
Learning View-invariant Sparse Representations for Cross-view Action

Recognition

Jingjing Zheng†, Zhuolin Jiang§

†University of Maryland, College Park, MD, USA
§Noah’s Ark Lab, Huawei Technologies

zjngjng@umiacs.umd.edu, zhuolin.jiang@huawei.com

Abstract

We present an approach to jointly learn a set of view-

specific dictionaries and a common dictionary for cross-

view action recognition. The set of view-specific dictionar-

ies is learned for specific views while the common dictio-

nary is shared across different views. Our approach rep-

resents videos in each view using both the corresponding

view-specific dictionary and the common dictionary. More

importantly, it encourages the set of videos taken from dif-

ferent views of the same action to have similar sparse rep-

resentations. In this way, we can align view-specific fea-

tures in the sparse feature spaces spanned by the view-

specific dictionary set and transfer the view-shared features

in the sparse feature space spanned by the common dic-

tionary. Meanwhile, the incoherence between the common

dictionary and the view-specific dictionary set enables us

to exploit the discrimination information encoded in view-

specific features and view-shared features separately. In

addition, the learned common dictionary not only has the

capability to represent actions from unseen views, but also

makes our approach effective in a semi-supervised setting

where no correspondence videos exist and only a few labels

exist in the target view. Extensive experiments using the

multi-view IXMAS dataset demonstrate that our approach

outperforms many recent approaches for cross-view action

recognition.

1. Introduction
Action recognition has many potential applications in

multimedia retrieval, video surveillance and human com-

puter interaction. In order to accurately recognize human

actions, most existing approaches focus on developing dif-

ferent discriminative features, such as spatio-temporal in-

terest point (STIP) based features [32, 2, 13, 19], shape [16,

3, 21] and optical flow based features [5, 17, 16]. These

features are effective for recognizing actions taken from

similar viewpoints, but perform poorly when viewpoints

vary significantly. Extensive experiments in [20, 33] have
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Figure 1. Joint learning of a view-specific dictionary pair and

a common dictionary. We not only learn a common dictionary

D to model view-shared features of corresponding videos in both

views, but also learn two view-specific dictionaries Ds and Dt that

are incoherent to D to align the view-specific features. The sparse

representations (x1 and x2, z1 and z2) share the same sparsity

patterns (selecting the same items).

shown that failing to handle feature variations caused by

viewpoints may yield inferior results. This is because the

same action looks quite different from different viewpoints

as shown in Figure 1. Thus action models learned from one

view become less discriminative for recognizing actions in

a much different view.

A very fruitful line of work for cross-view action recog-

nition based on transfer learning is to construct the map-

pings or connections between different views, by using

videos taken from different views of the same action [6,

7, 20, 8]. [6] exploited the frame-to-frame correspondence

in pairs of videos taken from two views of the same ac-

tion by transferring the split-based features of video frames

in the source view to the corresponding video frames in

the target view. [20] proposed to exploit the correspon-

dence between the view-dependent codebooks constructed

by k-means clustering on videos in each view. How-

ever, the frame-to-frame correspondence [6] is computa-

tionally expensive, and the codebook-to-codebook corre-

spondence [20] is not accurate enough to guarantee that a

pair of videos observed in the source and target views will

have similar feature representations.

In order to overcome these drawbacks, we propose a dic-

tionary learning framework to exploit the video-to-video

correspondence by encouraging pairs of videos taken in two
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views to have similar sparse representations. Figure 1 il-

lustrates our dictionary learning framework. Our approach

not only learns a common dictionary shared by different

views to model the view-shared features, but also learns

a dictionary pair corresponding to the source and target

views to model and align view-specific features in the two

views. Both the common dictionary and the corresponding

view-specific dictionary are used to represent videos in each

view. Instead of transferring the split-features as in [6], we

transfer the indices of the non-zero elements (i.e., the in-

dices of selected dictionary items) in sparse codes of videos

from the source view to sparse codes of the corresponding

videos from the target view. In other words, we not only

use the same subset of dictionary items from the common

dictionary to represent view-shared features in correspon-

dence videos from different views, but also use the same

subset of dictionary items from different view-specific dic-

tionaries to represent view-specific features. In this way,

videos across different views of the same action tend to have

similar sparse representations. Note that our approach en-

forces the common dictionary to be incoherent with view-

specific dictionaries, so that the discrimination information

encoded in view-specific features and view-shared features

are exploited separately and makes view-specific dictionar-

ies more compact.

