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Abstract

Sharing knowledge for multiple related machine learn-
ing tasks is an effective strategy to improve the generaliza-
tion performance. In this paper, we investigate knowledge
sharing across categories for action recognition in videos.
The motivation is that many action categories are related,
where common motion pattern are shared among them (e.g.
diving and high jump share the jump motion). We propose a
new multi-task learning method to learn latent tasks shared
across categories, and reconstruct a classifier for each cat-
egory from these latent tasks. Compared to previous meth-
ods, our approach has two advantages: (1) The learned la-
tent tasks correspond to basic motion patterns instead of full
actions, thus enhancing discrimination power of the classi-
fiers. (2) Categories are selected to share information with
a sparsity regularizer, avoiding falsely forcing all categories
to share knowledge. Experimental results on multiple public
data sets show that the proposed approach can effectively
transfer knowledge between different action categories to
improve the performance of conventional single task learn-
ing methods.

1. Introduction

Human action recognition is an important problem in

computer vision and numerous methods have been pro-

posed to tackle it [13, 3, 17, 31, 28, 14, 25, 30]. This work

builds on a key observation that many action categories are

highly correlated, as can be seen from published action data

sets [21, 17]. For example, people playing different kinds

of musical instruments in UCF50 [21] share similar mo-

tion patterns. Not much work in the literature, however,

has been devoted to the understanding of shared knowledge

in human actions. In this paper, we explore this particular

problem of learning knowledge sharing in action recogni-
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tion in a multi-task learning framework. Multi-task learn-

ing has been shown to improve the generalization capabil-

ity of each single task in the machine learning community

[4, 6, 33]. To be specific, we attempt to learn a large num-

ber of latent tasks shared by all the categories, and represent

each action classifier as a linear combination of latent tasks.

The proposed method automatically infers common visual

knowledge (corresponding to latent tasks) that is sharable

and finds the optimal linear combination of latent tasks to

reconstruct each category model. Different from the exist-

ing works that use multi-task learning algorithms for other

tasks, say text categorization, the use of respective methods

in action recognition need to address the following distinct

features in action recognition:

(1) In action recognition, the latent tasks should corre-

spond to some basic motion patterns that can be most ef-

fectively shared among different categories. If too much

“holistic” information is shared, then discrimination capa-

bility is compromised. To effectively address this issue, we

formulate our model by enforcing �1 norm regularization on

the parameter vectors of latent tasks. With the �1 regular-

ization, most entries of the feature vectors would be zeros,

and the remaining non-zero elements are expected to repre-

sent important motion patterns. This can be interpreted as

a process of feature selection. In contrast, previous multi-

task learning methods only enforce �2 norm regularization

on the latent task model parameters to avoid overfitting. �2
norm regularization , however, does not have the feature se-

lection capability.

(2) Most previous works [6, 1] assume that all the tasks

are related, which is invalid for action recognition. For ex-

ample, in the UCF 50 data set, playing musical instruments

actions are different from sports actions. Forcing all the

tasks to be relevant would simply introduce noise to the

learned latent tasks. To approach this problem, we intro-

duce the �1 norm sparsity regularizer on the combination

weight parameter of each category and each action model

is reconstructed using a few latent tasks. Consequently, in

most cases, a latent task is shared by a small number of cat-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.281

2264

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.281

2264



egories. This way allows only related categories to share

information, rather than forcing all the categories to share

latent tasks. Relationship between any two categories can

be determined according to the overlapping of their combi-

nation weights which are automatically learned from train-

ing data.

To summarize, this work proposes a new multi-task

learning method to share latent tasks across categories. The

new method can effectively learn discriminative latent tasks

and automatically select combination weights for each cat-

egory model. To learn the model parameters, we adopt an

efficient alternating optimization algorithm based on the ac-

celerated proximal gradient (APG) method[27], and exten-

sive experiments on multiple public data sets are carried out

which demonstrates the effectiveness of the approach.

2. Related Work
Action Recognition. In the last decade, there is an abun-

dant literature on action recognition in videos [13, 15, 16,

17, 14, 31, 28, 25]. Among them, discriminative part-based

action models [31, 17, 25, 12] attract a lot of attention re-

cently. In particular, [31] attempts to model dependence

between local patches in the spatial domain and [17, 25]

learn structure among motion segments in the temporal do-

main. All these works learn a model for each category in-

dependently while our approach focuses on sharing visual

knowledge for multiple categories via a multi-task learn-

ing method. Recently, there are some works which attempt

to share information for action recognition. In [3], Cao et

al. propose to train action models on unlabled target data

set by modeling the correlation between labeled source data

set and unlabeled target data set. Liu et al. [14] exploit

attribute representation which is shared across categories.

