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Abstract

In image deblurring, a fundamental problem is that the

blur kernel suppresses a number of spatial frequencies that

are difficult to recover reliably. In this paper, we explore

the potential of a class-specific image prior for recover-

ing spatial frequencies attenuated by the blurring process.

Specifically, we devise a prior based on the class-specific

subspace of image intensity responses to band-pass filters.

We learn that the aggregation of these subspaces across

all frequency bands serves as a good class-specific prior

for the restoration of frequencies that cannot be recovered

with generic image priors. In an extensive validation, our

method, equipped with the above prior, yields greater image

quality than many state-of-the-art methods by up to 5 dB
in terms of image PSNR, across various image categories

including portraits, cars, cats, pedestrians and household

objects.

1. Introduction

Image deblurring is an important research topic in low-

level vision, dating back to the middle of the previous cen-

tury [29]. The amount of image data captured by hand-

held devices, e.g. smart phones or tablet computers, has in-

creased rapidly thanks to the recent advent of built-in high-

resolution imaging sensors. In the last decade, there has

been enormous research effort in image quality restoration

from blur due to camera shake, camera motion and defo-

cus [4, 23, 2, 31, 15, 18, 32, 21, 30].

By nature, the deblurring problem is ill-posed, as there

exists an infinite number of pairs of latent image and kernel

that result in the same blurred observation. To resolve this

ambiguity, many previous works have imposed constraints

on the sparsity of image gradients via the hyper-Laplacian

prior [14, 19], the L2 prior [2], the L1/L2 prior [15], the

Gaussian [16] or Gaussian mixture model [4]. As these

constraints favour constant intensity regions, the resulting

image only contains few spatial details in addition to strong

∗This research was supported under Australian Research Council’s Dis-

covery Projects funding scheme (project number DP150104645).

edges. This is certainly not the case for many object cate-

gories with gradual changes in surface orientation such as

faces, animals, cars etc.

Alternatively, image deblurring methods rely on the im-

plicit or explicit extraction of edge information for kernel

computation [26, 32]. The works in [2] and [31] are related

to the restoration of strong edges for kernel estimation via

edge-preserving image smoothing, shock filtering and gra-

dient magnitude thresholding. Joshi et al. [11] predicted the

underlying step edges for the estimation of spatially vary-

ing sub-pixel point-spread functions. A concern about these

approaches is that wrong edges can be mistakenly selected

based on only local information, due to the presence of mul-

tiple false edges induced by a large kernel width.

More recently, class-specific information has been em-

ployed up to some extent in image deblurring. Joshi et

al. [10] proposed a method of image enhancement, includ-

ing image deblurring, given a personal photo collection.

HaCohen et al. [9] approached the personal photo deblur-

ring problem with a strong requirement for the dense cor-

respondence between the blurred image and a sharp refer-

ence image with similar contents. Pan et al. [21] introduced

a face image deblurring method by selecting an exemplar

with the closest structural similarity to the blurred image.

The above methods are either cumbersome, involving man-

ual image annotations for the training phase, or of limited

applications due to strict requirements for reference or ex-

emplar images. In another work, Sun et al. [27] investigated

context-specific priors to transfer mid and high frequency

details from example scenes for non-blind deconvolution.

In this paper, we address the problem of restoring im-

age frequency components that have been attenuated during

the convolution process using class-specific training exam-

ples. Our approach is inspired by the success of using image

statistics for image categorisation [28, 7]. Image statistics

traditionally constitute the power spectra of high-frequency

image gradients. Here, we extend the notion of image statis-

tics to the distribution of band-pass filter responses across

the frequency spectrum. This frequency statistics mod-

elling approach is complementary to the representation of

multiscale image subbands, e.g. multiple resolutions in the
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Figure 1: Recovering spatial frequencies that have been at-

tenuated by a blur kernel using bandpass frequency compo-

nents from the training data.

wavelet domain, as fields of Gaussian scale mixtures [20].

We propose a new image prior for blind deblurring based

on the following conjectures. Firstly, for every frequency

band, the distribution of band-pass filter responses is char-

acteristic of the image class. Secondly, the band-pass re-

sponses of an image class span a low-dimensional linear

subspace. As demonstrated later, this prior is proven to be

effective in recovering frequencies attenuated by blur ker-

nels.

