.

• We consider random feature pairs from the top ten list

for each image in terms of their similarities and vi-

sualize the corresponding image patches (full recep-

tive field for original and embedded SIFT features, the

center of the receptive field for deep convolutional fea-

tures).

Figure 1 shows the random subset of the feature pair se-

lected with such procedure (one randomly-chosen feature

pair per Oxford building), with the top row corresponding to

matching based on deep convolutional features, the middle

to original dense SIFT, and the bottom to embedded SIFT.

As expected, matches produced by deep features have much

fewer obvious false positives among them, as they often cor-

respond to the same object with noticeable tolerance to il-

lumination/viewpoint changes and small shifts. SIFT-based

matches are significantly worse and many of them corre-

spond to unrelated image patches. The embedding of SIFT

features by Fisher vector improves the quality of matches

but still performs worse than deep features.

Experiment 2. We also investigate the statistics of high-

dimensional distributions for deep convolutional features

and dense SIFTs. Most of all we are interested in the dis-

tribution of deep features with largest norms as these fea-

tures contribute most to a global descriptor. We also observe

them to be the most discriminative by the following exper-

iment. We performed retrieval by sum pooling descriptor

but we aggregated only (1) 1% random features (2) 1% of

features which had the largest norm. The mAP score for the

Oxford Buildings dataset [20] for (1) was only 0.09, which

was much smaller than mAP for (2), 0.34. This verifies

that features with large norms are much more discrimina-

tive than random features.

For different types of features we want to investigate the

reliability of matches produced by their individual similar-

ities. To do this, we compare distances from each point to

its closest neighbors with distances to random points in the
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Figure 2. The average ratio between the distances to the kth neigh-

bor and the median distance to all features for dense SIFT and deep

convolutional features with the highest norm from three convolu-

tional layers. The features from the last convolutional layer tend

to have much closer neighbors (hence much smaller ratios) despite

having higher dimensionality thus reflecting the differences in the

spatial distribution of the two types of features in the correspond-

ing high-dimensional spaces.

dataset. In more details, we perform the following. From

each query image, we extract ten deep features with maxi-

mum norms and for each of them compute the distances to

all deep convolutional features of other images. Then we

plot a graph which demonstrates how the distance to the k-

th neighbor depends on its index k. For every query feature,

distances are normalized by dividing by a median of all dis-

tances between the given feature and all features from other

images.

We perform this procedure for three types of convolu-

tional features extracted from the layers with different level

of depth: ”conv3 1”, ”conv4 1” and ”conv5 4” from the

OxfordNet [24]. We also perform this experiment for dense

SIFTs, though in this case random features from each image

were taken as all SIFT features are normalized to have the

same norm. For all types of features we use a subset of two

million features as the reference set and about a thousand of

features per image.

The curves averaged by all queries are shown in Figure 2.

They demonstrate that the high-norm deep convolutional

features from ”conv5 4” layer have a small amount of ”very

close” neighbors, which are considerably closer than other

points. This is in contrast to SIFTs, where typical distances

to the closest neighbors are much closer to the distances to

random descriptors in the dataset. This fact indicates that

closeness of SIFT features is much less informative, and

their strong similarities are unreliable and prone to acciden-

tal false positive matches. Interestingly, the individual sim-

ilarities of features from ”conv3 1” and ”conv4 1” are less

reliable than from ”conv5 4” (deeper layers produce fea-

tures with more reliable similarities).
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Note that the second experiment is unsupervised, in the

sense that we do not take correctness of matches into ac-

count when computing the distances. Rather, the second

experiment highlights the substantial differences in the dis-

tribution of deep convolutional features and SIFT features

in high-dimensional spaces.

The results of both experiments suggest that the indi-

vidual similarities of deep features from the last convolu-

tional layer are significantly more discriminative and the

amount of false positives in matches produced by these

similarities should be smaller compared to SIFTs, both be-

cause the matching is more accurate (experiment 1) and be-

cause higher-norm deep features have fewer close neigh-

bors (experiment 2). This motivates bypassing the high-

dimensional embedding step when such features need to be

encoded into a global descriptor.

3.2. SPoC design

We describe the SPoC descriptor, which is based on the

aggregation of raw deep convolutional features without em-

bedding. We associate each deep convolutional feature f

computed from image I with the spatial coordinates (x, y)
corresponding to the spatial position of this feature in the

map stack produced by the last convolutional layer.