Actions are categorized into two types: shared actions

observed in both views and orphan actions that are only ob-

served in the source view. Note that only pairs of videos

taken from two views of the shared actions are used for

dictionary learning. In addition, we consider two scenar-

ios for the shared actions: (1) shared actions in both views

are unlabeled. (2) shared actions in both views are labeled.

These two scenarios are referred to as unsupervised and su-

pervised settings, respectively, in subsequent discussions.

1.1. Contributions

The main contributions of this paper are:

• We propose to simultaneously learn a set of view-

specific dictionaries to exploit the video-level corre-

spondence across views and a common dictionary to

model the common patterns shared by different views.

• The incoherence between the common dictionary and

the view-specific dictionaries enables our approach to

drive the shared pattern to the common dictionary and

focus on exploiting the discriminative correspondence

information encoded by the view-specific dictionaries.

• With the separation of the common dictionary, our

approach not only learns more compact view-specific

dictionaries, but also bridges the gap of the sparse rep-

resentations of correspondence videos taken from dif-

ferent views of the same action using a more flexible

method.

• Our framework is a general approach and can be ap-

plied to cross-view and multi-view action recognition

under both unsupervised and supervised settings.

2. Related Work

Recently, several transfer learning techniques have been

proposed for cross-view action recognition [6, 20, 8, 33].

Specifically, [6] proposed to generate the same split-based

features for correspondence video frames from both the

source and target views. It is computationally expensive

because it requires the construction of feature-to-feature

correspondence at the frame-level and learning an addi-

tional mapping from original features to the split-based

features. [20] used a bipartite graph to model the rela-

tionship between two view-dependent codebooks. Even

though this approach exploits the codebook-to-codebook

correspondence between two views, it can not guarantee

that videos taken at different views of shared actions will

have similar features. [8] used canonical correlation anal-

ysis to derive a correlation subspace as a joint representa-

tion from different bag-of-words models at different views

and incorporate a corresponding correlation regularizer into

the formulation of support vector machine. [33] proposed a

dictionary learning framework for cross-view action recog-

nition with the assumption that sparse representations of

videos from different views of the same action should be

strictly equal. However, this assumption is too strong to

flexibly model the relationship between different views.

Many view-invariant approaches that use 2D image data

acquired by multiple cameras have also been proposed. [25,

22, 23] proposed view-invariant representations based on

view-invariant canonical body poses and trajectories in 2D

invariance space. [11, 10] captured the structure of temporal

similarities and dissimilarities within an action sequence us-

ing a Self-Similarity Matrix. [27] proposed a view-invariant

matching method based on epipolar geometry between ac-

tor silhouettes without tracking and explicit point corre-

spondences. [15] learned two view-specific transformations

for the source and target views, and then generated a se-

quence of linear transformations of action descriptors as the

virtual views to connect two views. [14] proposed the Han-

kel matrix of a short tracklet which is a view-invariant fea-

ture to recognize actions across different viewpoints.

Another fruitful line of work for cross-view action recog-

nition concentrates on using the 3D image data. The method

introduced in [28] employed three dimensional occupancy

grids built from multi-view points to model actions. [31]

developed a 4D view-invariant action feature extraction to

encode the shape and motion information of actors observed

from multiple views. Both of these approaches lead to com-

putationally intense algorithms because they need to find

the best match between a 3D model and a 2D observation

over a large model parameter space. [29] developed a robust
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and view-invariant hierarchical classification method based

on 3D HOG to represent a test sequence.

3. Learning View-invariant Sparse Represen-

tations via Dictionary Learning

3.1. Unsupervised Learning
In the unsupervised setting , our goal is to find view-

invariant feature representations by making use of corre-

spondence between videos of the shared actions taken from

different views. Let Y v = [yv1 , ..., y
v
N ] ∈ R

d×N denote

d-dimensional feature representations of N videos of the

shared actions taken in the v-th view. Yi = [y1i , ..., y
V
i ]

are V action videos of the shared action yi taken from

V views, which are referred to as correspondence videos.

