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Abstract

In many sparse coding based image restoration and im-
age classification problems, using non-convex �p-norm min-
imization (0 ≤ p < 1) can often obtain better results than
the convex �1-norm minimization. A number of algorithms,
e.g., iteratively reweighted least squares (IRLS), iterative-
ly thresholding method (ITM-�p), and look-up table (LUT),
have been proposed for non-convex �p-norm sparse coding,
while some analytic solutions have been suggested for some
specific values of p. In this paper, by extending the popular
soft-thresholding operator, we propose a generalized iter-
ated shrinkage algorithm (GISA) for �p-norm non-convex
sparse coding. Unlike the analytic solutions, the proposed
GISA algorithm is easy to implement, and can be adopted
for solving non-convex sparse coding problems with arbi-
trary p values. Compared with LUT, GISA is more gen-
eral and does not need to compute and store the look-up
tables. Compared with IRLS and ITM-�p, GISA is theoret-
ically more solid and can achieve more accurate solutions.
Experiments on image restoration and sparse coding based
face recognition are conducted to validate the performance
of GISA.

1. Introduction
Sparse coding [7, 18, 31] is an effective tool in a myri-

ad of applications such as compressed sensing [11], image

restoration [24, 25], face recognition [38], etc. Originally,

it aims to solve the following minimization problem:

min
x

1
2
‖y − Ax‖2

2 + λ‖x‖0, (1)

where y is an n × 1 vector, A is an n × m redundant matrix

with m > n, and the �0-norm ‖•‖0 simply counts the number

of non-zero entries in x. Unfortunately, solving the mini-

mization in Eq. (1) is NP hard [32] and is computationally

infeasible for large scale problems.

Rather than solving the above �0-minimization problem,

one can replace the �0-norm with the �1-norm ‖•‖1 =
∑

i |xi|,
and seek for the desired x by solving the following convex

optimization problem

min
x

1
2
‖y − Ax‖2

2 + λ‖x‖1. (2)

It has been proved that, under certain conditions on A
[6, 17], the �1-minimization in (2) is equivalent to the �0-

minimization in (1) with high probability.

However, when the conditions on A are not satisfied, the

solution by �1-minimization becomes suboptimal. Actually,

both theoretical analysis and numerical experiments [9, 10,

11] have shown that the solution of �p-norm sparse coding

(0 ≤ p < 1)

min
x

1
2
‖y − Ax‖2

2 + λ ‖x‖p
p , (3)

is close to that of the �1-minimization and it is sparser. In

image restoration, it has been shown that the image gradi-

ents of the natural images can be better modeled with hyper-

Laplacian distribution with 0.5 ≤ p ≤ 0.8 [25, 28]. In fea-

ture selection and compressed sensing, �p can bridge �0 and

�1, and can achieve better solutions [12, 31].

So far, a number of algorithms have been proposed

for solving �p-norm non-convex sparse coding problems,

and they have been applied to various vision and learn-

ing tasks, e.g., compressed sensing [10], image restoration

[25], face recognition [29], and variable selection [33]. Sev-

eral typical algorithms include iteratively reweighted least

squares (IRLS) [12, 14, 23, 24, 28], iteratively reweighted

�1-minimization (IRL1) [8], iteratively thresholding method

(ITM-�p) [33, 34], and look-up table (LUT) [25]. These al-

gorithms, however, suffer from several limitations. Even for

the simplest �p-minimization problem

min
x

1
2
(y − x)2 + λ|x|p, (4)

IRLS, IRL1, and ITM-�p would not converge to the global

optimal solution. LUT uses look-up tables to store the solu-

tions w.r.t. different values of variable x and regularization

parameter λ. If the values of x and λ are unconstrained and

p changes dynamically (e.g., multi-stage relaxation), more

computational and memory costs are required to construct

and store the look-up table. Other algorithms, such as the

analytic solutions in [25, 39], can only be used for some

specific values of p.
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Inspired by the great success of soft thresholding [16]

and iterative shrinkage/thresholding (IST) [15] methods,

in this paper, we propose a generalized iterated shrinkage

algorithm (GISA) for �p-norm non-convex sparse coding.