However, these attributes are manually specified. Further-

more, all these methods focus on learning an action model

for each category independently. Yao et al. [32] learn the la-

tent basis by �1 regularization for action recognition in still

images. Their goal is to model high-order interactions of

image attributes and parts. Different from their work, our

approach attempts to share visual knowledge among multi-

ple categories and improve the performance of action recog-

nition.

Knowledge Sharing for Object Recognition. In ob-

ject recognition, a number of papers have been published

on transferring visual knowledge between different object

categories [23, 18, 5, 19, 24, 26]. Motivated by the fact that

some object parts may have similar appearance from differ-

ent views, Ott et al. [18] propose to extend the deformable

part model [7] to share object part models among multiple

mixture components and object classes. However, they as-

sume that all part models are shared and this may introduce

additional noise. On contrast, our model includes a �1 regu-

larization term which enables our model to selectively share

Figure 1. Illustration of our approach, where W denote model pa-

rameters of all the categories. L and S denotes latent tasks matrix

and sparse combination weight matrix, respectively. White blocks

represent zero-value entries. In this work, we learn the latent task

matrix L and the combination weight matrix S instead of learning

W directly.

latent tasks across categories. Endres et al. [5] consider a

more complex sharing scheme with a two level information

sharing structure. On the top level, body plans are shared

across object categories, and on the bottom level, these body

plans share object part appearance models. However, the

learning procedure heavily relies on additional supervision

such as object part annotation. In [8], Harchaoui et al.

incorporate low-rank regularization for large-scale multi-

class object recognition. Trace-norm penalty in their for-

mulation enforces all categories are related which may de-

grade the performance in real-world problem. In contrast,

sparse combination weights in our model will make task

sharing among all categories more flexible. Given the great

success of visual knowledge sharing in object recognition,

we believe it is also a promising research direction in action

recognition.

Multi-Task Learning. Multi-task learning (MTL) [4]

has been an active topic in machine learning for a long time.

Most previous multi-task works [4, 6, 1] assume that all the

tasks are related to each other or the tasks are related un-

der certain prior assumptions, such as the tree-guided MTL

[9], the clustered MTL [33], etc. We argue that these im-

posed prior assumptions are too strong for many practical

problems. In this paper, we introduce a more flexible latent

tasks sharing scheme for action recognition in videos. Our

work is related to [11], but different from it on latent task

modeling and optimization methods. Compared with their

method, our model is equipped with the feature selection

capability due to the use of the �1 normalization method to

regularize the latent task model parameters. Therefore, our

approach enforces the learned latent tasks to correspond to

basic motion patterns, which can be more effectively shared

across different activity categories.
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3. Action Recognition with Sharing Latent
Tasks

In this section, we describe our approach for action

recognition by sharing latent tasks across categories. The

generalization capability of each single model is improved

by leveraging visual knowledge from other categories.

3.1. Learning to Share Latent Tasks

Suppose we have C action categories and our goal is

to learn a binary linear classifier for each category. For

the c-th action class, we denote its model parameter as wc

and the corresponding training data are {(Xci, Yci)}Nc
i=1 ⊂

R
d × {−1,+1}(c = 1, · · · , C), where ci and Nc are the

index and the number of training data of the c-th class, re-

spectively.

We attempt to learn shared tasks together for improved

action recognition in the multi-task learning framework.

Therefore, instead of training each classifier separately, we

propose to learn classifiers for all the categories simultane-

ously. To be specific, we assume that all classifiers can be

reconstructed from a number of shared latent tasks, and use

a linear combination of latent tasks to reconstruct each clas-

sifiers. Let L = [L1, L2, · · · , LK ] ∈ R
d×K denotes the

shared latent task matrix with each column representing a

latent task in R
d and K is the number of latent tasks. We

write sc ∈ R
K as the combination weight parameter for the

c-th category. The model parameter of the c-th category can

be expressed as

wc = Lsc (1)

Model parameters of all the categories can be put together to

form a large matrix W = [w1, w2, · · · , wC ] ∈ R
d×C . Sim-

ilar manipulations can also be done for combination weights

to form S = [s1, s2, · · · , sC ] ∈ R
K×C . Then we can obtain

the following formulation:

W = LS (2)

Consequently, we will learn the latent task matrix L and

the combination weight matrix S instead of learning W di-

rectly. This method enables different action categories to

share similar visual pattern which are represented by latent

tasks.