On one hand, we would like to learn a common dictionary

D ∈ R
d×J with a size of J shared by different views to

represent videos from all views. On the other hand, for each

view, we learn Dv ∈ R
d×Jv

to model the view-specific fea-

tures. The objective function for the unsupervised setting

is:

N∑
i=1

{
V∑

v=1

{||yvi −Dxv
i ||

2
2 + ||y

v
i −Dxv

i −Dvzvi ||
2
2}

+ λ||Xi||2,1 + λ||Zi||2,1}+ η

V∑
v=1

||DTDv||2F

(1)

where Xi = [x1
i , ..., x

V
i ], Zi = [z1i , ..., z

V
i ] are the joint

sparse representations for yi across V views. This objective

function consists of five terms:

1. The first two terms are the reconstruction errors of

videos from different views using D only or using both

D and Dv . The minimization of the first reconstruc-

tion error enables D to encode view-shared features as

much as possible while the minimization of the second

reconstruction error enables Dv to encode and align

view-specific features that can not be modeled by D.

2. The third and fourth terms are the sparse representa-

tions via L2,1-norm regularization using D and Dv re-

spectively. The L2,1-norm minimization for X and Z

can make the entries in each row of the two matrices

to be all zeros or non-zeros at the same time. This

means that we not only encourage to use the same sub-

set of dictionary items in D to represent the correspon-

dence videos from different views, but also encourage

to use dictionary items from Dv with the same index of

selected dictionary items to further reduce the recon-

struction error of videos in each view. Therefore the

testing videos taken from different views of the same

action will be encouraged to have similar sparse repre-

sentations when using the learned D and Dv .

3. The last term regularizes the common dictionary to be

incoherent to the view-specific dictionaries. The inco-

herence between D and Dv enables our approach to

separately exploit the discriminative information en-

coded in the view-specific features and view-shared

features.

3.2. Supervised Learning
Given the action categories of correspondence videos,

we can learn a discriminative common dictionary and dis-

criminative views-specific dictionaries by leveraging the

category information. We partition the dictionary items in

each dictionary into disjoint subsets and associate each sub-

set with one specific class label. For videos from action

class k, we aim to represent them using the same subset of

dictionary items associated with class k. For videos from

different classes, we represent them using disjoint subsets

of dictionary items. This is supported by the intuition that

action videos from the same class tend to have the similar

features and each action video can be well represented by

other videos from the same class [30]. We incorporate the

discriminative sparse code error term introduced in [9] to

achieve this goal.

Assume there are K shared action classes, and

D = [D1, ..., DK ], Dv = [Dv
1 , ..., D

v
K ] where Dk ∈

R
d×Jk ,

∑K
k=1 Jk = J , and Dv

k ∈ R
d×Jv

k ,
∑K

k=1 J
v
k = Jv ,

the objective function for the supervised setting is:

N∑
i=1

{
V∑

v=1

{||yvi −Dxv
i ||

2
2 + ||y

v
i −Dxv

i −Dvzvi ||
2
2

+ ||qi −Axv
i ||

2
2 + ||q

v
i −Bzvi ||

2
2}+ λ||Xi||2,1

+ λ||Zi||2,1}+ η

V∑
v=1

||DTDv||2F

(2)

where qi = [qi1 , ..., qiK ]T ∈ R
J×1 and qvi =

[qvi1 , ..., q
v
iK
]T ∈ R

Jv×1 called ‘discriminative’ sparse co-

efficients associated with D and Dv respectively. When a

video yvi is from class k at the v-th view, then qik and qvik
are ones and other entries in qi and qvi are zeros. A ∈ R

J×J

and B ∈ R
Jv×Jv

are called transformation matrices which

transform xv
i and zvi to approximate qi and qvi respectively.

The discriminative sparse-code error terms ||qi − Axv
i ||

2
2

and ||qvi −Bzvi ||
2
2 encourage the dictionary items with class

k to be selected to reconstruct those videos from class k.

