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Abstract

Visual object retrieval aims at retrieving, from a col-
lection of images, all those in which a given query object
appears. It is inherently asymmetric: the query object is
mostly included in the database image, while the converse is
not necessarily true. However, existing approaches mostly
compare the images with symmetrical measures, without
considering the different roles of query and database.

This paper first measure the extent of asymmetry on
large-scale public datasets reflecting this task. Considering
the standard bag-of-words representation, we then propose
new asymmetrical dissimilarities accounting for the differ-
ent inlier ratios associated with query and database images.
These asymmetrical measures depend on the query, yet they
are compatible with an inverted file structure, without no-
ticeably impacting search efficiency. Our experiments show
the benefit of our approach, and show that the visual object
retrieval task is better treated asymmetrically, in the spirit
of state-of-the-art text retrieval.

1. Introduction
The purpose of visual object retrieval is to search a spe-

cific object in large-scale image/video datasets. In contrast,

similar image search or near duplicate detection aims at re-

trieving globally similar images. This difference is illus-

trated in Figure 1, where it appears that the two tasks mostly

differ by how the query is defined. In object retrieval, a

bounding box or a shape delimits the query entity, such as

a person, place, or other object. In contrast, similar image

search assumes that the query is the full image.

This task is the visual counterpart of searching by query

terms in textual information retrieval, where a few words

or a short descriptions are compared with large textual doc-

uments. Early in the 60’s, the SMART system designed

by Salton [20], considered text retrieval as an asymmetri-

cal scenario. Similarly, state-of-the-art textual engines rely

on asymmetrical measures, for instance by using different

term weighting schemes for the query and database ele-

ments, such as in the Okapi [18, 19] method. For a recent

(a) visual object retrieval (b) similar image search

Figure 1. Differences between object retrieval and similar image

search. In (a) object retrieval, the query is delimited by a bound-

ing box or a shape, while in (b) similar image search, the query and

database objects are of the same kind. This paper shows the im-

portance of designing an asymmetrical dissimilarity measure for

object retrieval, in order to better take into account the different

inlier ratios between query objects and database images.

overview of these schemes, the reader may refer to a recent

book by Manning et al. [11]. In this paper, we only con-

sider unsupervised object retrieval, where no annotation is

provided. Our goal is therefore not to determine the class

of an image, but rather to find images containing visually

similar objects, as in the Instance search task of the Trecvid

evaluation campaign [14].

Related work. The bag-of-words (BoW) framework [21]

is the long-lasting standard approach for large-scale im-

age and visual object retrieval. Recent schemes [2, 17, 24]

derived from this approach exhibit state-of-the-art perfor-

mance on several benchmarks. This baseline method has

been improved in several ways in recent years, in particular

to compensate for quantization errors, e.g., by using large

vocabularies [13, 16], multiple- or soft-assignment [7, 17]

and Hamming embedding [5]. Other techniques include im-

proving the initial ranking list by exploiting spatial geome-

try [17, 21, 23] and query expansion [3].

All these approaches rely on a symmetrical metric to

produce the initial ranking of the image collection, such as

the �1 [13] or Euclidean (�2) [16] distances. Such choices

are convenient: they correspond to some underlying vec-

tor space and allow the use of dedicated machine learning
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techniques such as SVM or metric learning [4]. As a result,

the body of literature on asymmetrical metrics is limited.

An inspiring work is the framework proposed by Kulis et
al. [8], who consider asymmetrical kernels for the problem

of domain adaptation in image classification. However, this

method requires annotation and is too general to address the

unsupervised visual object retrieval problem. Note that, al-

though Bregman divergences such as Kullback-Leibler [9]

are asymmetrical by construction, they do not reflect the

underlying assumptions underpinning visual object recog-

nition and lead to poor comparison results.

Our paper specifically considers the visual object re-

trieval problem. We argue that symmetrical metrics are not

optimal for judging the presence of query objects. This is

because most of the area in the query image is useful: The

bounding box or shape tightly delimits the relevant object.