The proposed GISA is simple and efficient, and can be

adopted for solving �p-norm sparse coding problems with

arbitrary p, λ and y values. Compared with IRLS, IRL1,

and ITM-�p, GISA would converge to more accurate solu-

tions. It is easy to implement and can be readily used to

solve the many �p-norm minimization problems in various

vision and learning applications.

2. Related work
To date, various algorithms have been proposed for �p-

norm non-convex sparse coding. Based on the problems in

Eq. (3) and Eq. (4), we provide a brief survey and discus-

sion on IRLS, IRL1, ITM-�p, and LUT.

To use IRLS for �p-norm non-convex sparse coding, the

problem in Eq. (3) is approximated by [26]

min
x

1
2
‖y − Ax‖2

2 + λ
∑

i
(x2

i + ε)
p/2−1

x2
i , (5)

where ε → 0 is a small positive number to avoid division

by zeros. Given the current estimation x(k), IRLS iteratively

solves the following problem

min
x

1
2
‖y − Ax‖2

2 +
∑

i
wix2

i , (6)

and updates x by

x(k+1) =
(
AT A + diag (w)

)
AT y, (7)

where the ith component of weight vector w is defined as

wi = pλ
/(

(x(k)
i )

2
+ ε
)1−p/2

. (8)

Similarly, to use IRL1 for �p-norm minimization, the prob-

lem in Eq. (3) is approximated by

min
x

1
2
‖y − Ax‖2

2 + λ
∑

i
λp(|xi| + ε)p−1 |xi|. (9)

Given x(k), IRL1 [8, 21] updates x by solving the following

problem

x(k+1)=arg min
x

1
2
‖y − Ax‖2

2+
∑

i
λp
(∣∣∣x(k)

i

∣∣∣ + ε)p−1 |xi| (10)

using the existing �1-minimization algorithms [1, 3, 41].

Based on the theoretical analysis in [20, 26], both IRLS and

IRL1 can guarantee to converge, while Chartland and Yin

[12] showed that IRLS is theoretically better than IRL1.

However, even for the simplest �p-minimization problem

in Eq. (4), IRLS and IRL1 sometimes cannot converge to

the desired solutions. As shown in Fig. 1, given p = 0.5,

λ = 1, and y = 1.3, by initializing x(0) = y, IRLS and IR-

L1 would converge to the same local minimum. Since the

problem in Eq. (4) is for 1D optimization, one can define

a proper thresholding function [33] or construct look-up ta-

bles (LUTs) [25] in advance. For several special values of

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
GISA

IRL1

IRLS

ITM-�p

Figure 1. The solutions of GISA, IRL1, IRLS, and ITM-�p for

solving the problem in Eq. (4) with p = 0.5, λ = 1, and y = 1.3.

IRL1, IRLS, and ITM-�p converge to the same local minimum, but

GISA can converge to a better solution.

p, e.g., 1/2 or 2/3, the analytic solutions can be derived

[25, 39]. She [33] defined the following �p-norm threshold-

ing function

T IT M
p (y; λ) =

{
0, if|y| ≤ τp(λ)
sgn(y)S IT M

p (y; λ), if|y| > τp(λ)
, (11)

where sgn(y) denotes the sign of y, τp(λ) = λ1/(2−p)(2 −
p)[p/(1 − p)1−p]1/(2−p), gp(θ; λ) = θ + λpθp−1, θ0 =

[λp(1 − p)]1/(2−p), and S IT M
p (y; λ) is the root of the equation

gp(θ; λ) = |y|. Since gp(θ; λ) is monotonically increasing in

the range of [θ0,+∞), for any |y| ∈ [θ0,+∞), gp(θ; λ) = |y|
has one unique root which can be obtained using numerical

methods. However, as shown in Fig. 1, the thresholding

function in Eq. (11) cannot always guarantee to converge

to the global solution. Krishnan and Fergus [25] proposed

an LUT method to correctly solve the problem in Eq. (4).

In image restoration, the p value can be fixed and |y| should

fall into the range of [0, 1], and thus LUT is very efficien-

t. However, for general �p-norm non-convex sparse coding

problems where the values of x, λ and p are unconstrained,

LUT will not be an effective and efficient solution.