Regularization is critical for learning a robust model, we

apply the �2 norm regularization on all the latent task model

parameters to avoid overfitting. In the context of action

recognition, we expect latent tasks to represent basic motion

patterns that can be shared among categories. Discrimina-

tive information is lost if categories share too much holistic

information. One possible method is to model each cate-

gory as a set of “parts”, and let different categories share the

common parts. This method, however, may require a rather

complicated model. Alternatively, we apply feature selec-

tion methods that force each latent task to respond only to

particular feature patterns and obtain shareable latent tasks.

In this paper, we apply the sparsity regularizer �1 norm to

force most of the dimensions to be 0. Hence, the remaining

parameters are expected to represent basic visual patterns.

While previous methods usually assume that all cate-

gories are related to each other, this work enforces latent

tasks to be selectively shared by different categories. To

achieve this, formally, we apply the �1 norm regularization

on the matrix of combination weight S. As a result, each

category model is reconstructed by small number of latent

tasks, which forces latent tasks to be shared only among

related categories.

We propose a new multi-task learning approach to learn

multiple classifiers simultaneously by sharing latent task

across categories. Based on the above motivation, our learn-

ing problem is formulated as follows:

min
L,S

C∑
c=1

Nc∑
i=1

1

2
L(Yci, (Lsc)

T
Xci) + μ‖S‖1

+ λ‖L‖2F + γ‖L‖1 (3)

The first term L(·, ·) represents a pre-defined loss function.

In this paper, we adopt the squared hinge loss which is de-

fined as:

L(Yci, (Lsc)
T
Xci) = [max(0, 1−Yci(Lsc)

T
Xci)]

2

The second term ‖S‖1 =
∑C

c=1 ‖sc‖1 denotes the �1 norm

of the linear combination weight for each category. This

regularization term enables us to learn a sparse linear com-

bination for each category.

The last two terms are Frobenius norm and �1 norm of L
which are defined as ‖L‖2F = trace

(
LLT

)
and ‖L‖1 =∑K

k=1 ‖Lk‖1, respectively. Frobenius norm of L helps to

avoid overfitting while �1 norm of each latent task forces to

focus on specific motion patterns rather than the full actions.

μ, λ and γ are regularization parameters. Fig. 1 shows the

illustration of our approach.

Pirsiavash et al. [20] proposed a bilinear classifier for vi-

sual recognition. Our work, however, is significant different

from their work in motivation and formulation. Their work

mainly focus on reducing the number of parameters of a

weight vector and improving run-time efficiency, while our

goal is a more effective method to share knowledge across

categories. Therefore, we enforce the latent tasks to corre-

spond to basic patterns (instead of full actions) so that they

be shared by more related categories. Furthermore, in our

work, each category only selects a few latent tasks, avoiding

sharing knowledge with unrelated categories.

After learning latent tasks matrix L and the combination

weight matrix S, we can obtain a linear classifier for each

category by Eq. (1). For a new testing sample, we calculate

decision values to all categories by running all the category
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classifier on it, and then choose the category that results in

the largest decision value to be the predicted label.

3.2. Model Learning

Eq. (3) is not jointly convex in S and L. However, it is

convex in S given fixed L, and is convex in L given fixed

S. Hence we adopt the block coordinate descent method to

solve this problem by alternately optimizing S and L. Our

optimization procedure can be outlined as two steps:

(1) with the fixed L, learn the combination weight matrix S
by solving the following optimization problem:

min
S

C∑
c=1

Nc∑
i=1

1

2
L(Yci, (Lsc)

T
Xci) + μ‖S‖1 (4)

(2) with the fixed S, the optimal L to Eq. (3) can be obtained

by solving the following optimization problem:

min
L

C∑
c=1

Nc∑
i=1

1

2
L(Yci, (Lsc)

T
Xci)+λ‖L‖2F+γ‖L‖1 (5)

Both optimization problems in Eq. (4) and Eq. (5) are non-

smooth due to the �1 norm regularization of S and L. We

employ the accelerated proximal gradient method (APG)

[27] in both two steps. Different from traditional gradient

descend methods, at each iteration, APG uses a linear com-

bination of previous two points as the search point, instead

of only using the latest point. APG has the convergence rate

of O( 1
k2 ) [27], which is most optimal among all the first or-

der methods. Furthermore, it can also deal with non-smooth

convex optimization problem with proximal operator. Fol-

lowing are the details of the optimization procedure.