Note that the L2,1-norm regularization only regularize the

relationship between the sparse codes of correspondence

videos, but can not regularize the relationship between the

sparse codes of videos from the same action class in each

view. The integration of discriminative sparse code error

term in the objective function can address this issue. In

other words, our approach not only encourages the videos

taken from different views of the same action to have simi-

lar sparse representations, but also encourages videos from

the same class in each view to have similar sparse represen-

tations.
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3.3. Optimization

Here we only describe the optimization of the objec-

tive function in (2) while the optimization of (1) utilizes

the similar procedure except that A and B components are

excluded. This optimization problem is divided into three

subproblems: (1) computing sparse codes with fixed Dv, D

and A,B; (2) updating Dv, D with fixed sparse codes and

A,B; (3) updating A,B with fixed Dv, D and sparse codes.

3.4. Computing Sparse Codes

Given fixed Dv, D and A,B, we solve the sparse coding

problem of the correspondence videos set by set and (2) is

reduced to:

V∑
v=1

{||yvi −Dxv
i ||

2
2 + ||y

v
i −Dxv

i −Dvzvi ||
2
2 + ||qi −Axv

i ||
2
2

+ ||qvi −Bzvi ||
2
2}+ λ||Xi||2,1 + λ||Zi||2,1}. (3)

We rewrite (3) as follows:

V∑
v=1

||ỹvi − D̃v z̃vi ||
2
2 + λ||Z̃i||2,1 (4)

where ỹvi =

⎡
⎢⎢⎣

yvi
yvi
qi
qvi

⎤
⎥⎥⎦ , D̃v =

⎡
⎢⎢⎣

D O1

D Dv

A O2

O3 B

⎤
⎥⎥⎦ , z̃vi =

[
xv
i

zvi

]
, Z̃i = [z̃1i , ..., z̃

V
i ] and O1 ∈ R

d×Jv

, O2 ∈

R
J×Jv

, O3 ∈ R
Jv×J are matrices of all zeros. The mini-

mization of (4) is known as a multi-task group lasso prob-

lem [18] where each view is treated as a task. We use the

software SLEP in [18] for computing sparse codes.

3.5. Updating Dictionaries

Given fixed sparse codes and A,B, (2) is reduced to:

N∑
i=1

V∑
v=1

{||yvi −Dxv
i ||

2
2 + ||y

v
i −Dxv

i −Dvzvi ||
2
2}

+ η

V∑
v=1

||DTDv||2F

(5)

We rewrite (5):
∑V

v=1{||Y
v − DXv||2F + ||Y v −

DXv − DvZv||2F } + η
∑V

v=1 ||D
TDv||2F where Y v =

[yv1 , ..., y
v
N ], Xv = [xv

1, ..., x
v
N ], Zv = [zv1 , ..., z

v
N ]. Mo-

tivated by [12], we first fix Dv and then update D =
[d1, ..., dJ ] atom by atom, i.e. updating dj while fixing

other column atoms in D. Specifically, let Ŷ v = Y v −∑
m �=j dmxv

(m) where xv
(m) corresponds to the m-th row

of Xv , we solve the following problem for updating dj in

D: argmindj
f(dj) =

∑V
v=1{||Ŷ

v − djx
v
(j)||

2
F + ||Ŷ v −

DvZv−djx
v
(j)||

2
F +η||dTj D

v||2F . Let the first-order deriva-

tive of f(dj) with respect to dj equal to zero, i.e.
∂f(dj)
∂dj

=

0, then we can update dj as:

dj =
1

2

V∑
v=1

(||xv
(j)||

2
2I +

η

2
DvDvT )−1(2Ŷ v −DvZv)xvT

(j).

(6)

Now we fix D and update Dv atom by atom. Each item dvj
in Dv is updated as :

dvj =
1

2
(||zv(j)||

2
2I +

η

2
DDT )−1Ȳ vzvT(j) . (7)

where Ȳ v = Y v −DXv −
∑

m �=j d
v
mzv(m).