Sum pooling. The construction of the SPoC descriptor

starts with the sum pooling of the deep features:

ψ1(I) =

H
∑

y=1

W
∑

x=1

f(x,y) (1)

The scalar product of resulting descriptors corresponds to

the simplest match kernel [3] between a pair of images:

sim(I1, I2) = 〈ψ(I1), ψ(I2)〉 =
∑

fi∈I1

∑

fj∈I2

〈fi, fj〉 (2)

Centering prior. For most retrieval datasets, objects of

interest tend to be located close to the geometrical center

of an image. SPoC descriptor can be modified to incorpo-

rate such centering prior via a simple weighting heuristic.

This heuristics assigns larger weights to the features from

the center of the feature map stack, changing the formula

(1) to:

ψ2(I) =

H
∑

y=1

W
∑

x=1

α(x,y)f(x,y) (3)

Coefficients α(w,h) depend only on the spatial coordinates

h and w. In particular, we use the Gaussian weighting

scheme:

α(x,y) = exp

{

−

(

y − H
2

)2
+
(

x− W
2

)2

2σ2

}

, (4)

where we set σ to be one third of the distance between the

center and the closest boundary (the particular choice is mo-

tivated from the ”three sigma” rule of thumb from statis-

tics, although it obviously is not directly related to our use).

While very simple, this centering prior provides substantial

boost in performance for some datasets as will be shown in

the experiments.

Post-processing. The obtained representation ψ(I) is

subsequently l2-normalized, then PCA compression and

whitening are performed:

ψ3(I) = diag (s1, s2, . . . , sN )
−1
MPCA ψ2(I) (5)

whereMPCA is the rectangularN×C PCA-matrix,N is the

number of the retained dimensions, and si are the associated

singular values.

Finally, the whitened vector is l2-normalized:

ψSPOC(I) =
ψ3(I)

‖ψ3(I)‖2
(6)

Note, that the uncompressed ψ2(I) has a dimensionality

C which equals to the number of output maps in the cor-

responding convolutional layer. Typical values for C are

several hundred hence ψ(I) has moderate dimensionality.

Thus, when computing a compact descriptor, it takes much

less data to estimate the PCA matrix and associated singu-

lar values for SPoC than for Fisher vector or triangulation

embedding, since their corresponding descriptors are much

higher-dimensional and the risk of overfitting is higher. The

experiments below as well as the reports in e.g. [10] suggest

that such overfitting can be a serious issue.

4. Experimental comparison

Datasets. We evaluate the performance of SPoC and

other aggregation algorithms on four standard datasets.

INRIA Holidays dataset [8] (Holidays) contains 1491

vacation snapshots corresponding to 500 groups each hav-

ing the same scene or object. One image from each group

serves as a query. The performance is reported as mean av-

erage precision over 500 queries. Similarly to e.g. [2], we

manually fix images in the wrong orientation by rotating

them by ±90 degrees.

Oxford Buildings dataset [20] (Oxford5K) contains 5062

photographs from Flickr associated with Oxford landmarks.

55 queries corresponding to 11 buildings/landmarks are

fixed, and the ground truth relevance of the remaining

dataset w.r.t. these 11 classes is provided. The performance

is measured using mean average precision (mAP) over the

55 queries.

Oxford Buildings dataset+100K [20] (Oxford105K) con-

tains the Oxford Building dataset and additionally 100K

distractor images from Flickr.
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Method Holidays Oxford5K (full) Oxford105K (full) UKB

Fisher vector, k=16 0.704 0.490 — —

Fisher vector, k=256 0.672 0.466 — —

Triangulation embedding, k=1 0.775 0.539 — —

Triangulation embedding, k=16 0.732 0.486 — —

Max pooling 0.711 0.524 0.522 3.57

Sum pooling (SPoC w/o center prior) 0.802 0.589 0.578 3.65

SPoC (with center prior) 0.784 0.657 0.642 3.66

Table 1. Detailed comparison of feature aggregation methods for deep convolutional features (followed by PCA compression to 256

dimensions and whitening/normalization). Sum pooling (SPoC) consistently outperforms other aggregation methods. Full (uncropped)

query images are used for Oxford datasets. See text for more discussions.

Figure 3. Retrieval examples (queries and top-ten matches) using SPoC descriptor on the Oxford Buildings dataset (Oxford5K). Red color

marks false positives, green color marks true positives and blue color marks images from ”junk” lists. Two top examples demonstrate that

SPoC is robust to changes in viewpoint, cropping and scale. Two bottom rows are the cases where SPoC fails. In these cases SPoC ”is

distracted” by irrelevant objects such as the pavement or the tree.

University of Kentucky Benchmark dataset [17] (UKB)

contains 10, 200 indoor photographs of 2550 objects (four

photos per object). Each image is used to query the rest

of the dataset. The performance is reported as the average

number of same-object images within the top four results.

Experimental details. We extract deep convolutional

features using the very deep CNN trained by Simonyan and

Zisserman [24]. Caffe [11] package for CNNs is used.

