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Abstract

In this paper, we propose a novel cascaded face shape
space pruning algorithm for robust facial landmark detec-
tion. Through progressively excluding the incorrect candi-
date shapes, our algorithm can accurately and efficiently
achieve the globally optimal shape configuration. Specif-
ically, individual landmark detectors are firstly applied to
eliminate wrong candidates for each landmark. Then, the
candidate shape space is further pruned by jointly remov-
ing incorrect shape configurations. To achieve this purpose,
a discriminative structure classifier is designed to assess
the candidate shape configurations. Based on the learned
discriminative structure classifier, an efficient shape space
pruning strategy is proposed to quickly reject most incorrect
candidate shapes while preserve the true shape. The pro-
posed algorithm is carefully evaluated on a large set of real
world face images. In addition, comparison results on the
publicly available BioID and LFW face databases demon-
strate that our algorithm outperforms some state-of-the-art
algorithms.

1. Introduction
Accurately detecting facial landmarks in images is es-

sential for many computer vision tasks, such as face recog-

nition, facial expression recognition, 3D face modeling and

face animation. Yet, locating facial landmarks in face im-

ages captured under unconstrained real world environment

remains challenging, due to tremendous variations in facial

appearance caused by pose, lighting, partial occlusion and

so on.

Generally speaking, given a face image, the goal of fa-

cial landmark detection is to find the most correct shape (in

terms of the concatenation of the landmarks coordinates)

from all possible landmarks configurations according to

some criteria. To achieve this goal, lots of methods are pro-

posed in recent years. One of the most popular methods is

the cascaded AdaBoost framework [26, 28]. In this kind of

method, the facial landmarks are detected separately. Typi-

cally, it learns a classification function and computes a con-

fidence for each position in the image. The image position,

which has the largest confidence, is determined as the tar-

get facial landmark. However, one drawback of this kind of

method is that it is insufficient to reliably detect facial land-

marks just using local texture information, especially under

complex environment. For example, there might be many

image positions which look locally like the mouth corner if

they are not observed in a large context. As a result, it is in-

herently difficult to detect the corners of mouth due to this

ambiguity of local image patches. To address this problem,

the relationship among facial landmarks should be utilized

to eliminate the false positive detections.

Another kind of very popular facial landmark detection

methods is the Active Shape Model (ASM) [6] and Active

Appearance Model (AAM) [4]. In addition, many variants

of ASM and AAM [2, 5, 8, 16, 17, 20, 29] are proposed

to further improve the accuracy of facial landmark detec-

tion. Typically, in these methods, the shape configuration of

facial landmarks is required to satisfy some statistical con-

straints, which are characterized by the Point Distribution

Model (PDM) [6]. In order to find the optimal shape pa-

rameters, varying optimization criteria are designed. For

example, in original AAM [4], the shape parameters are es-

timated through minimizing the residual between the face

appearance and the synthesized face template. In work [16],

Liu et al. discriminatively learn a classification function

based on the global face appearances. The optimal shape

parameters are achieved through maximizing the classifica-

tion score. In addition, works [5, 6, 8, 17, 20] essentially

formulate the facial landmark detection as a posterior max-

imization problem and solve it through iteratively search or

EM-like algorithms. However, it is well known that this

kind of method is usually prone to local maximum due to

the model expression power and the optimization strategies

(e.g., gradient descent or EM), which are sensitive to the

initialization.

In recent years, there also appeared a few methods,

which learn a regression function that directly maps the

global or local image appearance to the target facial land-
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Figure 1. Overview of our robust facial landmark detection algorithm by cascaded shape space pruning. For the convenience of illustration,

only five fiducial facial landmarks (e.g., the centers of eyes, nose tip and the corners of mouth) are used in this figure to describe the

proposed algorithm.

marks [3, 7, 10, 19, 25]. For example, approaches in [7, 25]

learn regressors which map the local image patches to the

individual target landmarks. In addition, approaches in

[3, 10] try to map the image appearance to the target shape

configurations using conditional regression forest [10] or

Boosting regression [3]. In these methods, the inherent ge-

ometric constraint among facial landmarks is implicitly en-

coded into the regressor. However, as demonstrated in [19],

it is challenging to directly learn such an ideal regression

function which can accurately predict a high dimensional

shape from the image appearances, which usually present

complex non-linear variations.