In contrast, the database images containing the object may

also contain other objects or “stuff”, i.e., clutter. When the

images are described by local descriptors, this leads to very

different inlier ratios in the query and database images. This

key aspect is not taken into account in existing schemes.

Contributions. First, we quantitatively analyze the differ-

ent properties of the query and of the database images in

visual object retrieval. We carried out our analysis on popu-

lar large-scale object retrieval datasets and the results show

the extent to which this task is asymmetrical.

Focusing on the standard BoW method, we then propose

new query-adaptive asymmetrical dissimilarities. They are

specially designed to take into account the asymmetry of the

comparison underpinning visual object retrieval. They are

defined on-the-fly for each query in order to account for the

expected inlier ratio. Yet they can be efficiently calculated

by using an inverted file index.

The experiments are conducted on three large-scale

datasets designed for visual object retrieval, namely Ox-

ford105K and two datasets used in the instance search task

of Trecvid. Our method improves the initial ranking in com-

parison with a symmetrical baseline that already achieves

state-of-the-art performance for the initial ranking.

The rest of this paper is organized as follows. Section 2

introduces the datasets used through the paper to evalu-

ate visual object retrieval, and illustrates the importance

of asymmetry in this task. Section 3 describes our query-

adaptive asymmetrical dissimilarities and how to calculate

them with an inverted index. Our results on three large-scale

datasets are reported in Section 4, along with a comparison

with the state of the art. Section 5 concludes the paper.

2. Object retrieval: an asymmetrical scenario

This section shows that the asymmetry phenomenon is

prevalent in visual object retrieval datasets. For this pur-

pose, we first introduce three public benchmarks, which

correspond to application scenarios where the query is an

object instance. Then we describe the baseline system. Fi-

nally, we analyze the asymmetry of inliers in query and

database images in visual object recognition tasks and dis-

cuss the limitations of the symmetrical BoW in this context.

2.1. Object retrieval benchmarks

Oxford105K. The Oxford buildings dataset (Ox-

ford5K) [16] consists of 5062 high-resolution images

crawled from Flickr. Another set comprising around

100,000 Flickr images is usually appended to form the

Oxford105K dataset. A Region of Interest (ROI) is defined

for each query image. It is a bounding box delimiting

the building of interest. Following common practice, we

consider two evaluation scenarios:

1. Oxford105K: The dataset is learned on Oxford5K [16].

2. Oxford105K*: The vocabulary is independently

trained on another dataset, namely the Paris building

set [2, 17]. The performance is tested on the Ox-

ford105K. This scenario corresponds to the case where

the images are not known beforehand [2, 6, 17].

TrecVid instance search: INS2011 and INS2012. The

TrecVid INstance Search (short: INS) datasets were re-

leased in the context of the evaluation campaign organized

by NIST. BBC rushes and internet videos comprise the test

data of the INS2011 and INS2012 datasets, respectively.

The duration of the video clips in the test datasets is gen-

erally not longer than 1 minute (30 seconds on average).

The task description [14] is as follows. A large collec-

tion of video clips defines the dataset to be searched. Sev-

eral query topics are defined. A query topic may refer to

a person, an object or a place. Each query topic consists

of several query images and corresponding masks delimit-

ing the ROI. For each query topic, the system has to return

the 1000 video clips that are most likely to contain a recog-

nizable instance of the query topic. The INS task is rather

challenging, as shown in Figure 1(a)-right: the objects are

small and the database is represented by millions of frames.

As a result, the quality of the initial ranking (before spatial

verification and query expansion) is critical.

Evaluation protocol. The performance on each dataset is

evaluated by the official score, i.e., the mean average preci-

sion (mAP) on the Oxford105K [16] and the mean inferred

average precision (infAP) for the TrecVid datasets.

Table 1 provides detailed information about the three

benchmarks. All the images are described by SIFT descrip-

tors [10] extracted with the Hessian-Affine detector [12].