Optimizing S with fixed L. After fixing the latent task

matrix L, the objective function in Eq. (4) is a non-smooth

convex function. For simplicity, we represent Eq. (4) as

min
S

f(S) + g(S) (6)

where the functions f(S) and g(S) are defined respectively

as:

f(S) =
C∑

c=1

Nc∑
i=1

1

2
L(Yci, (Lsc)

T
Xci)

g(S) = μ‖S‖1
We note that f(S) is a smooth convex function and g(S) is a

convex but non-smooth function. In APG, given the search

point Ŝt and the gradient of smooth part ∇Sf(Ŝ
t) for the

t-th iteration, we consider the following update scheme [2]

for problem Eq. (6):

St = T μ
V

(
Ŝt − 1

V
∇Sf(Ŝ

t)

)
(7)

where Tα is the shrinkage operator defined by

Tα(xi) = (|xi| − α)+ sgn(xi)

V is the Lipschitz constant and we calculate it by the back-

tracking line search method.

As mentioned above, APG uses the linear combina-

tion of two previous points as a search point for the next

iteration. Specifically, given two previous points St−1

and St−2, the search point Ŝt at the t-th iteration is(
St−1 +

(
pt−2−1
pt−1

) (
St−1 − St−2

))
, where p is initialized

as 1 and updated as pt =
1+
√

1+4(pt−1)2

2 .

Algorithm 1: Solving Optimization Problem Eq. (3)

by Accelerated Proximal Gradient (APG)

Input: Training data: Dc = {(Xci,Yci)}
Output: Latent task matrix L

Combination weight matrix S = [s1, . . . , sC ]
Model parameters W = LS

1 Step 1. Optimize S with fixed L
2 repeat
3 Ŝm = T μ

V

(
Sm−1 + pm−2−1

pm−1 (Sm−1 − Sm−2)
)

4 pm =
1+
√

1+4(pm−1)2

2

5 until Converged;

6 Step 2. Optimize L with fixed S
7 repeat
8 L̂n = T γ

V

(
Ln−1 + pn−2−1

pn−1 (Ln−1 − Ln−2)
)

9 pn =
1+
√

1+4(pn−1)2

2

10 until Converged;

11 Step 3. Repeat Step 2 and Step 3 until Eq. (3)

Converged

Optimizing L with fixed S. For fixed S, the optimiza-

tion of Eq. (5) is similar with f(L) and g(L) becomes

f(L) =
C∑

c=1

Nc∑
i=1

1

2
L(Yci, (Lsc)

T
Xci) + λ‖L‖2F

g(L) = γ‖L‖1
Given search point L̂t and the gradient of smooth part

∇Lf(L̂
t) at the t-th iteration , we obtain Lt as

Lt = T γ
V

(
L̂t − 1

V
∇Lf(L̂

t)

)
(8)

Model Initialization. The first step of our optimiza-

tion algorithm is to initialize the latent task matrix L. In

this paper, we first train a linear SVM classifier for each

category independently. Suppose wc is the SVM classi-

fier the c-th category and all the classifiers are denoted by
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Figure 2. Classification accuracy gain of each category by sharing latent tasks across categories on the UCF50 data set when using only

25% of training data.

W = [w1, w2, · · · , wC ], we compute the singular value de-

composition (SVD) for W to obtain W = UΣVT . We

employ the first K columns of U to initialize the latent

tasks matrix L. For the combination weight matrix S, we

randomly generate a matrix as its initialization. This simple

initialization method has been shown to work well in our

experiments.

Our overall optimization procedure is summarized in

Alg. 1.