Instead of imposing a general sparsity constraint, we fo-

cus on modeling a class-specific prior in each band of the

frequency spectrum. Specifically, we represent each fre-

quency band of an image as a sparse linear combination of

the filter responses of training (sharp) images in the same

class. Aggregating this representation over the entire fre-

quency spectrum, we can capture the characteristics of a

given image class. The spirit of this work is to learn a more

detailed prior than those based on edges or high-frequency

image gradients. As a natural choice of the frequency do-

main, we choose to analyse images in the Fourier domain

due to the convenient transformation of the blur model be-

tween the spatial and the frequency domain. With these in-

gredients in hand, we can incorporate them into the deblur-

ring process in much the same way as previous works.

In figure 1, we demonstrates our approach to the restora-

tion of the spatial frequencies attenuated by a blurred ker-

nel. In each row, we show images from the cat dataset [34]

in the first column and the magnitudes of their Fourier

components in several frequency bands in the subsequent

columns. The frequency components in each band are ob-

tained by a convolution of the input image with a Butter-

worth band-pass filter. Although most of the frequency

components of the blurred image in the second row have

been annihilated, the recovered components (shown in the

last row) highly resemble those of the original using the

characteristic Fourier magnitude spectrum specific to the

training images (in the third row).

2. Problem Formulation

Our problem is stated as follows. Given a set of N sharp

training images {zi|i = 1, . . . , N} and an arbitrary blurred

image y that belong to the same class, we aim to recover

the latent image x and the kernel k.

2.1. Image prior

Now we formulate the class-specific image prior, which

states that, the frequency components in each band span a

sparse linear subspace in the Fourier domain. To proceed,

we use the notation Fx(ω) to denote the Fourier coefficient

of the 2D function/image x at the spatial frequency ω. Di-

viding the frequency spectrum into a set of M frequency

bands, we formulate the linear subspace constraint for band

bj as Fx(ω) =
∑N

i=1
wi,jFzi

(ω), ∀ω ∈ bj , j = 1, . . . ,M,
where wi,j is a weight associated with the training image

zi and the band bj in the representation of the latent image

x. This coefficient correlates to the similarity between the

frequency components of the training and the latent image

in the band bj .

In addition, we enforce sparsity on the weight vector

wj , [w1,j , . . . , wN,j ] for each band bj . The sparsity con-

straint emphasizes the major contributions from a few train-

ing images to the representation of the latent image x for

each separate band. Here, we express this constraint as a

minimisation of the L1-norm ‖wj‖1 due to its well-known

robustness. Combining the linear subspace constraint and

the sparsity constraint on wj over all the frequency bands,

we define the prior function P (x,w) as

P (x,w) , γ

M
∑

j=1

∑

ω∈bj

|Fx(ω)−
N
∑

i=1

wi,jFzi
(ω)|2

+ τ
M
∑

j=1

‖wj‖1,
(1)

where γ and τ are the balance factors of the reconstruction

error and the sparsity term, respectively, and | · | denotes the

modulus of a complex number.
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For each band bj , we define a corresponding band-pass

filter fj , such as a Butterworth filter [8], whose Fourier

transform is a non-zero constant c within bj and zero else-

where. With this filter, let us consider the 2D function

g = x ⊗ fj −
∑N

i=1
wi,j(zi ⊗ fj), where ⊗ denotes the

convolution operator. The Fourier transform of this func-

tion is

Fg(ω) =

{

c
(

Fx(ω)−
∑N

i=1
wi,jFzi

(ω)
)

∀ω ∈ bj ,

0 otherwise

(2)

Applying the Parseval’s theorem to the function g,

we have
∫

g(u)2du =
∫

|Fg(ω)|2dω. Noting that
∫

|Fg(ω)|2dω is a multiple of the reconstruction error in

equation 1, we rewrite it as follows

P (x,w) = β

M
∑

j=1

‖x⊗fj−
N
∑

i=1

wi,j(zi⊗fj)‖22+τ

M
∑

j=1

‖wj‖1,

(3)

where we use the variable substitution β ,
γ
c2

.