For Oxford105K, we used the descriptors provided by

Perďoch et al. [15] in order to allow for a direct compari-

son. The RootSIFT [2] post-processing is used on the Ox-

ford105K and the INS2012 datasets, as it improves the re-
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Table 1. Details of benchmark datasets.
↓ Dataset #Images #Videos #SIFT points #Queries

Oxford105K 105,133 N/A 253,761,866 55

INS2011 1,608,405 20,982 1,206,953,361 25

INS2012 2,228,356 76,751 3,055,162,839 21

trieval performance at no cost. On TrecVid INS, the video

clips are sampled with the rate of 3 frames per second.

2.2. The baseline BoW system and its limitations.

We briefly introduce the BoW system [21], which serves

as our baseline, and discuss its limitation in the context of

visual object retrieval.

Let us consider a database that consists of N images.

First, we extract SIFT features from each image. A large

visual vocabulary comprising k=1 million visual words

is trained by an efficient approximate k-means algorithm

(AKM) [16]. After vector quantization with the visual vo-

cabulary, each image is described by a k-dimensional his-

togram vector Tj ∈ R
k, j = 1 . . . N . Similarly, a query

image i is described by a histogram vector Qi ∈ R
k com-

puted from the descriptors appearing in the ROI. The vec-

tors Qi and Tj correspond to BoW histograms, optionally

weighted by idf terms.

In the standard scoring method, each vector is first �p-

normalized, with p = 1 or p = 2, and then the �p-distance

is computed between the query and all databases vectors to

order the database images. In our notation, the distance is

therefore computed as

�p(Qi,Tj) =

∥∥∥∥∥
Qi

‖Qi‖p
− Tj

‖Tj‖p

∥∥∥∥∥
p

. (1)

A typical failure for visual object retrieval. The toy ex-

ample in Figure 2 illustrates the drawback of using Equa-

tion 1 as a scoring method in an asymmetrical object re-

trieval scenario. In the first row, the object region in the

query image is delimited by an ellipse. The dataset con-

sists of two test images. Let us assume that the object is

described by two robust and repeatable visual words: a five-

pointed star and a circle. In this case, Image 2 is the correct

answer and contains all the features of the query object. But

it also contains background corresponding to other visual

content. The second row in Figure 2 shows that the standard

scoring method produces the wrong result in this case. For

the sake of exposition, let us assume that idf has no impact

and consider the �1 distance1. Such failures are frequent for

small query objects like those of the Trecvid INS task, be-

cause the distance favors the selection of images described

by a small number of features.

1The same conclusion holds for �2 in this example.

Query Image 1 Image 2

V
o
c
a
b
u
l
a
r
y

ROI

0          0.5         1 0          0.5         1 0          0.5         1

0           1           2 0           1           2 0           1           2

Figure 2. A toy example comparing the standard scoring

method in the second row (�1(Q,T1) = 1, �1(Q,T2) = 1.2)
with our asymmetrical dissimilarity in the third row

(δ1(Q,T1,∞) = 1, δ1(Q,T2,∞) = 0).

2.3. Statistical analysis of asymmetry

In order to evaluate the extent of asymmetry in visual

object retrieval, we consider the voting interpretation of the

BoW framework [21, 5]. More specifically, a pair of fea-

tures respectively from a query and test image is regarded

as a match if these features are quantized to the same visual

word. Each feature is allowed to be matched once at most.

Our objective is to separate these features into three cases.

1. Inliers (Inl): Features belong to a matching pair (note

that they may or may not correspond to a true match

between the query and database images);

2. Query outliers (Qout): The query features (in the ROI)

that do not correspond to any feature in the database

image;

3. Database outliers (Dout): The features of the database

that do not have any matching feature in the query ROI.