For this architecture, the number of maps in the last con-

volutional layer is C = 512. All images are resized to the

size 586 × 586 prior to passing through the network. As a

result the spatial size of the last layer is W ×H = 37× 37.

The final dimensionality for SPoC and, where possible, for

other methods is fixed at N = 256.

Aggregation methods. The emphasis of the experi-

ments is on comparing different aggregation schemes for

deep convolutional features.

We consider simple sum pooling and max pooling aggre-

gation. In addition, we consider the two more sophisticated

aggregation methods, namely Fisher Vectors [19] (Yael [6]

implementation) and Triangulation embedding [10] (au-

thors implementation). We have carefully tweaked the de-

sign choices of these methods in order to adapt them to new

kind of features.

Thus, for Fisher vectors it was found beneficial to PCA-

compress the features to 32 dimensions before embedding.

For the triangulation embedding several tweaks that had

strong impact for SIFTs had relatively small impact in the

case of deep features (this includes square rooting of ini-

tial features and removing highly-energetic components).

We have not used democratic kernel [10] in the systematic

comparisons as it can be applied to all embedding methods,

while its computationally complexity can be prohibitive in

some scenarios. We observed that for Holidays it consis-

tently improved the performance of triangulation embed-

ding by 2 percent (measured prior to PCA).
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Figure 4. The examples of similarity maps between the local features of a query image and the SPoC descriptors of top-ten matches. The

local features are compressed by the same PCA+whitening matrices as were used for SPoC descriptors and the cosine similarity between

each local feature of a query and the SPoC descriptor of a dataset image is computed. The similarity maps allow to localize the regions of

a query which are “responsible” for the fact that the particular image is considered similar to a query. For instance, for the query above,

the spires of the two towers are “responsible” for most of the top matches.

All embedding methods were followed by PCA reduc-

tion to 256 dimensions. For sum pooling (SPoC) this was

followed by whitening, while for Fisher vectors and Tri-

angulation embedding we used power normalization in or-

der to avoid overfitting (as suggested in [10]). While [1]

recommends to use whitening with max pooling aggrega-

tion, we observed that it reduces retrieval performance and

we do not use whitening for max pooling. In the end, all

representations were l2-normalized and the scalar product

similarity (equivalent to Euclidean distance) was used dur-

ing retrieval. The parameters of PCA (and whitening) were

learned on hold-out datasets (Paris buildings for Oxford

Buildings, 5000 Flickr images for Holidays) unless noted

otherwise.

Results. The comparison of different aggregation meth-

ods as well as different variants of SPoC are shown in Ta-

ble 1 and Table 2. Several things are worth noting:

• For deep convolutional features sum pooling emerges

as the best aggregation strategy by a margin. It is better

than equally simple max pooling, but also better than

Fisher vectors and Triangulation embedding even with

handicaps discussed below, which is in sharp contrast

with SIFT features.

• We demonstrate the amenability to the overfitting for

different methods in Table 2. One can see that despite

replacing whitening with power normalization, Fisher

vectors and Triangulation embedding suffer from the

overfitting of the final PCA. When learning PCA on

the test dataset their performance improves very con-

siderably. Because of this overfitting effect, it is actu-

ally beneficial to use simpler aggregation models: 16
vs 256 mixture components for Fisher vectors, 1 vs

16 cluster centers in the triangulation embedding. For

SPoC and max-pooling overfitting is very small.

Method Holidays Oxford5K

Fisher vector, k=16 0.704 0.490

Fisher vector, PCA on test, k=16 0.747 0.540

Fisher vector, k=256 0.672 0.466

Fisher vector, PCA on test, k=256 0.761 0.581

Triang. embedding, k=1 0.775 0.539

Triang. embedding, PCA on test, k=1 0.789 0.551

Triang. embedding, k=16 0.732 0.486

Triang. embedding, PCA on test, k=16 0.785 0.576

Max pooling 0.711 0.524

Max pooling, PCA on test 0.728 0.531

SPoC w/o center prior 0.802 0.589

SPoC w/o center prior, PCA on test 0.818 0.593

SPoC (with center prior) 0.784 0.657

SPoC (with center prior), PCA on test 0.797 0.651

Table 2. Comparison of overfitting effect arose from PCA ma-

trix learning for SPoC and other methods. Dimensionalities of

all descriptors were reduced to 256 by PCA. Overfitting is much

smaller for SPoC and max pooling than for the state-of-the-art

high-dimensional aggregation methods.

• For triangulation embedding, degenerate configura-

tion with one centroid performs best (more exhaustive

search was performed than reported in the table). Even

without PCA compression of the final descriptor to 256

dimensions, we observed that the performance of un-

compressed descriptor benefitted very little from using

more than one centroid, which is consistent with our

observations about the statistics of deep convolutional

features.