2.2. Objective function

In image deblurring, the aim is to minimise the data fi-

delity term associated with the blur model y = x⊗ k+ n,

where n is the image noise. In addition, several deblur-

ring approaches have utilised image gradients to enforce

an a priori image gradient distribution, i.e. natural image

statistics [4] and to better capture the spatial randomness of

noise [23]. Following these previous approaches, we also

exploit the derivative form of the blur model and aim to

minimise the error ‖∇dx⊗ k−∇dy‖2, where∇d denotes

the gradient operator in the direction d ∈ {x, y}.
In addition, we employ a regulariser on the blur ker-

nel using the conventional L2-norm ‖k‖2
2

as in previous

works [2, 33]. Combining all the above components, we

arrive at a minimisation of the objective function

J(x,w,k) = ‖x⊗ k− y‖2
2
+ P (x,w)

+
∑

d∈{x,y}

‖∇dx⊗ k−∇dy‖22 + α‖k‖2
2
, (4)

where α is the balancing factor for the kernel regulariser.

3. Optimisation

Given y, {fb|b = 1, . . . ,M} and {zi|i = 1, . . . , N}, we

address the minimisation of the objective function in equa-

tion 4. Since a simultaneous minimisation with respect to

all the variables x,w and k is computationally expensive,

we adopt an alternating minimisation scheme. In each it-

eration, we alternatively solve subproblems with respect to

each of the variables x,w and k, while fixing the other vari-

ables.

3.1. Estimating w given x and k

Assuming x, and k have been obtained in a certain

iteration, we now find the weights wi,j that minimise

J(x,w,k). We note that the part of J(x,w,k) dependent

on wj , i.e. P (x,w), contains separable terms across the

bands bj’s. Therefore, this optimisation step can be decom-

posed into independent sub-problems, each of which aims

to minimise the following function with respect to wj

Jwj
= ‖x⊗ fj −

N
∑

i=1

wi,j(zi ⊗ fj)‖22 +
τ

β
‖wj‖1. (5)

The above cost function can be solved by a standard L1-

regularized least-squares solver such as the one in [12]. The

above problem is usually well-formed when the length of x̃j

and z̃i,j exceeds that of wj , i.e. the number of image pixels

is more than the number of training images N .

3.2. Latent image estimation

With the current update of the contributions wj , j =
1, . . . ,M , from the training images to each band, and the

kernel k, we now estimate the latent image so as to min-

imise J(x,w,k) in equation 4. As above, we only consider

the sum of the terms dependent on x

Jx = ‖x⊗ k− y‖2
2
+

∑

d∈{x,y}

‖∇dx⊗ k−∇dy‖22

+ β

M
∑

j=1

‖x⊗ fj −
N
∑

i=1

wi,j(zi ⊗ fj)‖22.
(6)

Next, we apply the Parseval’s theorem to the right-hand

side of equation 6 and rewrite it in the Fourier domain as

Jx =

∫

|Fx(ω)Fk(ω)−Fy(ω)|2dω

+
∑

d∈{x,y}

∫

|F∇d
(ω)Fx(ω)Fk(ω)−F∇d

(ω)Fy(ω)|2dω

+ β

M
∑

j=1

∫

|Fx(ω)Ffj (ω)−
N
∑

i=1

wi,jFzi
(ω)Ffj (ω)|2dω,

(7)

where ω represents a spatial frequency, |·| signifies the mod-

ulus of a complex number and ∇d is the derivative filter in

the direction d ∈ {x, y}.
Since the function in equation 7 is a convex function of

Fx(ω), a local optimisation method could be applied to ob-

tain its global minimum. We set the partial derivative ∂Jx

∂Fx
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to zero to obtain the minimiser Fx as follows

Fx = (FkFy +
∑

d

|F∇d
|2FkFy + β

M
∑

j=1

|Ffj |2

×
N
∑

i=1

wi,jFzi
)./(|Fk|2 +

∑

d

|F∇d
Fk|2 + β

M
∑

j=1

|Ffj |2),

(8)

where the ./ notation stands for a frequency-wise division in

the Fourier domain. The latent image can then be obtained

by an inverse Fourier transform of Fx.