4. Experiments
4.1. Implementation Details

Features. Motivated by recent success in dense trajec-

tory [28] in action recognition, we adopt this feature in

our experiments. Specifically, it includes four types of de-

scriptors: Histograms of Oriented Gradients (HOG), His-

tograms of Optical Flow (HOF), Motion Boundary His-

togram (MBH) and Trajectory. We then use Locality-

constrained Linear Coding (LLC) [29] to encode these ex-

tracted local features. Following [28], we randomly select

100,000 features and build a codebook with 4000 words for

each descriptor. LLC coefficients of the four descriptors are

concatenated to form the final feature descriptor to represent

each video.

Bias Terms in Latent Tasks. In order to make the scores

of multiple latent tasks comparable when they are combined

to form a category classifier, we introduce a bias term for

each latent task. We implement this by augmenting each

Percentage 25% 50% 75% 100%
STL 54.2± 2.9 64.5± 1.0 71.7± 1.2 75.7

This Work 63.2± 2.2 73.2± 1.0 76.8± 1.7 80.2
Gain 9.0 8.7 5.1 4.5

Table 1. Average accuracy and standard deviation (%) of our ap-

proach and single task learning (STL) on the UCF50 data set with

varying number of training samples.

feature vector with one constant (1 is used in this paper).

Parameters. The regularization λ in Eq. (3) is set as 0.4

in all experiments. Other two parameters μ and γ are chosen

by a cross validation procedure. Baseline. We compare

our approach with the single task learning (STL) methods,

in which no task sharing is enforced and all classifiers are

learned separately. Specifically, we employ the linear SVM

classifier as the single-task learning method, which has been

shown very good performance on visual recognition with

LLC representation [29].

4.2. Experiments on UCF50 Action Data Set

UCF50 [21] is one of the largest public action data sets.

It contains 50 action categories with a total of 6617 action

videos. This data set is created by collecting realistic action

video from Youtube. We adopt the same experiment setup

in [22] to repeat the experiment for 5 times. Moreover, we

also test the performance of the proposed method with dif-

ferent numbers of training samples. In particular, we con-
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Figure 3. Sparsity pattern (the sparse weight matrix S) learned by

our approach on the UCF50 action data set.

Figure 4. A convergence curve of the model learning algorithm on

UCF50. It takes less than 20 iterations to reach convergence.

duct the experiments with 25%, 50%, 75% and 100% of

training samples and the results are presented in Tabel 1.

As shown in Table 1, the proposed multi-task learning

method outperforms the single task learning in all the set-

tings. Interestingly, the proposed method achieves a no-

tably larger gain with less training samples, (i.e., a gain

of about 9% when the proportion of training sample is less

than 50%). Intuitively, a big part of performance improve-

ment comes from the fact that the knowledge sharing mech-

anism amounts to increasing the number of training data for

each category. The positive samples for learning a shared

task is the sum of those from all categories that share the

task, thus the advantage is particular notable with a small

number of training samples. Fig. 2 shows the classification

accuracy gain of each category when we only use 25% of

the training data. As demonstrated in Fig. 2, the proposed

method achieves remarkable improvement on almost all the

categories. For example, all actions in the group of play-

ing instruments receive more than 5% gain due to sharing

Method Accuracy

Laptev et al. [13] 47.9%
Sadanand and J. Corso[22] 57.9%

Kliper-Gross et al.[10] 68.5%
Wang et al. [28] 75.7%

Our Method 80.2%

Table 2. Performance comparison with some several state-of-the-

art approaches on the UCF50 data set in terms of accuracy. All

these results are obtained using the same data split scheme with

all training data.

tasks, largely due to the fact that these categories are more

related to each other, therefore gaining benefits by sharing

information. The performance of PlayingGuitar, Playing-

Piano and PlayingViolin is increased for more than 15%.

We also show one example of the learned linear combina-

tion weights S in Fig. 3. From Fig. 3, we can see that each

action model is sparsely reconstructed as expected. Fig. 4

shows one example of the convergence curve of our model

learning algorithm. It takes less than 20 iterations to reach

the convergence.

In Tabel 2, we compare the proposed approach with

some state-of-the-art methods on the UCF50 data set. We

note that all these results obtained by using the same exper-

iment setup in [22].

4.3. Experiments on Olympic Sports Data Set

The Olympic Sports data set [17] is collected from

Youtube video and consists of 16 Olympic sport actions.

We follow the original experiment setup suggested by [17]

that uses 649 video clips for training and the other 134 video

clips as test set. We also compare the proposed method with

single task learning by changing the size of training data. In

our experiments, we randomly select 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90% of the positive and negative

videos respectively in the training data for each category.