• Center prior helps for Oxford (a lot), Oxford105K (a

lot) and UKB (very little) datasets and hurts (a little)

for the Holidays dataset.
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Method D Holidays
Oxford5K

(full query)

Oxford5K

(crop query)

Oxford105K

(full query)

Oxford105K

(crop query)
UKB

SIFT + Triang. + Democr. aggr.[10] 1024 0.720 – 0.560 – 0.502 3.51

SIFT + Triang. + Democr. aggr.[10] 128 0.617 – 0.433 – 0.353 3.40

Deep fully connected [2] 256 0.749 0.435 – 0.386 – 3.42

Deep fully connected + fine-tuning [2] 256 0.789 0.557 – 0.524 – 3.56

Deep convolutional + Max pooling [22] 256 0.716 0.533 – 0.489 – –

Deep fully connected + VLAD [7] 512 0.783 – – – – –

Sum pooling (SPoC w/o center prior) 256 0.802 0.589 0.531 0.578 0.501 3.65

Table 3. Comparison with state-of-the-art for compact global descriptors. For the recent works we report results for dimensionality 256 or

for the closest dimensionalities reported in those papers. Despite their simplicity, SPoC features considerably improve state-of-the-art on

all four datasets.

• Whitening is much more beneficial for sum pooling

than for max pooling (e.g. max pooling with whiten-

ing achieves 0.48 mAP on Oxford while 0.52 without

whitening). Apparently some popular features that are

both common across images and bursty and their con-

tribution to SPoC are suppressed by whitening. For

max-pooling burstiness of popular features are less of

an issue.

• PCA compression benefits deep descriptors, as was ob-

served in [2]. The uncompressed (but still whitened)

SPoC features achieve mAP 0.55 on Oxford (0.59 with

compression) and 0.796 on Holidays (0.802 with com-

pression).

Some qualitative examples of good and bad retrieval ex-

amples using SPoC descriptors are shown in Figure 3. We

also demonstrate some examples of similarity maps be-

tween local features of a query image and a global SPoC

descriptors of dataset images. To produce these maps we

compress the local features by the same PCA+whitening

transformation as was used for SPoC construction. Then

cosine similarities between local features of the query im-

age and the SPoC descriptor of the dataset image are calcu-

lated and visualized as a heatmap. Such heatmaps allow to

localize the regions of a query image which are similar to a

particular image in the search results.

Comparison with state-of-the-art for compact global

descriptors is given in Table 3. Existing works use differ-

ent evaluation protocols for Oxford datasets, e.g. [10, 25]

crop query images before retrieval, while recent works

[22, 2, 1, 21] use uncropped query images. Here, we evalu-

ate our SPoC descriptor in both protocols. In the crop case,

for a query image we aggregate only features which have

the centers of their receptive fields inside a query bound-

ing box (as it usually done in SIFT-based approaches). As

some information about context is discarded by cropping,

the results with croped queries are lower.

It turns out that the gap between Oxford5K and Ox-

ford105K performance is quite small for all evaluated set-

tings (especially when queries are not cropped). It seems

that the 100K Flickr distractor images while “distracting

enough” for hand-crafted features, do not really “distract”

deep convolutional features as they are too different from

the Oxford Buildings images.

SPoC features provide considerable improvement over

previous state-of-the-art for compact descriptors including

deep descriptors in [2, 7, 22]. There are several ways how

the results can be further improved. First, a mild boost

can be obtained by pooling together features extracted from

multiple scales of the same image (about 2 percent mAP in

our preliminary experiments). Similar amount of improve-

ment can be obtained by fine-tuning the original CNN on a

specially collected dataset (in the same vein to [2]).

5. Summary and Discussion

We have investigated several alternatives for aggregating

deep convolutional features into compact global descrip-

tors, and have suggested a new descriptor (SPoC) based on

simple sum-pooling aggregation. While the components of

SPoC are simple and well-known, we show that the com-

bination of our design choices results in a descriptor that

provides a substantial boost over previous global image de-

scriptors based on deep features and, in fact, over previous

state-of-the-art for compact global image descriptors.

Apart from suggesting a concrete descriptor, we have

evaluated advanced aggregation strategies proposed for the

previous generation of local features (SIFT), and analyzed

why sum pooling provides a viable alternative to them for

deep convolutional features. In particular, we have high-

lighted the differences between local convolutional features

and dense SIFT. Our experience suggests that deep convo-

lutional features should not be treated as “new dense SIFT”

in the sense that the relative performance of different com-

puter vision techniques suggested for features like SIFT has

to be reevaluated when switching to new features.
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