3.3. Blur kernel estimation

Once the latent image x is computed, the next step is

to estimate the blur kernel k. Based on equation 4, this

optimisation step involves the following terms

Jk = ‖x⊗k−y‖2
2
+
∑

d

‖∇dx⊗k−∇dy‖22+α‖k‖2
2
. (9)

Again, we leverage the Parseval’s theorem and express the

above function in the Fourier domain as

Jk =

∫

|Fx(ω)Fk(ω)−Fy(ω)|2dω + α

∫

|Fk(ω)|2dω

+
∑

d∈{x,y}

∫

|F∇d
(ω)Fx(ω)Fk(ω)−F∇d

(ω)Fy(ω)|2dω.

(10)

Since Jk is a quadratic function of Fk(ω), we can obtain

the minimiser by setting ∂Jk

∂Fk

to zero. As a result, we arrive

at the following closed-form for Fk

Fk = (FxFy +
∑

d

|F∇d
|2FxFy)./

(|Fx|2 +
∑

d

|F∇d
Fx|2 + α).

(11)

3.4. Implementation

Algorithm 1 summarises our optimisation approach. The

algorithm initialises the latent image to the blurred one and

the kernel to the Dirac delta function. Subsequently, it pro-

ceeds in an iterative manner. The update steps for x and

k are undertaken by fast forward and inverse Fourier trans-

forms according to equations 8 and 11. In practice, for sta-

bility reasons, the kernel estimation only involves the gradi-

ent terms in the numerator and denominator of equation 11.

The algorithm terminates when it reaches a preset number

of iterations or the changes in x and k over two successive

iterations fall below preset tolerance thresholds.

To further enhance the estimation accuracy, we progres-

sively increase the kernel size in a coarse-to-fine scheme.

Algorithm 1 Deblurring with the class-specific prior.

Require:

y: the given blurred image.

zi, i = 1, . . . , N : the class-specific training images.

fj , j = 1, . . . ,M : a set of band-pass filters covering

the frequency spectrum.

α, β: the weights of the terms in Equation 4.

ρ: the attenuation factor of the class-specific prior.

1: Fx ← Fy.

2: k← δ (Dirac delta kernel).

3: while size(k) ≤ max size do

4: β ← β0.

5: repeat

6: Minimise Jwj
in 5 w.r.t. wj , ∀j, with solver

in [12].

7: Update x according to equation 8.

8: β ← ρβ.

9: Update k according to equation 11.

10: until the maximum number of iterations is reached

or x and k change by an amount below a relative

tolerance threshold.

11: k ← upsample(k) (Initialisation of kernel for the

following scale) .

12: end while

13: return Latent image x and blur kernel k.

Within a fixed kernel scale, we iterate between the estima-

tion steps with respect to w, x and k until convergence,

before expanding the kernel size to the next scale. Start-

ing at the coarsest size of 3 × 3, the kernel is expanded by

a factor of
√
1.6 between two successive scales. The ini-

tialisation of the kernel in the following scale is obtained

through a bicubic interpolation of the final kernel estimated

in the previous scale (as in line 11).

In addition, we adjust the weight β of the class-specific

prior incrementally over iterations (in line 8). The reason

for this adjustment is that we initially prefer to obtain as

much class information as needed to constrain the space of

the latent image. As the iterations proceed, the resulting

latent image and kernel will increasingly gather instance-

specific details from the given blurred image, rather than the

class prior. In our experiments, we initialise β to β0 = 50,

and attenuate it by a factor of ρ = 1.3 per iteration until it

is below a threshold of 0.01. In addition, we preset α = 10
and τ = 0.01.

4. Results and Discussion

In this section, we provide a detailed performance com-

parison between our method and a number of state-of-the-

art alternatives. Firstly, we demonstrate the influence of

the class-specific prior on the overall performance. Next,
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Figure 2: The relative representation errors (averaged over

the test images) for different datasets.

we compare our method to a number of well-known de-

blurring algorithms with and without class-specific infor-

mation/exemplars.