We estimate these quantities on the basis of the values

of Ql
i and Tl

j , i.e., the l-th (l = 1 . . . k) component in the

given query and database vectors. This is done by sepa-

rately collecting the votes, as illustrated in Table 2. First, the

maximum possible number of matching pairs min(Ql
i,T

l
j)

is an estimation of the number of inliers for this particu-

lar component l. The unmatched features are then counted

as the outliers either of the query (if Ql
i > Tl

j) or of the

database (if Ql
i < Tl

j ) images. In summary, we separate

the components Ql
i and Tl

j according to the following equa-

tions:

Ql
i = max(Ql

i −Tl
j , 0) + min(Ql

i,T
l
j), (2)

Tl
j = max(Tl

j −Ql
i, 0) + min(Ql

i,T
l
j). (3)
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Table 2. Protocol to collect matching statistics from the histogram

values Ql
i and Tl

j : the bottom-right cell collects the inliers, while

the top-right and bottom-left cells respectively correspond to the

outliers of the query and database images.

↓ Ql
i Tl

j → = 0 > 0

= 0 N/A max(Tl
j −Ql

i, 0)

> 0 max(Ql
i −Tl

j , 0) min(Ql
i,T

l
j)

N/A Dout ≈ 3686

Qout ≈ 367 Inl ≈ 15.8

Figure 3. Query example (“bodleian”) and its average number of

inliers/outliers when matching the query ROI with the correspond-

ing relevant images of Oxford105K.

For each relevant (query, database) pair, the quantities

Inl, Dout, and Qout are estimated by summing the individ-

ual contributions of all the components l = 1 . . . k. Fig-

ure 3 shows the estimation of these quantities for a particu-

lar query image contained in the Oxford105K benchmark.

Results of the analysis. Table 3 reports the estimated in-

liers and outliers on the three datasets considered in this pa-

per. These quantities are averaged over all query-database

pairs that are relevant in terms of the ground-truth. Note

that a joint average scheme [1, 24] is used for the TrecVid

INS datasets: multiple images in each video clip and query

topic are jointly quantized to form a single BoW vector by

average pooling. This scheme was shown to be effective for

image retrieval [24], and we have used it in all our experi-

ments on the TrecVid benchmarks.

By defining the inlier ratio as the number of matched fea-

ture points divided by the total number of features, we cal-

culate the inlier ratio associated with the query and database

sides as Inl/(Inl + Qout) and Inl/(Inl + Dout), respectively.

We define the outlier ratio in a similar way.

As is to be expected for visual object recognition of small

objects, Table 3 clearly shows that Qout << Dout, meaning

that the inlier ratio is much higher in the queries than in the

corresponding database images; i.e., the features points of

the query ROI are significantly more likely to be present in

a database image than the inverse. This is of course ex-

pected since additional visual content or clutter exists in

database images. Figure 4 evidences this asymmetry in the

inlier/outlier ratio by showing typical examples extracted

from each of our evaluation datasets. Note also that some

feature points labeled as matched do not strictly match each

other. This is because a voting scheme based on BoW vec-

tors, rather than a precise nearest neighbor search or stereo

matching, implicitly builds loose correspondences.

Table 3. Estimation of the average number of Inl, Dout and Qout

on the three datasets.

↓ Dataset Dout Qout Inl

Oxford105K 3 620.6 1 807.4 46.2

INS2011 779.1 190.3 12.7

INS2012 1 539.3 473.5 9.1

Oxford105K INS2011 INS2012
Figure 4. Examples visualizing the asymmetrical inlier/outlier ra-

tio on the query and database side on each benchmark. Query

regions are in red. Feature points labeled as inliers and outliers are

marked with blue circles and green crosses, respectively.

In Table 3, note the average inlier ratio in the queries is

very low on each dataset, especially the INS2012 dataset

(< 2%). This confirms the difficulty of object retrieval,

and indicates that existing metrics are not likely to return

images containing a small object surrounded by cluttered

background.

