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Abstract

Localizing facial landmarks is a fundamental step in fa-
cial image analysis. However, the problem is still challeng-
ing due to the large variability in pose and appearance, and
the existence of occlusions in real-world face images. In this
paper, we present exemplar-based graph matching (EGM),
a robust framework for facial landmark localization. Com-
pared to conventional algorithms, EGM has three advan-
tages: (1) an affine-invariant shape constraint is learned
online from similar exemplars to better adapt to the test
face; (2) the optimal landmark configuration can be di-
rectly obtained by solving a graph matching problem with
the learned shape constraint; (3) the graph matching prob-
lem can be optimized efficiently by linear programming. To
our best knowledge, this is the first attempt to apply a graph
matching technique for facial landmark localization. Ex-
periments on several challenging datasets demonstrate the
advantages of EGM over state-of-the-art methods.

1. Introduction

Facial landmark localization (a.k.a., face alignment) is

a critical component in many computer vision applications

such as face recognition [34], face reconstruction [20], ex-

pression recognition [25] and expression re-targeting [19].

In the past decade, many approaches have been proposed

with varying degrees of success on benchmark datasets

composed by mostly frontal faces in controlled setting.

However, accurately localizing facial landmark points in

real-world, cluttered images is still a challenging problem

due to the large variability in pose and appearance, and the

existence of occlusions. Given the image shown in Fig. 1a,

how can we accurately localize the facial landmarks in the

chin area even though it is partially occluded?

Conventional algorithms for face alignment typically

proceed by fitting a joint shape model to regions around

each feature point. Following the pioneering work on the

active shape model (ASM) [7], a number of shape models

a b c

Figure 1. Localizing facial landmarks by exemplar-based graph

matching (EGM). Despite the fact that the chin area is partially

occluded, EGM still accurately locates the facial landmarks. EGM

first finds similar exemplars through a RANSAC step. These ex-

emplars are then used to generate (a) candidate positions for land-

marks and to learn (b) an affine-invariant shape constraint, where

the position of each landmark (e.g., the chin) is modeled as a

weighted linear combination of the other landmarks. By combin-

ing these two sources, EGM solves a graph matching problem to

obtain (c) the optimal landmark positions.

have been proposed for face alignment. Among them, para-

metric models such as point distribution model (PDM) have

been shown to be effective in governing the layout of facial

landmarks. Unfortunately, the formulation based on these

models is non-convex and in general prone to local minima.

In this paper, we present exemplar-based graph match-

ing (EGM), a robust framework for facial landmark local-

ization. Unlike previous face alignment algorithms, EGM

models the layout of the facial landmarks as a graph in a

non-parametric way. For instance, Fig. 1b illustrates the

sub-graph centered at the chin area. Compared to conven-

tional methods, EGM has three advantages: (1) the shape

constraint (Fig. 1b) estimated from exemplars is invariant to

affine transformation and adaptive to the test image, thereby

making the system more robust to pose variations; (2) the

optimal matching between candidate points and the shape

constraint is modeled as a graph matching problem; (3)

the graph matching problem can be efficiently solved us-

ing linear programming (LP). We compare EGM with state-

of-the-art methods and validate its effectiveness on several
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challenging benchmark datasets.

2. Related work
Early work on facial landmark localization [12] often

treated the problem as a special case of the object part detec-

tion problem. However, general detection methods are not

suitable in detecting facial landmarks because only a few

salient landmarks (e.g., eye centers, mouth corners) can be

reliably characterized by their image appearances. There-

fore, shape constraints or support from nearby areas are es-

sential for augmenting weak local detectors. According to

the type of shape constraint inherently imposed, previous

work can be categorized into two groups: parametric meth-

ods and non-parametric methods.

Active shape model (ASM) [7] and active appearance

model (AAM) [5] are the two most representative face

alignment models using parametric shape constraints. In

ASM, a point distribution model captures the shape varia-

tion of a set of landmark points. In AAM, the appearance is

globally modeled by PCA on the mean shape coordinates.

The shape parameters are locally searched using a linear re-

gression function on the texture residual. In the past decade,

various strategies [10, 24, 16] have been proposed for im-

proving the performance of ASM and AAM. For instance,

constrained local model (CLM) [9, 26, 30] extends ASM by

modeling the non-rigid face as an ensemble of low dimen-

sional independent patch experts. Due to the robustness of

patch detectors to global illumination variation and occlu-

sion, CLM have been widely used in detecting and track-

ing facial landmarks in challenging cases. Although the

great flexibility in constraining facial landmarks, parametric

shape models are difficult to optimize due to the non-convex

nature of the problem. Therefore, the performance of most

approximation methods (e.g., the Lucas-Kanade method [1]

and the Nelder-Mead simplex method [9]) largely depends

on the effectiveness of the initialization step.