For each setting, we repeat the experiments for 10 times

by randomly selecting training examples. We report aver-

age classification accuracy over categories as a performance

measure, and show all results in Table 3. Fig. 5 shows the

detailed comparison between the proposed method and sin-

gle task learning methods using 40% of the training data.

For comparison with state-of-the-art approaches, we also

evaluate the mean average precision (which differs from the

average accuracy) for all categories. Table 4 shows a com-

parison over different approaches in mean average preci-

sion.

4.4. Effect of Different Number of Latent Tasks

We analyze the effect of different number of latent tasks

on the UCF50 data set using 25% of the training data. Fig. 6

illustrates the results of our approach with different num-
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Percentage 10% 20% 30% 40% 50%
STL 33.1± 3.7 45.8± 4.6 50.0± 4.9 53.0± 2.3 57.3± 2.5

This Work 40.1± 5.2 52.4± 4.0 57.3± 2.8 62.6± 2.5 66.1± 1.8
Gain 7.0 6.6 7.3 9.6 8.8

Percentage 60% 70% 80% 90% 100%
STL 61.0± 3.7 65.0± 2.59 65.0± 2.7 66.9± 1.3 68.9

This Work 67.0± 3.7 69.4± 2.64 70.9± 2.0 72.3± 1.5 73.6
Gain 6.0 4.4 5.9 5.4 4.7

Table 3. Average accuracy and standard deviation (%) of our approach and single task learning (STL) on the Olympic Sports data set with

a varying number of training samples.

Figure 5. Detailed comparison between our method and single task learning methods on the Olympic Sports data set with 40% of the

training data. We show the classification accuracy of each category.

Method Mean Average Precision

Laptev et al. [13] 62.0%
Tang et al [25] 66.8%

Niebles et al. [17] 72.1%
Liu et al. [14] 74.4%

Wang et al. [28] 74.1%
Our Method 78.3%

Table 4. Performance comparison with several state-of-the-art ap-

proaches on the Olympic Sports data set in terms of mean average

precision. All these results are obtained using the same data split

scheme with all training data.

ber of latent tasks. According to Fig. 6, the classification

accuracy increases with the number of latent tasks, poten-

tially due to the finer visual patterns captured by more latent

tasks. The larger the number, the higher the computational

cost though. In our experiments, the number of latent tasks

is determined empirically.

Figure 6. Classification performance of different number of latent

tasks on the UCF50 data set using 25% of the training data. Seven

different sizes have been tested: 40, 50, 60, 70, 80, 90 and 100.

4.5. Effect of Regularization Terms

We evaluate the effect of regularization terms ‖L‖1 and

‖S‖1 in our model on the UCF50 data set using 25% of the

training data and on the Olympic Sports data set. Fig. 7
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Figure 7. Classification accuracy of different methods (STL, our

model without ‖L‖1, our model without ‖S‖1 and our full model)

on the UCF50 data set using 25% of the training data and on the

Olympic Sports data set.

compares the results of STL, our model without ‖L‖1, our

model without ‖S‖1, and our full model. Without regu-

larization terms ‖L‖1 or ‖S‖1, the performance degrades

significantly.

5. Conclusions and Discussions
In this work, we have proposed an approach to share la-

tent tasks for action recognition. Extensive experiments on

multiple action data sets show that the proposed approach

outperforms single task learning methods, especially when

only a small number of training examples are available. For

future work, we plan to investigate how to develop convex

formulation for sharing latent tasks since the current formu-

lation is not convex.
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[28] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recognition

by dense trajectories. In Proc. CVPR, pages 3169–3176, 2011.

[29] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. In Proc. CVPR,

2010.

[30] L. Wang, Y. Qiao, and X. Tang. Motionlets: Mid-level 3d parts for

human motion recognition. In Proc. CVPR, pages 2674–2681, 2013.

[31] Y. Wang and G. Mori. Hidden part models for human action

recognition: Probabilistic versus max margin. IEEE Trans. PAMI,
33(7):1310–1323, 2011.

[32] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas, and F.-F. Li.

Human action recognition by learning bases of action attributes and

parts. In Proc. ICCV, 2011.

[33] J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alter-

nating structure optimization. In Proc. NIPS, 2011.

22712271