3. Asymmetrical dissimilarity
The objective of the object retrieval task is to determine

the existence of the query object, and it is inherently asym-

metric: A appearing in B does not necessarily means that B

also appears in A (see Figures 2 and 4). This is reflected

in the asymmetry of the inlier ratio on the benchmarks. In

the standard scoring framework, distance �p in Equation 1

is symmetrical, since �p(Qi,Tj) = �p(Tj ,Qi). For this

reason, we deem that the standard BoW scoring method is

better adapted to the symmetrical similarity image search

problem (without ROI), but is not optimal for visual object

retrieval. In short, we argue that a symmetrical metric is

designed for measuring a symmetrical similarity problem,

while the asymmetry of visual object recognition requires

an asymmetrical dissimilarity.

This section describes asymmetrical dissimilarities that

are specifically adapted to this task. Their design is moti-

vated by the following observations:

• The normalization severely penalizes the database im-

ages in which the query object is small and corre-

sponds to a small number of features (see Figure 2).
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Table 4. Performance obtained with different parameter w in Equa-

tion 4. Here �1(Q,T) is the baseline.
Configurations Oxford105K Oxford105K* INS2011 INS2012

δ1(Q,T, 0) 0.3 0.3 0.02 0

δ1(Q,T, 1) 2.79 2.78 0.02 0

δ1(Q,T,∞) 65.29 38.85 44.88 19.51

δ1(Q,T, wopt) 75.38 55.81 47.38 20.88

�1(Q,T) 73.88 54.47 45.16 19.83

• Ideally, the scoring should not depend too much on

the amount of clutter in the database image; i.e., Dout

should not be penalized too much.

• In contrast, a feature appearing in the object has a

higher probability of appearing in a relevant image;

i.e., Qout should receive a larger penalty.

After introducing our asymmetrical dissimilarities, we show

how the computation is sped-up with an inverted file.

3.1. Asymmetrical penalties

We define our asymmetrical dissimilarity as follows:

δp(Qi,Tj , w) = ‖d(Qi,Tj , w)‖p , (4)

where the l-th component of the vector d(Qi,Tj , w) is

given by

dl(Ql
i,T

l
j , w) = w×max(Ql

i−Tl
j , 0)+max(Tl

j−Ql
i, 0).

(5)

The parameter w is a weight that takes into account the

asymmetry of the problem. Equation 5 can be rewritten as

dl(Ql
i,T

l
j , w) =

{
w
(
Ql

i −Tl
j

)
if Ql

i > Tl
j

Tl
j −Ql

i if Ql
i < Tl

j
. (6)

Since we rely on relative values to establish the ranking

list, Equation 5 only requires one weighting parameter w. It

should be optimally related to the expected ratios between

Qout and Dout (see Section 2). As one can deduce from

Table 2, the values w and 1 are penalties associated with the

query and database (estimated) outliers, respectively. We

intentionally give a larger weight, i.e., w > 1, to the query

outliers. This means that we severely penalize features that

are detected in the query object regions having no corre-

sponding features in the database image. In contrast, the

database outliers receive a comparatively smaller penalty.

This limits the impact, on the ranking, of the background

appearing in the database images.

Discussion. We consider three particular choices for the

parameter w, as shown in Table 4:

• The case w = 0 amounts to penalizing the database

images based on Dout, i.e., the estimated amount of

background. Intuitively, this choice is not desirable be-

cause database images are expected to include clutter.

• The case w = 1 corresponds to a symmetrical case. It

amounts to using the regular �p distance between the

unnormalized histograms.

• The case w →∞, i.e., using an arbitrarily large value,

corresponds to the ideal case without considering the

background in database images. It amounts to count-

ing the number of Qout.

Compared with the baseline �1, none of these choices is sat-

isfactory, because none is adapted to the specific query and

database. Instead, the next subsection introduces a query-

dependent method that automatically adapts the weight w
to a given query and database.

3.2. Query-adaptive dissimilarity

The weight w reflects the different inlier ratios between

the query and database images. A naive strategy would be

to fix it, as in the three particular cases mentioned before,

thus we get δ1(Q,T, wopt) in Table 4. A fixed optimal wopt

yields better results than the baseline �1. Yet the parame-

ter wopt highly depends on the dataset, for instance, wopt is

700, 300, 1500 and 700 for the Oxford105K, Oxford105K*,

INS2011 and INS2012, respectively.