In the second case, the global layout of facial landmarks

is constrained in a non-parametric manner. Among a num-

ber of non-parametric shape priors, Markov random field

(MRF) [8] is perhaps the most natural way to govern the ge-

ometrical configuration of a point set. For instance, Liang

et al. [23] proposed a constrained MRF by regularizing the

shape with a PCA-based prior. Valstar et al. [32] combined

the support vector regression with MRF to drastically re-

duce the time needed to search for point location. Unfor-

tunately, globally optimizing MRF is intractable and thus

much effort has focused on devising more accurate and effi-

cient approximations. As an alternative choice to the graph-

based MRF, tree-structured models [14] have been explored

in detecting general object parts. A major benefit of us-

ing a tree model is the existence of an efficient dynamic

programming algorithms [15] for finding globally optimal

solutions. It has been recently discovered [13, 36, 31] that

tree-structured models are surprisingly effective at captur-

ing global elastic deformation of human faces. Both MRF

and tree-structured models encode the shape in pair-wise

geometric relations between parts. To leverage other rela-

tions, regression-based methods [4, 6, 11, 28, 35] directly

predicts the shape parameters from the image.

The most relevant work to our method is the exemplar

approach [2], where RANSAC was employed to efficiently

sample exemplar shapes. A major limitation of [2] is that

the position of each landmark is independently inferred by a

greedy fusion procedure. In contrast, our method estimates

all the landmarks jointly with a shape constraint learned on-

line. We formulate this inference problem as graph match-

ing and proposed an efficient solution based on linear pro-

gramming. Our solution is globally optimal and satisfies

the global shape constraints automatically. The shape con-

straints we use here are learned online from similar exam-

plars, hence they are adaptive to the pose of the test face.

3. Overview of the proposed system
In this section, we describe the proposed system for lo-

calizing facial landmarks. As shown in Fig. 2, our system

consists of the following five steps.

Training: In the first offline step, we train individ-

ual landmark detectors based on support vector regressor

(SVR). The positive and negative patches are sampled from

the training images with manually labeled landmarks.

Sliding window: Given a test image, we run the detec-

tors in a sliding-window manner to generate a response map

for each landmark. For instance, Fig. 3b illustrates the re-

sponse map for the mouth-top landmark.

RANSAC: We search for a set of similar exemplars

in the training dataset to generate candidates positions for

landmarks based on a RANSAC algorithm similar to [2].

Fig. 3c illustrates a subset of candidates generated for the

test image. To augment the candidate set, we also included

the top-five peak points from the response map.

Learning: Given the similar exemplars (Fig. 3d) by

the RANSAC, we solve an efficient quadratic programming

problem to obtain a shape constraint adaptively for the test

face. This constraint is affine-invariant, making the system

more robust to pose variation.

Matching: By combining the candidate position and

the learned shape constraints, we solve an efficient graph

matching problem based to find the optimal landmark posi-

tions using linear programming.

The last two steps of learning and matching are the

main contributions of the proposed exemplar graph match-

ing (EGM) algorithm. Due to the limited space, we skip

the implementation details of first three steps, whose details

can be found in the supplementary material.

In this paper, we adopt the annotation scheme used in the

LFPW dataset [2], where each image is manually labeled
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Figure 2. Pipeline of the proposed system for detecting facial land-

marks.
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Figure 3. Example of response map and candidates generations.

(a) A testing image labeled with 29 landmarks. (b) The response

map for the mouth-top area, where the red circles are the top 5
peak points. (c) A 1/7 portion of all the candidates. The white cir-

cles indicates the candidates that are transformed from exemplars,

while red ones are the peaks of the response maps. (d) The top two

exemplars found by the RANSAC step.

with 29 landmarks. See Fig. 3a for the landmark positions

of an example image. Throughout the rest of the paper, we

will denote (see notation1) the number of landmarks as k
(e.g., k = 29 in LFPW) and the number of exemplars as m.

The coordinates of landmarks on the training image and test

image are denoted as p ∈ R
2 and q ∈ R

2 respectively.