In addition, Marjanovic and Solo [30] proposed a very

similar method to ours for solving the one-scalar lp-

minimization problem (4). However, our proposed GISA is

different from this method across the context. On one hand,

we use a direct and very intuitive way to accurately present

the global solution of the non-convex problem (4) (see Sec-

tion 3.2 and Fig. 2 for details), while [30] makes the prob-

lem somewhat more complicated through pure mathemati-

cal deductions. In particular, our method uses two simple

equations (21) and (22) to obtain the two most importan-

t numerical values of the problem: τGS T
p (λ) (the threshold

value) and x∗p (the minimum at the threshold). The method

proposed in [30], however, uses complex mathematics to

accomplish the similar task. Our work is thus much easier

to understand, and it reveals clearly the physical meaning

underlies such kind of non-convex optimization problems,
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which are previously believed hard to be solved precisely

and understood intuitively. Furthermore, the motivation-

s and the main mechanisms of our method and [30] are

significantly different. The main goal of our method is to

solve the non-convex sparse coding problems through itera-

tive shrinkage mechanism for computer vision tasks such as

image deconvolution and face recognition, while [30] aims

mainly at matrix completion by majorization-minimization

strategy for DNA microarray analysis.

3. Generalized shrinkage / thresholding
function

3.1. Soft-thresholding

To solve the �1-minimization problem:

min
x

1
2
(y − x)2 + λ |x| , (12)

Donoho [16] proposed a soft-thresholding operator:

T1(y; λ) =

{
0, if|y| ≤ λ
sgn(y)(|y| − λ), if|y| > λ . (13)

Generally, if |y| ≤ λ, the soft-thresholding operator uses the

thresholding rule to assign T1(y; λ) to 0; otherwise, uses the

shrinkage rule to assign T1(y; λ) to sgn(y)(|y| − λ).
3.2. Generalization of soft-thresholding

Inspired by soft-thresholding, we proposed a gener-

alized shrankage/thresholding operator to solve the �p-

minimization problem in Eq. (4) by modifying the thresh-

olding and the shrinkage rules.

If y > 0, the solution to Eq. (4) should fall into the range

of [0, y]; otherwise, into the range of [y, 0]. Without loss

of generality, in the following we only consider the case of

y > 0. Let

f (x) = 1
2
(x − y)2 + λ|x|p. (14)

Note that f (x) is differentiable in the range of (0,+∞). By

setting p = 0.5 and λ = 1, in Fig. 2 we show the plots of

f (x) with five typical y values. As shown in Fig. 2, given

p and λ there exists a specific threshold τGS T
p (λ). If y <

τGS T
p (λ), x = 0 is the global minimum; otherwise, the non-

zero solution would be optimal. Thus, to generalize soft

thresholding for solving the problem in Eq. (4), we could

focus on two issues: (1) the calculation of threshold τGS T
p (λ)

and (2) the fast searching of the non-zero solution.

The first- and second-order derivatives of f (x) are:

f ′(x) = x − y + λpxp−1, (15)

f ′′(x) = 1 + λp(p − 1)xp−2. (16)

By solving f ′′(x(λ,p)

0
) = 0, we have

x(λ,p)

0
= (λp(1 − p))

1
2−p . (17)

One can easily verify that f (x) is concave in the range of

(0, x(λ,p)

0
), and is convex in the range of (x(λ,p)

0
,+∞). To guar-

antee that f (x) has a minimum in (x(λ,p)

0
,+∞), we should

further require f ′(x(λ,p)

0
) ≤ 0. In [33], She let f ′(x(λ,p)

0
) = 0

and solved the following equation

f ′(x(λ,p)

0
)= (λp(1−p))

1
2−p −τIT M

p (λ)+λp(λp(1−p))
p−1
2−p =0.

(18)
The corresponding threshold on y is

τIT M
p (λ) = λ1/(2−p)(2 − p)[p/(1 − p)1−p]1/(2−p). (19)

In ITM, She [33] extended the soft-thresholding with the

thresholding function in Eq. (11).

However, the thresholding rule in [33] is problematic.