4.1. Datasets and experimental setup

We performed the experimental validation on six

datasets including the CMU PIE face dataset [25], the car

dataset [13], the cat dataset [34], the ETHZ dataset of shape

classes [5], the cropped Yale face database B [6] and the

INRIA person dataset [3]. For each dataset, we randomly

selected half of the images as training data and between 10
to 15 sharp images from the remaining half as ground-truth

test images for deblurring. To generate blurred images, we

employed the eight complex blur kernels that emulate cam-

era shakes in [17]. We use the method of [16] to recover

the final image in the final non-blind deconvolution step.

We have implemented our algorithm in MATLAB on an In-

tel CoreTM i7 machine with 16 GB of memory. Our un-

optimised implementation takes approximately 33 seconds

for 50 iterations to deblur an image of 240 × 320 pixels

which has been blurred by a kernel with a size of 21 × 21
pixels. To model the class-specific image prior P (x,w),
we employ 90 Butterworth bandpass filters occupying with

nine different orders per band. The filters together span the

full frequency spectrum, with an overlap between succes-

sive bands.

4.2. Analysis of the proposed framework

To validate the prior, we report the relative errors of rep-

resenting test images using training images, which is eval-

uated for every band in the frequency domain. The plot in

figure 2 shows the average relative representation error for

ten test images across nine different bands, with respect to

Ground truth Blurred image Without prior With prior

Figure 3: Latent images and kernels recovered by our

method with and without the proposed prior.
SSIM PSNR (dB)

Prior Without With Without With

Image 0.3648 0.7537 16.8651 25.7811

Kernel 0.7065 0.8552 39.4240 42.6563

Table 1: A comparison of the accuracy achieved by our de-

blurring framework with and without the proposed prior.

100 training images per dataset. Overall, the error is reason-

ably low (below 4% across all the datasets and bands). This

supports the claim that, with a sufficient number of train-

ing images, the bandpass responses of test images can be

represented as a linear combination of those of the training

images with a reasonably low error.

Now we demonstrate the effectiveness of the proposed

class-specific prior within our deblurring framework. In

Figure 3, we compare the visual quality of the recovered

latent image and the kernel obtained with (last column) and

without (third column) the prior. As observed, the image

recovered with the prior does not contain visible artefacts,

whereas the one obtained without the prior shows severe

ringing and multiple false edges. Under close inspection,

we observed a noisy kernel similar to the delta kernel with

the prior excluded, as opposed to an accurate kernel esti-

mate with the prior included. This suggests that the method

may have not converged without the proposed prior.

Further, we have compared the accuracy of the recovered

images and blur kernels with and without using the class-

specific prior. In Table 1, we report the accuracy measured

by the structural similarity index (SSIM) and peak signal-

to-noise ratio (PSNR in dB) averaged across the above

datasets. These results demonstrate the accuracy of the re-

covered images and kernels improve significantly (by sev-

eral orders of magnitude) with the proposed prior. This is

consistent with the visual observations in Figure 3, suggest-

ing that the proposed prior plays an important role in cor-

rectly guiding the estimates to the ground truth.

4.3. Comparisons with generic priors

In this section, we evaluate the performance of our

method compared to several state-of-the-art deblurring

methods that use non-class-specific priors, on the datasets

mentioned earlier. The methods considered for this com-
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SSIM PSNR (dB)

Methods Car

[13]

Shape

[5]

Cat

[34]

CMU

[25]

Person

[3]

YaleB

[6]

Car

[13]

Shape

[5]

Cat

[34]

CMU

[25]

Person

[3]

YaleB

[6]

Fergus [4] 0.411 0.415 0.598 0.559 0.207 0.535 16.99 16.69 19.88 18.26 14.81 19.56

Shan [23] 0.632 0.624 0.742 0.775 0.407 0.773 21.56 21.61 25.20 25.59 17.78 26.42

Cho [2] 0.559 0.595 0.627 0.699 0.293 0.678 19.99 20.47 22.54 24.38 15.05 22.99

Xu [31] 0.631 0.638 0.704 0.739 0.681 20.93 21.25 22.73 23.30 23.30

Krishnan [15] 0.544 0.544 0.668 0.693 0.296 0.755 19.75 19.73 22.79 23.54 15.41 24.09

Levin [18] 0.500 0.567 0.699 0.758 0.332 0.673 18.09 19.24 23.12 24.31 16.77 25.22

Cai [1] 0.298 0.358 0.292 0.178 0.205 13.89 14.86 14.63 11.72 12.37

Zhong [35] 0.485 0.520 0.643 0.641 0.655 17.23 18.00 20.73 20.93 22.16

Sun [26] 0.481 0.669 0.724 0.744 0.680 19.06 22.50 23.93 24.78 23.74

Ours 0.765 0.715 0.864 0.881 0.509 0.788 24.51 23.43 30.10 30.75 18.56 27.35

Table 2: Accuracy of deblurred images, measured by SSIM and PSNR. Best results are in bold.