4. Exemplar-based graph matching
This section describes exemplar-based graph matching

(EGM), the main component of our system for localizing

facial landmarks. Given k sets of landmark candidates

(Fig. 3c) and m exemplar faces (Fig. 3d), EGM aims to

find the optimal subset of candidates in two steps: (1) learn-

ing an affine-invariant shape constraint online from the re-

trieved similar exemplars and (2) solving a graph matching

problem to find the optimal candidates.

4.1. Learning

As mentioned before, use of a shape constraint is crucial

for face alignment because the detector is usually not reli-

able and the local response may vary due to the change in

pose and the existence of occlusions. A common choice of

shape constraint is the point distribution model (PDM), in

which the variances of facial landmarks are jointly modeled

by a covariance matrix. However, there are two limitations

1Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x. xi represents the ith column of the matrix X. xij denotes

the scalar in the ith row and jth column of the matrix X. All non-bold

letters represent scalars. 1m×n,0m×n ∈ R
m×n are matrices of ones

and zeros. In ∈ R
n×n is an identity matrix. ‖x‖p = p

√∑
i |xi|p and

‖X‖p = p

√∑
ij |xij |p denote the p-norm for vector and matrix respec-

tively.

in PDM: (1) it is sensitive to pose change; (2) it usually

leads to a non-convex problem. To overcome these limita-

tions, we adopt an affine-invariant shape constraint (AISC)

originally proposed in [22] for object matching. Compared

to PDM, AISC has two advantages: (1) the constraint is

affine-invariant, making the system more robust to pose

variation; (2) based on AISC, the matching step can be for-

malized as a graph matching problem, which can be effi-

ciently solved by LP.

AISC relies on a similar geometric intuition used in the

local linear embedding [29]. Suppose that a shape consists

of k landmarks denoted by P = [p1, · · · ,pk] and the cth

landmark pc can be reconstructed by the linear combination

of its neighbors as, pc = Pwc, where wc ∈ R
k denotes the

weights of the other k−1 landmarks to reconstruct pc. Then

the relation always holds, τ(pc) = [τ(p1), · · · , τ(pk)]wc,

for any affine transformation τ(p) = Vp+ b.
In this paper, we extend AISC for face alignment and we

formalize the problem of learning wc as follows. Recall that
m exemplar faces, {Pi}mi=1, are returned by the RANSAC
step described in the supplementary material. Each exem-
plar consists of k landmarks, Pi = [pi

1, · · · ,pi
k], where

pi
c is the 2-D coordinate of the cth landmark from the ith

exemplar. For each landmark c ∈ {1, · · · , k}, we aim to
find the optimal weight vector wc that minimizes the sum
of reconstruction errors:

min
wc∈Rk

m∑

i=1

‖Piwc − pi
c‖22 + η‖wc‖22, (1)

s. t. wT
c 1k = 1 and wcc = 0,

where η‖wc‖22 is a regularization term that penalizes the

sparsity of the weight vector. In other words, we prefer

the weight to be distributed uniformly across all the land-

marks. This is beneficial especially in the case shown in

Fig. 4a, where a large area around chin is occluded and few

confident landmarks exist below the top of the mouth. By

increasing η, larger weights could be assigned to non-local

landmarks (e.g., nose and eyes) that also carry important in-

formation to infer the position of the mouth-top landmark.

In the extreme case, when η → ∞, all landmarks are of

equal importance. In the experiments, we found η = 103

produced consistently good results. After independently

solving each of the k landmarks, we compose the joint

weight matrix as, W = [w1, · · · ,wk] ∈ R
k×k. Eq. 1 is

a convex quadratic problem in small size and the MATLAB

QP solver can find W in less than one second.

4.2. Matching

Given the generated landmark candidate sets from the

RANSAC step, we aim to select a single candidate for each

landmark such that the corresponding global configuration

best fits to the shape constraint W learned from the exem-

plars. This section proposes a graph matching algorithm to

efficiently approximate this combinatorial problem.
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left eyebrow out right eye out nose center chin

Figure 4. Visualization of weights for reconstructing landmark

(yellow triangle). The size of landmark is proportional to its con-

tribution in reconstruction. (a) Weights learned for the mouth-top

landmark with different settings of η. (b) Weights learned for other

landmarks using η = 103.
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Figure 5. A synthetic example for graph matching. (a) Test im-

age with 8 candidates for 4 landmarks. (b) Exemplar graphs. (c)

The correspondence matrix (X) for the matching defined in (a).

(d) The landmark-candidate association matrix (G), where each

candidate (column) is only associated to one landmark (row).