Although y > τIT M
p (λ) can guarantee that equation

x∗ − y + λp(x∗)p−1
= 0 (20)

has a unique solution in (x(λ,p)

0
,+∞), as shown in Fig. 2(c),

this minimum f (x∗) might be higher than f (0). Thus, the

thresholding function in Eq. (11) actually is not a good

generalization of the soft-thresholding operator for �p-norm

minimization.

From Fig. 2(d), one can see that there exists a specific

y, where f (x∗p) is exactly f (0). Thus, to generalize soft-

thresholding, we should solve the following nonlinear e-

quation system to determine a correct thresholding value

τGS T
p (λ) and its corresponding x∗p:

1
2

(
x∗p − τGS T

p (λ)
)2
+ λ
(
x∗p
)p
= 1

2

(
τGS T

p (λ)
)2

(21)

x∗p − τGS T
p (λ) + λp

(
x∗p
)p−1
= 0. (22)

Based on Eq. (22), we can substitute τGS T
p (λ) in Eq. (21)

with x∗p + λp
(
x∗p
)p−1

, and obtain the following equation

(
x∗p
)p (

2λ(1 − p) −
(
x∗p
)2−p
)
= 0. (23)

Thus the only solution of x∗p in the range of (x(λ,p)

0
,+∞) can

be obtained as

x∗p = (2λ(1 − p))
1

2−p , (24)

and the thresholding value τGS T
p (λ) is

τGS T
p (λ) = (2λ(1 − p))

1
2−p + λp(2λ(1 − p))

p−1
2−p . (25)

We have the following two theorems, and the proofs of

them can be found in the supplementary materials.

Theorem 1 For any y ∈ (τGS T
p (λ),+∞), f (x) has one u-

nique minimum S GS T
p (y; λ) in the range of (x∗p,+∞), which

can be obtained by solving the following equation:

S GS T
p (y; λ) − y + λp

(
S GS T

p (y; λ)
)p−1
= 0. (26)

Theorem 2 For any y ∈ (τGS T
p (λ),+∞), let S GS T

p (y; λ) be
the unique minimum of f (x) in the range of (x∗p,+∞). We
have the following inequality:

f (0) > f
(
S GS T

p (y; λ)
)
. (27)
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Figure 2. Plots of the function f (x) in Eq. (14) with different values of y: (a) y = 1, (b) y = 1.19, (c) y = 1.3, (d) y = 1.5, and (e) y = 1.6.

Algorithm 1 (GST): TGS T
p (y; λ) = GS T (y, λ, p, J)

Input: y, λ, p, J

1. τGS T
p (λ) = (2λ(1 − p))

1
2−p + λp(2λ(1 − p))

p−1
2−p

2. if |y| ≤ τGS T
p (λ)

3. TGS T
p (y; λ) = 0

4. else
5. k = 0, x(k) = |y|
6. Iterate on k = 0, 1, ..., J

7. x(k+1) = |y| − λp
(
x(k)
)p−1

8. k ← k + 1

9. TGS T
p (y; λ) = sgn(y)x(k)

10. end
Output: TGS T

p (y; λ)

To solve Eq. (26), we propose an iterative algorithm

GS T (y, λ, p), which is summarized in Algorithm 1.

In Algorithm 1, the output would converge to the correct

solution when J → ∞. Empirically we found that satisfac-

tory results can be obtained by choosing J = 2 or 3.

Finally, we propose a generalized soft-thresholding

(GST) function for solving the �p-norm minimization in Eq.

(4):

TGS T
p (y; λ) =

{
0, if|y| ≤ τGS T

p (λ)

sgn(y)S GS T
p (|y|; λ), if|y| > τGS T

p (λ)
. (28)

Like the soft-thresholding function, the GST function al-

so involves a thresholding rule TGS T
p (y; λ) = 0 when |y| ≤

τGS T
p (λ) and a shrinkage rule TGS T

p (y; λ) = sgn(y)S GS T
p (y; λ)

when |y| > τGS T
p (λ). Compared with the thresholding func-

tion in [33], in GST we adopt a different thresholding val-

ue τGS T
p (λ), and propose an algorithm, i.e., Algorithm 1, to

solve the equation in Eq. (26). Based on Theorem 1 and

Theorem 2, GST can always find the correct solution to the

simple �p-minimization problem in Eq. (4). Thus, GST can

be regarded a better generalization of soft-thresholding for

�p-minimization.