In short, above-mentioned facial landmark detection al-

gorithms still have certain drawbacks in obtaining the opti-

mal shape configurations, such as the local maximum prob-

lem of ASMs and AAMs and the ambiguity problem of in-

dividual landmark detectors, etc. To address these problem-

s, in this paper, a novel facial landmark detection algorithm

is proposed, which can efficiently achieve the globally op-

timal shape configuration from the entire candidate shape

space. Specifically, instead of learning one strong criterion

function, our algorithm learns a sequence of discriminative

criterion functions in a cascaded structure. In each stage,

part of the incorrect shape configurations is filtered out ef-

ficiently from the candidate shape space. In our implemen-

tation, the candidate shape space is firstly pruned by indi-
vidually removing impossible positions of each landmark

with separate landmark detector. Subsequently, in the later

stages, all of the facial landmarks are considered as a whole

and jointly evaluated by a discriminative structure classifier,

which is learned using Structured Output SVM (SOSVM)

[24]. Based on the discriminative structure classifier, an ef-

ficient pruning strategy is proposed to remove the incorrect

candidate shape configurations quickly at the global shape

level. Finally, in the remaining compact candidate shape s-

pace, the globally optimal shape configuration can be easily

obtained via non-maximum suppression. We evaluate our

algorithm in detail and compare it with a range of common-

ly used facial landmark detection algorithms. Experiments

results show that our algorithm outperforms competitive al-

gorithms on the LFW [14] and BioID [15] face databases.

Briefly speaking, the main contributions of this paper

are:

• We propose a novel coarse-to-fine shape space prun-

ing algorithm for robust facial landmark detection,

which can progressively filter out the incorrect candi-

date shapes in a cascaded structure.

• We propose an algorithm to jointly assess the shape

configurations and efficiently reject the incorrect can-

didate shapes based on a discriminative structure clas-

sifier.

• Our algorithm can efficiently achieve the target shape

configuration from the entire candidate shape space

without requiring initialization.

The remaining part of this paper is organized as follows.

Section 2 gives a brief overview of our robust facial land-

mark detection algorithm. Section 3 presents more details

of our algorithm, including shape space pruning by indi-

vidually and jointly removing incorrect positions for facial

landmarks. Section 4 reports the experimental results and
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also the comparisons with the state-of-the-art methods. Sec-

tion 5 concludes the paper.

2. Basic idea
In this section, we will first give a formulation of the

facial landmark detection problem and then briefly describe

the basic idea of our algorithm for solving the problem.

As described in Section 1, the task of facial land-

mark detection is to find the optimal shape s∗ =
[x1, y1, x2, y2, . . . , xn, yn] from the entire candidate shape

space S according to some optimization criterion, where n
is the number of facial landmarks. Specifically, the goal can

be formulated as follows:

s∗ = arg max
s∈S

f(s) (1)

where f is the optimization criterion. It is hard to directly

learn such an ideal optimization criterion f and efficiently

estimate the globally optimal solution over a high dimen-

sional shape space. Therefore, previous optimization-based

methods are concerned with efficient local maximization

from an initial guess [4, 5, 6, 8, 16, 17, 20].

In this paper, we try to estimate the globally optimal

landmarks configuration through progressively filtering out

the incorrect shapes. Specifically, instead of learning one

strong criterion function f , we try to learn a sequence of

criterion functions f1, f2, . . . , ft in a cascaded structure. In

each cascade stage i, most incorrect candidate shapes are

fast rejected by criterion function fi, i.e., predicting a shape

subspace Si which satisfies that S1 ⊃ S2 ⊃ · · · ⊃ Si ⊃
· · · ⊃ St. Ideally, the predicted shape subspaces are sup-

posed to contain the true shapes and become as compact as

possible.

The overview of our algorithm is shown in Figure 1. Giv-

en an input face image, the candidate shape space is firstly

pruned by removing incorrect candidate points for each fa-

cial landmark. Specifically, for landmark li, if we remove

one of its candidate points ci, then the shapes with li = ci
will be rejected. If there are Ni candidate points remained

for landmark li, the size of candidate shape subspace is re-

duced to
∏n

i=1 Ni, which is still very huge. More imple-

mentation details are given in Section 3.1.

Subsequently, in the remaining cascade stages, the candi-

date shape space are further pruned by jointly removing the

incorrect candidate shape configurations. Specifically, all

of the facial landmarks are jointly modeled as a tree struc-

ture, as shown in Figure 2. In addition, the quality of shape

configuration can be evaluated by a discriminative structure

classifier. Based on the discriminative structure classifier,

a very efficient shape space pruning strategy is applied to

reject incorrect candidate shapes quickly. The implementa-

tion details of the discriminative structure classifier and the

shape space pruning algorithm are described in Section 3.2.