In other terms, such a strategy implicitly assumes that

the inlier ratio is constant across query and database im-

ages, which is not true in practice. We partially address this

problem by automatically selecting w on-the-fly, at query

time. Substituting Equation 2, 3 into Equation 5 and then

into Equation 4, we get:

δp(Qi,Tj , w) =w ‖Qi −min(Qi,Tj)‖p
+ ‖Tj −min(Qi,Tj)‖p . (7)

Recall that Qi,Tj are weighted by idf terms. Let us

first consider the δ1 asymmetrical dissimilarity. Note also

the vectors involved in Equation 7 are all positives. After

dropping the constant term w‖Qi‖1, which has not impact

on the relative ranking of the images, and setting w̄ = w+1,

we re-define an equivalent dissimilarity measure as

δ1(Qi,Tj , w̄) = ‖Tj‖1 − w̄ ‖min(Qi,Tj)‖1 . (8)

The two terms on the right side of Equation 8 are intuitively

understood as follows. Test images that are uncluttered (i.e.

‖Tj‖1 is small) and have many matches with the query

(‖min(Qi,Tj)‖1 is large) will be regarded as similar to the

query region. The quantity w̄ balances the impact of clutter

and positive matches in the scoring. In our method, instead

of directly setting w̄ to a fixed value, we set a parameter α1

related to w̄ by the following equation:

w̄ = α1

N∑
j=1

‖Tj‖1
N∑
j=1

‖min(Qi,Tj)‖1
. (9)
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The benefit of this expression is that it automatically adapts

the dissimilarity function to 1) the database and to 2) the

particular query Qi with the denominator. Overall, our

method only requires the parameter α1 (whose impact is

thoroughly analyzed in Section 4). Similarly, the dissimi-

larity δ2 becomes

δ2(Qi,Tj , w)

=w ‖Qi −min(Qi,Tj)‖2 + ‖Tj −min(Qi,Tj)‖2
=w

(
‖Qi‖22 − 2Qi ·min(Qi,Tj) + ‖min(Qi,Tj)‖22

) 1
2

+
(
‖Tj‖22 − 2Tj ·min(Qi,Tj) + ‖min(Qi,Tj)‖22

) 1
2

(10)

For the same reason as in the δ1 case, we set a parame-

ter α2 in Equation 11 instead of directly setting w:

w = α2

N∑
j=1

√
‖Tj‖22 − 2Tj min(Qi,Tj) + ‖min(Qi,Tj)‖22

N∑
j=1

√
‖Qi‖22 − 2Qi min(Qi,Tj) + ‖min(Qi,Tj)‖22

.

(11)

3.3. Speeding-up retrieval with an inverted index

The direct calculation of the dissimilarities with Equa-

tions 4 or 5 requires one to access all the vector compo-

nents. It is therefore inefficient when k is large, as in the

case of our million-sized vocabulary. However, it appears

that the proposed dissimilarities (Equations 8 and 10) can

be decomposed such that the calculation only involves 1)

the shared nonzero components of two vectors to be com-

pared, as in the case of BoW [21], along with 2) terms that

separately depend on the database and query (computed off-

line and on-the-fly, respectively). It is therefore efficiently

implemented based on an inverted index. The symmetrical

distances and our asymmetrical dissimilarities have compa-

rable complexities. The amount of visited memory is iden-

tical. The quantities ‖Tj‖p are pre-computed during the of-

fline indexing stage. The computation burden of the query-

specific terms of δp is comparable to that of the �p distance.

For instance, the term ‖min(Qi,Tj)‖1 in Equation 8 is also

calculated in the case of the �1 distance. In practice, it takes

less than 0.1 second to search an object in the Oxford105K

dataset with the inverted file structure.