3.3. Discussions

Let’s further discuss two important cases of GST, i.e.,

when p = 1 and p = 0, and their relationships with soft-

thresholding [16] and hard-thresholding [2, 19].

When p = 1, GST will converge after one iteration. S-

ince

lim
p→1
τGS T

p (λ) = λ lim
p→1

(1 − p)p−1 = λ, (29)

the thresholding value of GST will become λ, and the GST

function becomes

TGS T
1 (y; λ) =

{
0, if |y| ≤ λ
sgn(y) (|y| − λ) , if |y| > λ . (30)

One can see that the soft-thresholding function is a special

case of GST with p = 1.

When p = 0, GST will also converge after one iteration.

The thresholding value of GST will be

τGS T
0 (λ) = (2λ)

1
2 , (31)

and the GST function becomes

TGS T
0 (y; λ) =

⎧⎪⎪⎨⎪⎪⎩ 0, if |y| ≤ (2λ)
1
2

y, if |y| > (2λ)
1
2

, (32)

which is exactly the hard-thresholding function [2, 19] de-

fined for solving the following problem

min
x

1
2
(y − x)2 + P(x; λ), (33)

where the penalty function P [2, 19, 33] is defined as

P(x; λ) =

{
0, ifx = 0

λ, ifx � 0
. (34)

Clearly, the hard-thresholding function is a special case of

GST with p = 0.

4. Generalized iterated shrinkage algorithm
With the proposed GST in Eq. (28), we can readily have

a generalized iterated shrinkage algorithm (GISA) for solv-

ing the �p-norm non-convex sparse coding problem. GST

can also be easily applied for image restoration.

4.1. GISA

The proposed GISA is an iterative algorithm, and in each

iteration it involves a gradient descent step based on A or y,

followed by a generalized shrinkage/thresholding step:

x(k+1) = TGS T
p (x(k) − ‖A‖−2AT (Ax − y); ‖A‖−2λ), (35)

where ‖A‖ denotes the spectral norm of the matrix A. The

proposed GISA algorithm is summarized in Algorithm 2.
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Algorithm 2 (GISA): x = GIS A(y, λ, p, J)

Input: y, λ, p, J
1. Initialize x(0), t = ‖A‖−2.

2. while not converge do
3. x(k+0.5) = x(k) − tAT (Ax(k) − y).

4. x(k+1) = GS T (x(k+0.5), tλ, p, J).

5. end while
6. x = x(k).

Output: x

Actually, GISA is a generalization of the iterative shrink-

age/thresholding (IST) method [15], and an example of the

iterative thresholding method (ITM) [33]. In [33], She

proved that, for any thresholding function Θ (y; λ) defined

for −∞ < y < +∞ and 0 ≤ λ < +∞, if Θ (y; λ) satisfies the

following properties:
i) Θ(−y; λ) = −Θ(y; λ),
ii) Θ(y; λ) ≤ −Θ(y′; λ) if y ≤ y′,
iii) limy→∞Θ(y; λ) = ∞,
iv) 0 ≤ Θ(y; λ) ≤ y for 0 ≤ y < ∞,

the ITM method would converge to a stationary point. One

can easily see that the GST function in Eq. (28) satisfies all

these four properties. Thus the convergence of GISA could

be guaranteed. From Theorems 1 and 2, one can easily see

that, GISA converges to the global optimum when A is a

positive diagonal matrix. When A is unitary, by exploiting

the unitary-invariant property of the �2-norm, GISA can al-

so converge to the optimal solution. Moreover, if p = 1,

GISA would degenerate to IST, and would converge to the

global minimum.

Besides, several algorithms, e.g., Two-step IST (TwIST)

[5] and accelerated proximal gradient (APG) [4], have

been proposed to speedup IST. By substituting the soft-

thresholding function with GST, we can also use these al-

gorithms for �p-norm non-convex sparse coding.