3.6. Updating A,B

Given sparse codes and all the dictionaries, we employ

the multivariate ridge regression model [24] to update A,B

with the quadratic loss and l2 norm regularization:

min
A

N∑
i=1

V∑
v=1

||qi −Axv
i ||

2
2 + λ1||A||

2
2

min
B

N∑
i=1

V∑
v=1

||qvi −Bzvi ||
2
2 + λ2||B||

2
2

which yields the following solutions:

A∗ = Q

V∑
v=1

XvT (
V∑

v=1

XvXvT + λ1I)
−1,

Q = [q1, ..., qN ], X = [x1, ..., xN ],

B∗ =

V∑
v=1

QvZvT (

V∑
v=1

ZvZvT + λ2I)
−1,

Qv = [qv1 , ..., q
v
N ], Zv = [zv1 , ..., z

v
N ].

(8)

Algorithm 1 summarizes our approach. The algorithm

converged after a few iterations in our experiments.

4. Experiments
We evaluated our approach for both cross-view and

multi-view action recognition on the IXMAS multi-view

dataset [28]. This dataset contains 11 actions performed

three times by ten actors taken from four side views and

one top view. Figure 3 shows some example frames. We

follow the experiment setting in [20] for extracting the local

STIP feature [4]. We first detect up to 200 interest points

from each action video and then extract a 100-dimensional

gradient-based descriptors around these interest points via

PCA. Then these interest points-based descriptors are clus-

tered into 1000 visual words by k-mean clustering and
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Algorithm 1 Learning View-invariant Sparse Representa-

tions for Cross-view Action Recognition

1: Input: Y v = [Y v
1
, ..., Y v

K ], Q,Qv, v = 1, ..., V, λ, η
2: Initialize D and Dv

3: for k = 1→ K do

4: Initialize class-specific dictionary Dk in D by solving Dk =
argminDk,αk

||[Y 1

k ...Y V
k ]−Dkαk||

2

F + λ||αk||1
5: Initialize class-specific dictionary Dv

k in Dv by solving Dv
k =

argminDv
k
,βv

k
||Y v

k −Dv
kβ

v
k ||

2

F + λ||βk||1

6: end for

7: repeat

8: Compute sparse codes xv
i , z

v
i of a set of correspondence videos yv

i by solv-

ing the multi-task group LASSO problem in (4) using the SLEP [18]

9: Update each atom dj in D and dv
j in Dv using (6) and (7) respectively

10: Update transformation matrices A, B using (8)

11: until convergence or certain rounds

12: Output: D = [D1, ..., DK ], Dv = [Dv
1
, ..., Dv

K ]

each action video is represented by a 1000-dimensional his-

togram. For the global feature, we extract shape-flow de-

scriptors introduced in [26] and learn a codebook of size

500 by k-means clustering on these shape-flow descriptors.

Similarly, this codebook is used to encode shape-flow de-

scriptors and each action video is represented by a 500-

dimensional histogram. Then the local and global feature

descriptors are concatenated to form a 1500-dimensional

descriptor to represent an action video.

For fair comparison to [6, 20, 15], we use three evalua-

tion modes: (1) unsupervised correspondence mode; (2) su-

pervised correspondence mode ; (3) partially labeled mode.

For the first two correspondence mode, we use the leave-

one-action-class-out strategy for choosing the orphan ac-

tion which means that each time we only consider one ac-

tion class for testing in the target view. And all videos of

the orphan action are excluded when learning the quantized

visual words and constructing dictionaries. The only dif-

ference between the first and the second mode is whether

the category labels of the correspondence videos are avail-

able or not. For the third mode, we follow [15] to consider

a semi-supervised setting where a small portion of videos

from the target view is labeled and no matched correspon-

dence videos exist. From this we want to show that our

framework can be applied to the domain adaptation prob-

lem. Two comparing methods for the third mode are two

types of SVMs used in [1]. The first one is AUGSVM,

which creates a feature-augmented version of each individ-

ual feature as the new feature. The second one is MIXSVM

which trains two SVM’s on the source and target views and

learns an optimal linear combination of them.

Note that the test actions from the source and target

views are not seen during dictionary learning whereas the

test action can be seen in the source view for classifier train-

ing in the first two evaluation modes. On the contrary, the

test action from different views can be seen during both dic-

tionary learning and classifier training in the third mode.