To make the illustration more convenient, we introduce

a global coordinate matrix Q = [Q1, · · · ,Qk] ∈ R
2×n,

where Qc ∈ R
2×nc denotes the candidates for cth landmark

and n =
∑k

c=1 nc. Observe that each of the n candidate

points is known to be associated with one of the k land-

marks in the RANSAC searching. We encode this prior re-

lation in a binary association matrix G ∈ {0, 1}k×n, where

gci = 1 if the ith point belongs to the cth landmark. To

simplify the discussion, let us consider a synthetic graph

shown in Fig. 5a. Each of the 8 points can be considered

as one facial landmark candidate, and each of the 4 col-

ors denotes one landmark label. The landmark-candidate

association is defined by the matrix shown in Fig. 5d. In

addition, we denote the feature cost by A ∈ R
k×n, where

aci = − log(rc(qi)) indicates the cost of assigning ith can-

didate point to cth landmark. Please refer to the supplemen-

tary material for the details of computing rc(qi).
Given the candidates (Q,G,A) and the shape constraint

(W), the problem consists of finding the optimal correspon-
dence (X) that minimizes the following error:

min
X

λ tr(AXT ) + ‖QXT (Ik −W)‖1, (2)

s. t. X1n = 1k,X ∈ {0, 1}k×n,

xci = 0, [c, i] ∈ {[c, i]|gci = 0},

where the second term in the objective measures the self-

reconstruction error (‖Y(Ik −W)‖1 = ‖Y −YW‖1) of

the k selected candidates (Y = QXT ∈ R
2×k) with respect

to the shape constraint (W). Instead of using an l2 norm, the

reconstruction error is defined in l1 because of its efficiency

and robustness. λ is a regularization weight to trade-off be-

tween the feature cost and the reconstruction error. In the

experiment, we always set λ = 100 and we found the final

result was not sensitive to small change of this weight. The

first constraint enforces X to be a many-to-one mapping.

According to the second constraint, each row of X can only

select an optimal candidate from the corresponding candi-

date set defined by G. For instance, Fig. 5c illustrates the

optimal X for a synthetic problem.
Due to the integer constraint on X, optimizing Eq. 2 is

NP-hard. To approximate the problem, we relax the integer
constraint with a continuous one, X ∈ [0, 1]k×n. Unfortu-
nately, the presence of the non-smooth l1 norm (‖ · ‖1) in
Eq. 2 makes it impossible to directly apply LP. Therefore,
we re-formulate the problem using the trick [18, 22] as:

min
X,U,V

λ tr(AXT ) + 1T
2 (U+V)1k, (3)

s. t. QXT (Ik −W) = U−V,U ≥ 02×k,V ≥ 02×k, (4)

X ∈ [0, 1]k×n, xci = 0, [c, i] ∈ {[c, i]|gci = 0}, (5)

where U,V ∈ R
2×k are two auxiliary variables introduced

for replacing the non-smooth l1 norm with a smooth term

and the linear constraint defined in Eq. 4.

Although both the objective and constraints are linear, a

direct LP solution would still be slow because the number

of variables is O(kn). Inspired by the idea of lower convex

hull proposed in [18], we simplify the optimization task by

removing the ineffective xcis. Fortunately, due to the spe-

cial structure defined on X by Eq. 5, we can more easily

identify the xcis of interest by checking whether gci = 1
or not. As a result, the number of variables in the reduced

LP is proportional to the number of non-zero elements in

G, i.e., O(n). After the reduction, MATLAB LP solver can

find the optimal solution in less than one second for a large-

scale problem, where n > 3000 and k = 29.

Observe that an integer rounding step is necessary to dis-

cretize the continuous X. Similar to [18], we gradually

make X to be discrete by taking a successive refinement.

More specifically, a trust region centered at [QXT ]i ∈ R
2 is

initialized for each landmark. We gradually shrink the size

of the trust region and remove the candidates (qis) outside

the region. This procedure was repeated five times in the

experiment. Finally, we optimize Eq. 2 by ICM [3] to dis-

cretize X. See [18] for more details about the trust-region

shrinking and ICM.

4.3. Difference from [2] and [22]

The proposed EGM is similar to [2] in the RANSAC step

for candidate generation. However, EGM significantly dif-
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fers from [2] in the step of inferring the final landmark posi-

tions. In [2], the final position of each landmark is indepen-

dently obtained by a weighted averaging of the candidate

points. This greedy approach is sensitive to the outliers ex-

isted in the exemplar and candidate set. In contrast, EGM

jointly infers the position for all the landmarks by solving a

graph matching problem with an affine-invariant shape con-

straint learned online from similar examplars. Due to the

robustness of the shape constraint and the effectiveness of

the graph matching step, EGM obtained much more accu-

rate landmarks than [2] did in all the experiments.