4.2. Sparse gradient based deconvolution using
GST

One important application of sparse coding is image

restoration. As an example, in this subsection we apply the

proposed GST to image deconvolution. Let x be the origi-

nal image. In image deconvolution, the degraded image y is

modeled as first convolving x with a blur kernel k and then

adding additive white Gaussian noise

y = x ⊗ k + e, (36)

where ⊗ denotes the convolution operator, and e is the ad-

ditive white Gaussian noise with variance σ2.

A typical image deconvolution model usually includes

a fidelity term and a regularization term, where the fidelity

term is modeled based on the degradation process, and the

regularization term is modeled based on image priors. Re-

cent studies on natural image statistics have shown that the

marginal distributions of filtering responses can be modeled

as hyper-Laplacian with 0 < p < 1 [25, 28, 35], which had

been adopted in many low level vision problems [13, 36].

By using the sparse gradient based image prior, the image

deconvolution model can be formulated as

min
x

1
2
‖x ⊗ k − y‖2

2 + λ ‖Dx‖p
p , (37)

where λ is the regularization parameter, D = [Dh,Dv] de-

notes the gradient operator, and Dh and Dv are the horizontal

and vertical gradient operators, respectively.

Based on [25, 37], we introduce a new variable d = Dx,

and reformulate the problem in (37) as

min
x,d

1
2
‖x ⊗ k − y‖2

2 +
ηλ
2
‖Dx − d‖2

2 + λ ‖d‖p
p . (38)

When η→ ∞, the problem in Eq. (38) would have the same

solution as the problem in Eq. (37).

We adopt an alternating minimization strategy to solve

the problem in Eq. (38). In each iteration, given a fixed d,

x can be obtained by solving the following subproblem

min
x

1
2
‖x ⊗ k − y‖2

2 +
ηλ
2
‖Dx − d‖2

2 . (39)

Actually, the solution to x can be written in the closed form

[25, 37]

x=F −1

⎛⎜⎜⎜⎜⎜⎜⎝
F
(
μλDT d

)
+ F (k)∗ ◦ F (y)

μλ
(
F (DT

h Dh)+F (DT
v Dv)
)
+F (k)∗ ◦ F (k)

⎞⎟⎟⎟⎟⎟⎟⎠, (40)

where F denotes the 2D Fourier transform, F −1 denotes 2D

inverse Fourier transform, “∗” denotes complex conjugate,

“◦” stands for the component-wise multiplication, and the

division is also operated component-wisely.

Given a fixed x, let dre f = Dx, and d can be obtained by

solving the following subproblem:

min
d
η
2

∥∥∥d − dre f
∥∥∥2

2
+ ‖d‖p

p . (41)

Using GST, the solution to each di can be written as

di = TGS T
p (dre f

i ; 1/η). (42)

Finally, we summarize the GST based image deconvolution

algorithm in Algorithm 3.

Algorithm 3 is similar to the algorithms in [25, 37], but

Wang and Yin [37] only studied the Laplacian prior (p =
1), and Krishnan and Fergus [25] used look-up table (LUT)

to solve the subproblem in Eq. (41). Here we empirically

choose J = 1, making our algorithm very efficient for sparse

gradient based image deconvolution.

5. Experimental results
In this section, we evaluate the proposed GISA on two

representative vision applications: image deconvolution

and face recognition. In image deconvolution experiments,

we compare GISA with four state-of-the-art algorithms

of �p-norm non-convex sparse coding: LUT, IRLS, IRL1,

and ITM-�p. The results show that GISA is as accurate

as LUT but is more efficient, and it is more accurate and
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Algorithm 3 (GST DeConv): x = DeConv(y, k, λ, p, J)

Input: y, k, λ, p, J
1. Initialize k = 0, η(0), ηmax, ρ, T , D.

2. Initialize x(0), d(0).

3. while η(k) < ηmax do
4. iter = 0

5. for iter = 1 to T do
6. Update x(k+1) using Eq. (40)

7. dre f = Dx(k+1)

8. d(k+1) = GS T (dre f , 1/η, p, J)

9. end for
10. η(k+1) = ρη(k)

11. k = k + 1

12. end while
13. x = x(k).