For all modes, we report the classification accuracy by av-

Wave 

Get- 
up 

Camera0 Camera1 Camera4 Camera3 Camera2 

Walk 

Figure 3. Exemplar frames from the IXMAS multi-view

dataset. Each row shows one action viewed across different an-

gles.

eraging the results over different combinations of selecting

orphan actions.

4.1. Benefits of the Separation of the Common and
View-specific Dictionaries

In this section, we demonstrate the benefits of the separa-

tion of the common and view-specific dictionaries. For vi-

sualization purpose, two action classes ”check-watch” and

”waving” taken by Camera0 and Camera2 from the IX-

MAS dataset was selected to construct a simple cross-view

dataset. We extract the shape descriptor [16] for each video

frame and learn a common dictionary and two-view specific

dictionaries using our approach. We then reconstruct a pair

of frames taken from Camera0 and Camer2 views of the ac-

tion ”waving” using two methods. The first one is to use the

common dictionary only to reconstruct the frame pair. The

other one is use both the common dictionary and the view-

specific dictionary for reconstruction. Figure 2(b) shows the

original shape feature and the reconstructed shape features

of two frames of action ”waving” from two seen views and

one unseen view using the mentioned two methods. First,

comparing dictionary items in D and {Ds, Dt}, we see that

some items in D mainly encode the body and body outline

which are just shared by frames of the same action from two

view while items in {Ds, Dt} mainly encode different arm

poses that reflects the class information in the two views.

It demonstrates that the common dictionary has the ability

to exploit view-shared features from different views. Sec-

ond, it can be observed that better reconstruction is achieved

by using both the common dictionary D and view-specific

dictionaries. This is because the common dictionary may

not reconstruct the more detailed view-specific features well

such as arm poses. The separation of the common dictio-

nary enables the view-specific dictionaries to focus on ex-

ploiting and aligning view-specific features from different

views. Third, from the last row in Figure 2(b), we find that

a good reconstruction of an action frame taken from the un-

seen view can be achieved by using the common dictionary

only. It demonstrates that the common dictionary learned

from two seen views has the capability to represent videos

of the same action from an unseen view. Moreover, two
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(a) Visualization of all dictionary items from the common and view-specific dictionaries.

Original 

Original recon1 

recon1 

23.8769     15.4577    13.9989 -0.9751   0.3478    -0.5108   0.3478   -0.3326   

-1.2799   -0.6488      0.6649     0.3771   -0.2953 

-18.5509   16.2382   13.2468 

23.8769     10.8952  -10.8353 

Original recon1 -0.8508   -0.0350     0.3508     0.3243  -0.3089 

recon2 

recon2 

recon2 

(b) Reconstruction of shape features of action ”waving” from two seen views and one unseen view.
Figure 2. Illustration of the benefits of the common dictionary. (a) Visualization of all dictionary atoms in D (green color), Ds (red

color) and Dt (purple color). (b) Figures from 2 ∼ 5 columns show the reconstruction result using D only. Figures from 6 ∼ 11 columns

show the reconstruction result using {D,Ds}, {D,Dt} and {D,Ds, Dt} respectively. Only at most top-3 dictionary items are shown.

% C0 C1 C2 C3 C4

C0 (77.6, 79.9, 81.8, 99.1) (69.4, 76.8, 88.1, 90.9) (70.3, 76.8, 87.5, 88.7) (44.8, 74.8, 81.4, 95.5)

C1 (77.3, 81.2, 87.5, 97.8) (73.9, 75.8, 82.0, 91.2) (67.3, 78.0, 92.3, 78.4) (43.9, 70.4, 74.2, 88.4)

C2 (66.1, 79.6, 85.3, 99.4) (70.6, 76.6, 82.6, 97.6) (63.6, 79.8, 82.6, 91.2) (53.6, 72.8, 76.5, 100.0)

C3 (69.4, 73.0, 82.1, 87.6) (70.0, 74.4, 81.5, 98.2) (63.0, 66.9, 80.2, 99.4) (44.2, 66.9, 70.0, 95.4)

C4 (39.1, 82.0, 78.8, 87.3) (38.8, 68.3, 73.8, 87.8) (51.8, 74.0, 77.7, 92.1) (34.2, 71.1, 78.7, 90.0)

Ave. (63.0, 79.0, 83.4, 93.0) (64.3, 74.7, 79.9, 95.6) (64.5, 75.2, 82.0, 93.4) (58.9, 76.4, 85.3, 87.1) (46.6, 71.2, 75.5, 95.1)
Table 1. Cross-view action recognition accuracies of different approaches on the IXMAS dataset using unsupervised correspondence

mode. Each row corresponds to a source (training) view and each column a target (test) view. The four accuracy numbers in the bracket

are the average recognition accuracies of [11], [20], [15] and our unsupervised approach respectively.