Although similar in spirit, our shape constraint differs

from [22] in three important aspects: (1) In [22], the weights

are learned from a single exemplar. Without sufficient con-

straints, however, there are infinite choices of weights for

reconstructing one landmark by more than 3 neighbors. In

addition, the weights learned from one exemplar might not

generalize well to a non-rigidly deformed face (e.g., expres-

sion). In contrast, Eq. 1 is designed to jointly optimize wc

for multiple exemplars. The wc is not only unique but also

more robust in capturing various non-rigid facial poses con-

tained in the exemplar set. (2) The object shape in [22] is

represented by a sparse graph, where the landmark is influ-

enced by its nearby neighbors. However, in many cases, the

local structure of a landmark can be distorted by noise and

occlusion. Instead of using a sparse graph, our model adopts

a fully-connected graph. (3) With proper regularization, all

the other k − 1 landmarks make important contribution in

the reconstruction of each landmark. Therefore, EGM is

less susceptible to local noise and occlusion than [22].

5. Experiments
This section compares EGM against several state-of-the-

art algorithms on three public datasets.

5.1. LFPW dataset

The LFPW dataset [2] consists of images downloaded

from internet and the images contain a wide range of poses,

lighting conditions and facial expressions. The original

dataset contained 1132 training images and 300 test im-

ages. Unfortunately, many URLs have become expired and

we were only able to download 868 images for training and

228 images for testing.

According to [2], the bounding box of labeled faces were

given by a commercial face detector. To mimic the ex-

perimental setting, we initialized the face bounding box

estimated from the ground-truth landmarks. For instance,

Fig. 6a shows the results of EGM on some example faces

cropped by the estimated bounding box. Observe that we

did not specifically constrain the scale of the bounding

box in our system and in general any face detector (e.g.,

OpenCV) is suitable for initializing EGM. Unlike conven-

tional iterative algorithms (e.g., ASM) depending on a good

initialization, EGM computes the facial landmarks by di-

rectly solving a combinatorial problem. Due to this reason,

EGM achieves great stability with respect to the position

of the bounding box even if applying some spatial or scale

perturbation around this box.

To establish a baseline, we implemented the consensus

of exemplar method proposed in [2]. To be fair in com-

parison, we fixed the parameter setting in the RANSAC

step and used the same set of candidates and exemplar im-

ages for both EGM and [2]. Fig. 6b shows the quantita-

tive comparison between EGM and [2]. Overall, EGM im-

proved [2] in localizing all of 29 landmarks. In particu-

lar, EGM outperformed [2] by a large margin in the land-

marks around the nose tip (19 ∼ 21) and the chin (27 ∼
29), where appearance features are frequently unreliable.

For these landmarks, the geometrical support from non-

local parts becomes more crucial. Because of the affine-

invariant shape constraint and the global LP-based opti-

mization, EGM more robustly handles these areas than the

greedy fusion method proposed in [2]. For the landmarks

around eyebrows (1 ∼ 8), our method outperformed [2] by

a small margin. This is because for these landmarks, the de-

tectors play a more important role than the shape constraint.

Due to the less available training data, we were not able to

train the detectors with same accuracy and reproduce the re-

sults in [2]. We expect that training the landmark detectors

using the author’s original training data would further boost

the performance of our method significantly.

Fig. 6c shows the time cost of our system. The most ex-

pensive step was the RANSAC, taking about 15 secs for

each image. However, this step can be largely sped up

in a parallelized implementation, which is shared by [2].

The second step of learning the affine invariant constraint

was very efficient since it solved 29 independent small-size

QP problems. Based on the Matlab function linprog, the

matching step took 9 secs for selecting the optimal land-

marks from more than 3000 candidates. Recall that we re-

peated to solve 5 linear programming problems to succes-

sively discretize X. Therefore, each linear programming

was taking less 2 seconds. In addition, this step can be

largely sped up using a more efficient LP solver.