4. Experiments and analysis
This section describes our experiments on three large-

scale datasets designed for object retrieval. In order to

compare our asymmetrical dissimilarities with a compet-

itive baseline, we first optimized the choices involved in

the baseline system for each dataset. As we will see, our

Table 5. Performance of the baseline for different configurations.
Configurations Oxford105K Oxford105K* INS2011 INS2012

The selected 73.88 54.47 45.16 21.71
Different AS 70.93 48.95 44.89 21.14

Different DS 70.03 51.07 45.13 19.83

With re-ranking 76.59 71.82 30.76 14.15

Note: the selected configuration (top) is: using soft assignment and hard

assignment on the Oxford and TrecVid datasets, respectively; utilizing �1
metric on all datasets except the INS2012. Legend for alternative choices:
AS: alternative assignment scheme (swap hard and soft with selected); DS:

choice of the distance (swap �1 with �2).

baseline outperformed the state of the art by itself on some

benchmarks. After analyzing the impact of the additional

parameter involved in our approach, we provide a compari-

son with the best baseline and the state of the art.

In the experiment, we used a BoW baseline system with-

out any re-ranking step, such as spatial re-ranking [17, 21]

and query expansion [3], because we focus on improving

the initial ranked accuracy, which is critical especially for

difficult datasets. Most re-ranking algorithms, such as spa-

tial verification [17, 21] or query expansion [3], require the

short-list to be of sufficient quality to produce good results.

Moreover, they are mostly complementary to our method.

Configuration of the baseline system. Table 5 evaluates

the different options considered for the baseline system.

Hard or soft assignment. As previously reported in the liter-

ature [17], soft assignment improves the results on the Ox-

ford105K dataset. But unexpectedly, it reduces the perfor-

mance on the INS TrecVid datasets. Our interpretation is

that the joint average pooling compensates the loss in quan-

tization, at least to some extent, thus making the soft assign-

ment unnecessary or even undesirable.

�1 vs �2. As shown in the literature [7, 13, 22], the best

norm for BoW depends on the dataset. The �2 metric is bet-

ter on the INS2012 dataset, whereas the �1 distance wins on

the others. In our experiments, we used the best configu-

ration for each dataset and kept this choice consistent with

our asymmetrical dissimilarities.

Spatial re-ranking improves the performance only on Ox-

ford. As mentioned above, we will not consider any re-

ranking scheme like this in the remainder of this section,

since we focus on improving the initial ranking list.

Impact of the parameter αp and relative improvement.
The �1/δ1 case. Figure 5 shows the impact of the parame-

ter α1 associated with the δ1 dissimilarity (see Equation 9).

We include the performance of the baseline system (dash

lines) provided by the �1 distance for a fair comparison.

Our dissimilarity consistently outperforms the symmet-

rical baseline: The improvement is of +5.77%, +12.08%,

+7.40% and +8.88% on the Oxford105K, Oxford105K*,

17101710



��

��

��

��

��

��

	�


�

��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�
�
�
��
�
�
�
	


�
�
�
�





���������


����������

�������

�������

73.88

54.47

45.16

19.83

Figure 5. Impact of the parameter α1 (horizontal axis) in Equa-

tion 9: performance (vertical axis) of the δ1 asymmetrical dissim-

ilarity.

INS2011, and INS2012, respectively. As expected, the per-

formance monotonically increases with α1 until it attains

a peak α∗
1. Then it monotonically decreases. This shows

the importance of balancing the clutter and matching terms

in Equation 8. Interestingly the performance is remarkably

stable around the peak: setting α1 = 0.5 leads to close-to-

optimal results on all benchmarks, and which is consistently

better than δ1(Q,T, wopt) in Table 4.

The �2/δ2 case. For the δ2 asymmetrical dissimilarity,

we draw the same conclusions as above. However, as

in the symmetrical case, the δ2 dissimilarity only slightly

outperforms the corresponding δ1 on the INS2012 dataset

(+1.30%) and gives worse results on other benchmarks.