% C0 C1 C2 C3 C4

C0 (79, 98.5) (79, 99.7) (68, 99.7) (76, 99.7)

C1 (72, 100.0) (74, 97.0) (70, 89.7) (66, 100.0)

C2 (71, 99.1) (82, 99.3) (76, 100.0) (72, 99.7)

C3 (75, 90.0) (75, 99.7) (73, 98.2) (76, 96.4)

C4 (80, 99.7) (73, 95.7) (73, 100.0) (79, 98.5)

Ave. (74, 97.2) (77, 98.3) (76, 98.7) (73, 97.0) (72, 98.9)
Table 2. Cross-view action recognition accuracies of different approaches on the IXMAS dataset using supervised correspondence

mode. Each row corresponds to a source (training) view and each column a target (test) view. The accuracy numbers in the bracket are the

average recognition accuracies of [7] and our supervised approach respectively.
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% C0 C1 C2 C3 C4

C0 (42.8, 36.8, 63.6, 64.9) (45.2, 46.8, 60.0, 64.1) (47.2, 42.7, 61.2, 67.1) (30.5, 36.7, 52.6, 65.5)

C1 (44.1, 39.4, 61.0, 63.6) (43.5, 51.8, 62.1, 60.2) (47.1, 45.8, 65.1, 66.7) (43.6, 40.2, 54.2, 66.8)

C2 (53.7, 49.1, 63.2, 65.4) (50.5, 49.4, 62.4, 63.2) (53.5, 45.0, 71.7, 67.1) (39.1, 46.9, 58.2, 65.9)

C3 (46.3, 39.3, 64.2, 65.4) (42.5, 42.5, 71.0, 61.9) (48.8, 51.2, 64.3, 65.4) (37.5, 38.9, 56.6, 61.6)

C4 (37.0, 40.3, 50.0, 65.8) (35.0, 42.5, 59.7, 62.7) (44.4, 40.4, 60.7, 64.5) (37.2, 40.7, 61.1, 61.9)

Ave. (45.3, 42.6, 59.6, 65.0) (42.7, 42.8, 64.2, 63.2) (45.4, 47.5, 61.9, 63.5) (46.2, 43.5, 64.8, 65.7) (37.6, 40.7, 55.4, 65.0)
Table 3. Cross-view action recognition accuracies of different approaches on the IXMAS dataset using partially labeling mode. Each

row corresponds to a source (training) view and each column a target (test) view. The accuracy numbers in the bracket are the average

recognition accuracies of AUGSVM, MIXSVM from [1], [15], and our approach respectively.

methods have nearly the same reconstruction performance

for frames of the same action from the unseen view. This

is because {Ds, Dt} are learned by exploiting features that

are specific for the two seen views. In addition, the sepa-

ration of the common dictionary and view-specific dictio-

naries can enable us to learn more compact view-specific

dictionaries.

4.2. Cross-view Action Recognition

We evaluate our approach using three different modes.

We first learn a common dictionary D and two view-specific

dictionaries {Ds, Dt} corresponding to the source and tar-

get views respectively. Both D and Ds are used to represent

the training videos in the source view. Similarly, for a test

video y in the target view, we encode it over D̂ = [D Dt],
i.e. β = argminβ ||y − D̂β||22 + λ0||β||1 where λ0 is

a parameter to balance the reconstruction error and spar-

sity. For the first two modes, a k-NN classifier is used to

classify the test video in the sparse feature space. For the

third mode, we use SRC method [30] to predict the label

of y, i.e. k∗ = argmink ||y − D̂kβk||
2
2 + λ0||βk||1 where

D̂k = [Dk Dt
k] and βk is the associated sparse codes.