Output: x

efficient than the other methods. In face recognition, we

use GISA to solve the sparse representation-based classifi-

cation (SRC) model [38], and show that the performance

of SRC can be improved by using GISA with p < 1.

The Matlab source code of GISA can be downloaded at
http://www4.comp.polyu.edu.hk/˜cslzhang/code.htm.

5.1. Image deconvolution

In image deconvolution, we followed the experiment set-

ting in [25]. The source code of LUT is from [25] and the

source code of IRLS is from [28]. The IRL1 method is im-

plemented by modifying the code in [8]. And we implement

the ITM-�p and GISA methods.

We use 8 clean images (see Fig. 3) and five real world

camera shake kernels (see Fig. 4) to generate the blurry

images, and additive Gaussian white noise with variance of

0.01 is further added to the blurry images. For performance

evaluation, apart from the peak signal-noise ratio (PSNR)

and running time, we also use the energy function value of

the restored image x:

F(x) = 1
2
‖x ⊗ k − y‖2

2 + λ ‖Dx‖p
p (43)

as an indicator to evaluate the convergence of algorithms.

�

�

Figure 3. The test images.

Figure 4. The five blur kernels.

Fig. 5 shows the deconvolution results of GISA on a test

image by using p = 1 and p = 0.7, respectively. GISA with

p = 0.7 is much better than that with p = 1 in terms of sup-

pressing noise and ring effects and preserving edge details,

which indicates that non-convex image deconvolution can

much improve the deconvolution performance.

� � �
���� � � � � � � � � � � � � � � � � � � � � � ����

� �
��� � � � � � � � � � � � � � � � � � � � ���

Figure 5. Image deconvolution with GISA: (a) original image, (b)

blurry image, (c) deconvolution result (PSNR: 27.17) of GISA

with p = 1, and (d) deconvolution result (PSNR: 28.64) of GISA

with p = 0.7.

Table 1. The PSNR, running time, and energy function values of

different algorithms.
Method IRLS IRL1 ITM-�p LUT GISA

PSNR 28.94 28.95 29.27 29.49 29.50
Times(s) 140.32 188.56 0.60 0.88 0.37

EnergyF(x) 21.84 21.79 20.51 20.29 20.32

Table 1 lists the PSNR values, running time (s), and F(x)

values of the competing algorithms on one 512×512 image.

More results on images with different blur kernels and sizes

are provided in the supplementary materials. Here we set

p = 0.7. Compared with IRLS, IRL1 and ITM-�p, GISA

can achieve much higher PSNR values, and is computation-

ally more efficient. Note that the F(x) value of GISA is

lower than those of IRLS, IRL1 and ITM-�p. We argue that

GISA converges to a better minimum, and this might be the

reason of the relative higher PSNR values of GISA. GISA

and LUT obtain similar PSNR and F(x) values, which indi-

cate that these two methods lead to similar solutions. Com-

pared with LUT, however, GISA is more efficient, and does

not require the generation and storage of the look-up table.
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5.2. Face recognition via sparse coding

Given a test sample y and the training data matrix X =
[X1,X2, ,XK], where Xk, k = 1, 2, ,K, is the sample matrix

of class k, Wright et al. [38] proposed a sparse representa-

tion based classification (SRC) method for face recognition

(FR). SRC first seeks the solution of the following sparse

coding problem:

α̂ = arg min
α
‖y − Xα‖q

q + λ ‖α‖p
p , (44)

and then classifies y based on the following rule:

Label(y) = arg min
k

{
dk = ‖y − Xkα̂k‖2

}
. (45)

where α̂ = [α̂1; α̂2; ...; α̂K].

In the original SRC, the typical parameter setting is q = 2

and p = 1 (for FR without corruption) or q = 1 and p = 1

(for robust FR with corruption). In the experiment, we used

the efficient augmented Lagrangian method (ALM) [40] to

solve the original SRC model. Then, by simply replacing

the soft-thresholding operator in ALM by the proposed GST

operator, we can embed the proposed GISA algorithm into

the ALM method for solving the SRC model with arbitrary

values of p and q.