Methods Fergus

[4]

Shan

[23]

Cho

[2]

Xu

[31]

Krishnan

[15]

Levin

[18]

Cai

[1]

Zhong

[35]

Sun

[26]

Our

Method

PSNR 38.59 41.00 41.15 41.33 39.58 39.48 38.86 40.01 40.99 42.92

Table 3: Average kernel estimation accuracy, measured by PSNR, across the datasets under study. Best results are in bold.

No. images 50 125 250 500 1000 2000

Image 25.87 26.97 27.92 28.58 30.42 30.75

Kernel 41.15 42.11 42.80 42.99 44.01 44.13

Table 4: Deblurring performance (in PSNR) over different

numbers of training images in the CMU PIE dataset.

parison include Fergus et al. [4], Shan et al. [23], Cho and

Lee [2], Xu and Jia [31], Krishnan et al. [15], Levin et

al. [18], Cai et al. [1], Zhong et al. [35] and Sun et al. [26].

In Table 2, we present the average image SSIM and

PSNR measures across the above datasets. Among the con-

sidered methods, ours is the best performer for each dataset,

in terms of both metrics. In fact, our method generally leads

the second-best performer by more than 15% in terms of

SSIM values, while our PSNR measure is several orders

of magnitude higher. Similarly, Table 3 shows the average

PSNR (in dB) of the kernel estimates for the same experi-

ment. Again, our method outperforms all the competitors

and leads the second best by several orders of magnitude.

Since our method captures class information in every fre-

quency band of the latent image, it is capable of estimating

all the frequency components of the kernel with the latent

image in hand. Unlike previous methods, this capability

allows our method to cope with a wide range of kernels,

irrespective of their sparsity property.

Next, we examine the variation of deblurring perfor-

mance with respect to the number of training images. Ta-

ble 4 shows that the image and kernel estimation accuracy

for the CMU PIE dataset improves steadily with an increase

in the number of training images. Even with only 50 train-

ing images, our method is able to produce an average image

accuracy of 25.87 dB, outperforming all the others (whose

results are in Table 2).

Next, we examine the visual quality constructed by our

method as compared to the others by examples. In Fig-

ure 4, we show the deblurring results for a cat image from

the dataset in [34]. Our recovered image, as shown in Fig-

ure 4n, exhibits remarkable sharpness and fine textures in

places such as the cat’s eyes, neck, mouth and whiskers.

In contrast, these details are not perceivable in the results

produced by the other methods. Further, a magnified view

of the results in Figures 4e to 4m shows that the methods

that rely on edges, e.g. [15], and patches with high con-

trast, e.g. [26], have failed to yield an accurate estimation

of the kernel, because the blurred input image lacks tex-

ture and strong edges. Our method even outperforms [21],

which uses class exemplars with an additional input mask

around the cat’s face, the mouth and eyes.

Subsequently, we take an example from the CMU PIE

dataset [25]. As shown in Figure 5b, the blurred image is

quite challenging due to the complex trajectory of the blur

kernel. As a result, the kernels yielded by the algorithms

in [4, 23, 15, 18, 32, 21] are less sparse than the ground

truth one. Our deblurred image shows gradual changes in

the intensity across the face, as opposed to the flatness on

the other deblurred images. This result suggests that our

algorithm recovers a wider range of spatial frequencies than

the other methods.

Further, we present deblurring results on a challenging

image from the INRIA person dataset [3]. In Figure 6, the

input image has a low resolution of 64 × 80 and incurs se-
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(a) Ground truth (b) Blurred image (c) Fergus [4] (d) Shan [23] (e) Cho & Lee [2] (f) Xu & Jia [31] (g) Krishnan [15]

(h) Levin [18] (i) Cai [1] (j) Zhong [35] (k) Xu [32] (l) Sun [26] (m) Pan [21] (n) Our method

Figure 4: Comparison of several deblurring methods on an image from the cat dataset[34].