As shown in Tables 1 and 2, our approach yields a much

better performance for all 20 combinations for the first two

modes. Moreover, the proposed approach achieves more

than 90% recognition accuracy for most combinations. The

higher recognition accuracy obtained by our supervised set-

ting over our unsupervised setting demonstrates that the dic-

tionaries learned using labeled information across views are

more discriminative.

For the partially labeled mode, our approach outper-

forms other approaches for most of source-target combina-

tions in Table 3. It is interesting to note that for the case

where Camera4 is the source or target view, the recogni-

tion accuracies of comparing approaches are a little lower

than other combinations of piecewise views. This is be-

cause the Camera4 was set above the actors and different

actions look very similarly from the top view. However, our

approach still achieves a very high recognition accuracy for

these combinations, which further demonstrates the effec-

tiveness of our approach.

% C0 C1 C2 C3 C4 Avg

Ours (mode1) 97.0 99.7 97.2 98.0 97.3 97.8

Ours (mode2) 99.7 99.7 98.8 99.4 99.1 99.3

[33] (mode1) 98.5 99.1 99.1 100 90.3 97.4

[33] (mode2) 99.4 98.8 99.4 99.7 93.6 98.2

[20] 86.6 81.1 80.1 83.6 82.8 82.8

[11] 74.8 74.5 74.8 70.6 61.2 71.2

[19] 76.7 73.3 72.0 73.0 N/A 73.8

[29] 86.7 89.9 86.4 87.6 66.4 83.4
Table 4. Multi-view action recognition results using the unsu-

pervised and supervised correspondence modes. Each column

corresponds to one target view.

% C0 C1 C2 C3 C4

Ours (mode3) 66.6 68.4 65.4 67.2 67.8

[15] 62.0 65.5 64.5 69.5 57.9

AUGSVM 54.2 50.8 58.1 49.5 46.9

MIXSVM 46.4 44.2 52.3 47.7 44.7
Table 5. Multi-view action recognition results using the par-

tially labeled mode. Each column corresponds to one target view.

4.3. Multi-view Action Recognition

We select one camera as a target view and use all other

four cameras as source views to explore the benefits of com-

bining multiple source views. Here we use the same clas-

sification scheme used for cross-view action recognition.

Both D and the set of correspondence dictionaries Dv are

learned by aligning the sparse representations of shared ac-

tion videos across all views. Since videos from all views are

aligned into a common view-invariant sparse feature space,

we do not need to differentiate the training videos from each

source view in this common view-invariant sparse feature

space.

Table 4 shows the average accuracy of the proposed ap-

proach for the first two evaluation modes. Note that the

comparing approaches are evaluated using the unsupervised

correspondence mode. Both our unsupervised and super-

vised approaches outperform other comparing approaches

and achieve nearly perfect performance for all target views.

Furthermore, [20, 33] and our unsupervised approach only

use training videos from four source views to train a classi-

fier while other approaches used all the training videos from

all five views to train the classifier. Table 5 shows the av-

31753182



erage accuracy of different approaches using the partially

labeled evaluation mode. The proposed approach outper-

forms [15] on four out of five target views. Overall, we

accomplish a comparable accuracy with [15] under the par-

tially labeled mode.

5. Conclusion

We presented a novel dictionary learning framework to

learn view-invariant sparse representations for cross-view

action recognition. We propose to simultaneously learn a

common dictionary to model view-shared features and a set

of view-specific dictionaries to align view-specific features

from different views. Both the common dictionary and the

corresponding view-specific dictionary are used to repre-

sent videos from each view. We transfer the indices of non-

zeros in the sparse codes of videos from the source view to

the sparse codes of the corresponding videos from the tar-

get view. In this way, the mapping between the source and

target views is encoded in the common dictionary and view-

specific dictionaries. Meanwhile, the associated sparse rep-

resentations are view-invariant because non-zero positions

in the sparse codes of correspondence videos share the same

set of indices. Our approach can be applied to cross-view

and multi-view action recognition under unsupervised, su-

pervised and domain adaptation settings.
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