By fixing q = 2 and varying p, in the first FR experi-

ment we use the extended Yale B dataset [22, 27] to test the

influence of p on recognition accuracy. The extended Yale

B database contains 2, 414 images of 38 subjects. The im-

ages are normalized and cropped into size of 32×32. In our

experiments, we randomly select 30 images from each sub-

ject to construct a training dataset of 1, 140 images, and use

the remaining images for test. We use the principal com-

ponent analysis (PCA) to reduce the dimensionality of face

images, and test the algorithms in both the original image

space (1, 024 dimensions) and the PCA subspace with fea-

ture dimension 500, 300, and 100, respectively. We set the

regularization parameter λ = 10−3.

By setting the feature dimension d = 100, in Fig. 6 we

show the recognition rates of SRC versus different p values.

Hereafter we use SRC-p to denote SRC with 0 < p < 1.

One can see that, when p = 0.6, SRC-p achieves the high-

est recognition rate (93.25%), much higher than that of o-

riginal SRC (90.97%). Table 2 lists the recognition rates of

SRC and SRC-p (p = 0.6) under different dimensions. One

can see that, GISA based SRC-p can always achieve higher

recognition rates than the original SRC with p = 1. When

the feature dimension is low, the improvement of SRC-p a-

gainst SRC is more significant. This is because when the

face feature dimension is small, the matrix X tends to be

redundant. Thus, the coding solution should be sparser, and

GISA is more probable to obtain the correct solution.

By choosing q = p = 1, the SRC method would be-

come robust to face corruption/occlusion [38]. It is interest-

ing to know if we set 0 < q = p < 1, will SRC become

more robust? We denote by SRC-p, q the SRC method with

�
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Figure 6. The face recognition rate of SRC by varying the value of

p with GISA.

Table 2. Face recognition rate (%) on the Extended Yale B dataset.

In SRC-p, we set p = 0.6.
Dim. 1024 500 300 100

SRC [38] 96.31 95.91 95.83 90.97

SRC-p 96.55 96.31 96.31 93.25

0 < q = p < 1, and embed the proposed GISA into ALM to

implement SRC-p, q for robust face recognition. Two types

of face image corruption are considered: random pixel cor-

ruption and random block occlusion. We set p = q = 0.5 in

SRC-p, q.

Random corruption: We use the same experiment set-

ting as in the previous experiment, but add random corrup-

tion to each test image. Table 3 lists the recognition rates

of SRC and SRC-p, q under different ratios of random cor-

ruption. One can see that SRC-p, q can always outperform

SRC for recognizing face images with random corruption.

Block occlusion: In the experiments, we randomly se-

lect a square block from each test image, and replace it with

an unrelated image. Table 4 lists the recognition rates of S-

RC and SRC-p, q under different ratios of block occlusion.

Again, SRC-p, q can obtain better recognition rates than S-

RC for face recognition with random block occlusion.

Table 3. Recognition rate (%) on face images with random corrup-

tion. In SRC-p, q, we set p = q = 0.5.
Corruption ratio 10% 20% 40% 60%

SRC [38] 97.48 95.53 90.32 76.64

SRC-p, q 97.72 96.64 92.16 78.42

Table 4. Recognition rate (%) on face images with block occlusion.

In SRC-p, q, we setp = q = 0.5.
Occlusion ratio 10% 20% 30% 40%

SRC [38] 89.64 82.58 77.08 69.86

SRC-p, q 90.68 83.12 77.73 70.96
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6. Conclusion
In this paper, we extended the soft-thresholding opera-

tor for �p-minimization. We proposed a generalized shrink-

age/thresholding (GST) function and the associated gen-

eralized iterated shrinkage algorithm (GISA) for �p-norm

non-convex sparse coding. Compared with the state-of-the-

art methods, GISA is theoretically more solid, easier to un-

derstand and more efficient to implement, and it can con-

verge to a more accurate solution. Our experimental re-

sults on image deconvolution verify the effectiveness and

efficiency of GISA, and our experiments on sparse coding

based face recognition showed that �p-norm non-convex s-

parse coding can improve the recognition rate. With the in-

creasing interests on non-convex �p-minimization problem-

s, GISA could be potentially used in more and more vision

and learning applications.
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