(a) Ground truth (b) Blurred image (c) Fergus [4] (d) Shan [23] (e) Cho & Lee [2] (f) Xu & Jia [31] (g) Krishnan [15]

(h) Levin [18] (i) Cai [1] (j) Zhong [35] (k) Xu [32] (l) Sun [26] (m) Pan [21] (n) Our method

Figure 5: Comparison of several deblurring methods on a face image selected from the CMU PIE dataset[25].

Original Blurred Fergus [4] Shan [23] Cho [2] Xu & Jia [31] Krishnan[15] Levin [18] Zhong [35] Ours

Figure 6: Comparison of several deblurring methods on an image selected from the INRIA person dataset[3].

vere blurs due to the large kernel size relatively to the image

size. Since all the edges are greatly distorted, methods using

sparsity and gradient priors are not effective on this image,

producing unrecognisable objects in the other deblurred im-

ages. However, our method successfully recovers several

objects with great resemblance to the ground truth, such as
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(a) Blurred image (b) Xu & Jia [31] (c) Levin [18] (d) Krishnan [15] (e) Sun [26] (f) Pan [21] (g) Ours

Figure 7: Deblurring a real-world blurred image from the dataset in [24].

(a) Original (b) Blurred im-

age

(c) Reference (d) HaCohen

PSNR: 26.23

(e) Our training images (f) Our result

PSNR: 29.90

Figure 8: Comparison between our method and HaCohen et

al.’s [9] on a blurred image taken from their paper.

the pedestrians and the bus in the background.

4.4. Comparison with exemplarbased methods

In Figure 8, we illustrate the advantage of our method

over HaCohen et al. [9] on an example taking directly from

their paper. Hacohen et al.’s [9] method requires a dense

correspondence to be established between the input blurred

image (Figure 8b) and a reference image (Figure 8c) of the

same content and structure. Meanwhile, our method accepts

flexible training images including a wide range of individu-

als and expressions. Although our deblurred image (in Fig-

ure 8f) appears to be visually similar to Hacohen et al.’s [9]

(in Figure 8d), our PSNR measure is actually more than 3

dB higher than the latter.

As another example, we compare our algorithm to a re-

cent deblurring method by Pan et al. [22] on an image from

the ETHZ shape classes dataset [5]. In Figure 9a, the orig-

inal image consists of a large text printed on a cup in the

foreground and a cluttered background. Our deblurred im-

age in Figure 9d is nearly 4 dB higher in PSNR than Pan et

al.’s result in Figure 9c. Under magnification, our method

(a) Original (b) Blurred (c) Pan [22]

PSNR:17.85

(d) Our results

PSNR: 21.68

Figure 9: Comparison with Pan et al. [22] on an image con-

taining foreground text and a complex background.

successfully restores the legibility of the background text

within the marked red box, while Pan et al. [22] fails to

achieve this.

As the last example, Figure 7 demonstrates a qualita-

tive comparison with methods using generic priors and ex-

emplars, for a real-world blurred image from the dataset

in [24]. We fixed the size of the unknown kernel to 19× 19
pixels. Our proposed method recovers all of the fine facial

and hair textures and sharp highlights in the eyes while the

methods in [26, 31] produce smoother images. Overall, our

method is robust and our results are competitive, if not bet-

ter, than the state-of-the-art methods.

5. Conclusion

We have introduced a novel class-specific image prior to

further improve the performance of image deblurring. The

key aim of this prior is to capture the Fourier magnitude

spectrum of an image class across all frequency bands. With

this aim, we formulate the prior via the subspace of band-

pass filtered images, obtained through a Butterworth filter

bank. Representing images in these subspaces, we have ar-

rived at an effective deblurring framework for the recon-

struction of spatial frequencies attenuated by the blurring

process. In an extensive validation, we have verified the

importance of the novel prior to our deblurring framework.

Furthermore, our method has been demonstrated to signifi-

cantly outperform state-of-the-art deblurring methods, both

numerically and visually.
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