This dissimilarity systematically achieves its best perfor-

mance in the extreme case of α2 → ∞, which amounts

to totally ignoring the clutter term.

Sample results. Figure 6 compares the ranked lists returned

by our δ1 dissimilarity with those associated with the �1 dis-

tance. Our method is especially better at returning relevant

images containing a significant amount of clutter. One key

problem of the symmetrical distance is that the same sam-

ples containing the query ROI are not necessarily ranked

before the others: in the first example, the image same as

the query is ranked second, and in the last example, the

most bottom-right sample returned by the δ1 dissimilarity

does not appear before some of the negative samples.

Comparison with the state of the art. The best results

we are aware of are reported in Table 6. The best results

reported for the quality of the initial short-list are given by

Best1. They reflect the score of the initial ranking and there-

fore correspond to the same setup as the one used in our

technique. Note first that our baseline system (Best �p) al-

ready outperforms this state of the art (Best1) for producing

the initial short-list.

Second, our asymmetrical method (Best δp) is consis-

tently better than its symmetrical counterpart for the best

choice (Best �p) of the baseline system. Recall that Best �p

Table 6. Comparison with the baseline (Best �p) and the state of

the art (Best1). The scores of Best2 are reported for reference

but are not directly comparable, as they generally include multiple

features, spatial verification or/and query expansion.

↓ Dataset Best �p Best δp Best1 Best2
Oxford105K 73.88 78.14 62.2 [1] 89.1 [2]

Oxford105K* 54.47 61.05 34.3 [17] 77.2 [15]

INS2011 45.16 48.50 – 55.6 [24]

INS2012 21.71 21.87 – 27.0 [14]

is optimally selected in Table 5. This shows the effectiv-

ness of our asymmetrical dissimilarities. The improvement

is very significant, except in the case of INS2012 (compa-

rable results). This might be related to the fact that we gen-

erally observe that the relative improvement of our method

is better for p = 1 than for p = 2, and that p = 2 is the best

choice for �p and δp on the INS2012 dataset (only).

Remark: For the sake of completeness, the table also reports

the best results (Best2) achieved by using, additionally,

multiple features, spatial verification or other re-ranking

schemes such as query expansion. Those results are there-

fore not directly comparable to our technique, and these

additional techniques are arguably complementary to our

method. In addition, we underline that for INS2011 and

INS2012 benchmarks, the scores Best2 are obtained by us-

ing the interest points outside the ROI, i.e., by exploiting the

context around the object. This does not correspond to our

visual object recognition scenario2.

5. Conclusions

This paper specifically addressed the asymmetrical phe-

nomenon arising in an visual object retrieval scenario. This

led us to propose new dissimilarities measures, adapted to

the bag-of-words representation, that explicitly take into ac-

count this aspect to improve the retrieval quality. Our mea-

sures get rid of the normalization factor to address the cases

where a small object appears in an image populated with

many features. In addition, it takes into account the differ-

ent inliers ratios. A key feature is to automatically adapt,

per query, a parameter that reflects the different inlier ratios

in the query and database images. Our dissimilarities come

at not cost, as they are implemented with a vanilla inverted

index like those used for symmetrical distances.

Its effectiveness is demonstrated in comprehensive ex-

periments carried out on large-scale benchmarks. To con-

clude, we believe that our method is fully compatible with

the standard object retrieval architecture [2, 16], meaning

that further refinements such as spatial re-ranking or query

expansion can be seamlessly integrated with it.

2This is effective on INS2011/INS2012 because the objects are often

occurring with the same background.
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Figure 6. Comparison of ranked lists. Query objects are on the left side. On the right side, the top 10 returns are ranked from left to right:

For each example, the upper and lower rows are returned by �1 and δ1, and the accuracies from top to bottom are 39.63 vs. 67.46, 27.2 vs.

50.17, and 39.71 vs. 56.35. Positive (negative) samples are marked with green (red) bounding boxes.
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