5.2. BioID dataset

The BioID dataset [17] contains 1521 images of the

frontal faces of 23 different subjects. In our experiment,

we trained our landmark detectors on the LFPW dataset and

tested EGM on all the 1521 images. Fig. 7a shows the re-

sult of running EGM on some images. To evaluate the re-

sult, we used 17 landmarks marked for the FGNet project,

and used in the me17 error measure as defined in [9]. Fol-

lowing the common protocol used in [2, 4], we computed

for each landmark a fixed offset by exhaustively matching

with the ground-truth label. This offset was fixed for each
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Figure 6. Comparison on the LFPW dataset. (a) Results of EGM on example faces. (b) Mean errors of 29 individual landmarks. Note that

since only about 75% of original training data are available, our own implementation of [2] is worse than the result of [2] reported in their

paper. (c) Time cost of each step in our implementation of EGM based on Matlab.
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testing image. This offset is necessary to accommodate the

different annotation schemes adopted by BioID and LFPW.

In the past decade, the BioID dataset has been widely

used as a benchmark for evaluating face alignment algo-

rithms. A number of previous methods have reported their

performance on this dataset. Fig. 7b compares the per-

formance of EGM with other five state-of-the-arts meth-

ods [2, 9, 27, 32, 33]. The results for these methods were

taken from the paper [2]. Even though we have less training

data than [2], our method still outperformed the exemplar

method [2] as well as the other four. We noticed that the

improvement is marginal. This is because the performance
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Figure 8. Comparison on the Helen dataset. (a) Results of EGM and the exemplar approach [2] on example faces, where the landmarks

denoted as yellow triangles are the ones largely improved by EGM. (b) Cumulative error curves. (c) Two worse examples (in the 1st

column), where EGM cannot accurately locate the landmarks denoted as yellow triangles because of very few exemplar images available

in LFPW with similar exaggerated expressions. For instance, the top-two most similar exemplars are shown in the 2nd and 3rd columns.

on BioID is nearly saturated due to its simplicity. We also

reported the results of [2] implemented by ourselves. With

the same set of exemplars and detectors, EGM greatly im-

proved the greedy fusion step proposed in [2].

5.3. Helen dataset

The Helen dataset was created by the authors of [21].

This dataset consists of high-resolution images containing

large variations in pose, illumination, expression and occlu-

sion. Similar to BioID, we trained our landmark detectors

on the LFPW dataset. Helen dataset adopts a highly detailed

annotation that is quite different from LFPW. To report a

quantitative result, we re-labeled2 348 images with the same

29 landmarks as LFPW. We compared EGM with [2]. In or-

der to make a fair comparison, we fixed the RANSAC step

and used the same detectors for both methods.

Fig. 8a compares EGM with [2] on several challenged

2Available at http://www.f-zhou.com/fa.html
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examples. Our method was much more accurate than [2] in

detecting facial landmarks (especially the yellow triangles)

in challenging images with large variation in pose and ex-

pressions. Fig. 8b reports a qualitative comparison, where

EGM always achieves the best performance with a large

margin. Observe that the relative improvement over [2] is

greater than Fig. 6b achieved on the LFPW dataset, pre-

sumably because the much more challenges exist in Helen

dataset. The result clearly illustrates the benefit of using

the proposed graph matching method with affine-invariant

shape constraints over the greedy fusion method proposed

in [2]. However, EGM performed worse in some images as

shown in Fig. 8c with extreme facial expressions. One of

the main reasons is due to the limited exemplars available

in the LFPW dataset we used as the training set. For in-

stance, the second and third columns in Fig. 8c shows the

top-two most similar exemplar images found by RANSAC.

With only few similar exemplars, it is very difficult to learn

a shape constraint particularly for the mouth of the test im-

age shown in the first column.

6. Conclusions

This paper presents exemplar-based graph matching

(EGM), a robust framework for facial landmark localiza-

tion. Compared to conventional algorithms, the proposed

EGM framework has two advantages: (1) the facial shape is

enforced by an affine-invariant shape constraint learned on-

line from multiple exemplars for better adaption to the test

image; (2) the optimal landmark configuration is obtained

by solving an LP-based graph matching problem.

Our experiments have demonstrated these advantages in

terms of quantitative comparisons to state of the art. How-

ever, we also found that the performance of EGM is directly

affected by the quality of the exemplars. Therefore, we

conjecture that we can improve EGM by clustering facial

shapes to refine the exemplars returned by the RANSAC. In

addition, the RANSAC step may be further improved by a

component-based facial part matching instead of the match-

ing between entire faces. Since EGM is a general frame-

work, with applicability beyond faces, we are interested in

evaluating its performance in other domains, such as body

part detection, and human pose estimation.
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