Figure 2. Tree structured model T = (V,E) for jointly modeling

the geometric constraints among facial landmarks. Each node in

V represents a facial landmark, and the edges in E characterize

the geometric shape deformation among facial landmarks. Nine

facial landmarks are studied in this paper.

Finally, in the pruned and compact enough shape s-

pace, the optimal shape configuration can be easily obtained

through the non-maximum suppression fusion technique.

3. Facial landmark detection by cascaded
shape space pruning

In this section, we describe the details of our cascaded

shape space pruning algorithm.

3.1. Shape space pruning by individually removing
landmark candidates

In our algorithm, the candidate shape space is firstly

pruned by individually removing candidate points for each

landmark. To achieve this purpose, independent landmark

detectors are trained to reject the incorrect candidate points.

For each facial landmark l, a landmark detector is trained

using the Real AdaBoost classifier. Specifically, the Haar-

like feature is used to characterize the local texture around

the target facial landmark. The Look-Up-Table classifier is

exploited as the weak classifier. Through combing the weak

classifiers, a strong classifier is learned.

With the learned landmark detector, each candidate point

c is assigned a confidence. If the confidence of candidate

point c is lower than a certain threshold, it should be re-

jected. Correspondingly, the candidate shape configurations

with l = c should be rejected. In addition, several landmark

detectors are cascaded for faster candidate points removing,

as done in [26].

In this stage, although most of the candidate points can

be removed through sliding window detection, there are still

lots of false positive detections remained due to tremendous

variations of image appearance. They will be further re-

moved efficiently in the subsequent stages.

3.2. Shape space pruning by jointly removing can-
didate landmark positions

In this subsection, all of the facial landmarks are con-

sidered as a whole and jointly assessed by a discriminative
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Figure 3. Score distribution of a real F (I, s) on a face image. The

x-axis represents the maximum deviation (normalized by eye dis-

tance) to the true shape, and the y-axis represents the score re-

turned by F . The point marked with red circle is the true shape.

structure classifier. Besides, an efficient pruning strategy is

proposed to fast reject the incorrect candidate shapes.

3.2.1 Face shape assessment via discriminative struc-
ture classifier

The basic idea of our algorithm evaluating the quality of

candidate shape is to learn a discriminative structure clas-

sifier F : X × S �→ R over image-shape pairs. For each

image-shape pair (I, s), the learned classifier F outputs a

score, with the constrains that the score of a true shape

ŝ should be greater than that of any other wrong shape

s ∈ S\ŝ:

F (I, ŝ) > F (I, s). (2)

In this paper, F (I, s) is modeled as a linearly parameter-

ized function:

F (I, s) = 〈w,Ψ(I, s)〉 (3)

where Ψ(I, s) is the feature vector extracted from image I
according to landmark configuration s, and w is the param-

eter vector.

As shown in Figure 2, the geometric relationship a-

mong facial landmarks is modeled as a tree-structured mod-

el T = (V,E) [11, 30], where V is the set of facial land-

marks, E is the set of edges connecting facial landmark-

s. More specifically, given a face image I and a shape s,

F (I, s) = 〈w,Ψ(I, s)〉 is modeled as the combination of

local textures and global shape deformations among facial

landmarks:

〈w,Ψ(I, s)〉 = 〈wtex,Ψtex(I, s)〉+ 〈wshape,Ψshape(I, s)〉
=

∑

i∈V

〈wi
tex,Ψ

i
tex(I, si)〉+

∑

jk∈E

〈wjk
shape,Ψ

jk
shape(I, sj , sk)〉

(4)

f

Figure 4. Illustration of the shape space pruning at the global shape

level. f is a prediction function. It is expected that the true shape

ŝ lies in the pruned shape space S in a very high probability, and

most incorrect shapes are excluded.

where Ψi
tex(I, si) is the local texture feature (e.g., His-

tograms of Oriented Gradients (HOG) [9], Local Binary

Patterns (LBP) pyramid [27], etc.) extracted around the i-th
landmark, and Ψjk

shape(I, sj , sk) is the shape deformation

between the j-th and k-th landmarks, which is defined as a

deformation vector:

Ψjk
shape(I, sj , sk) = (dx, dy, dx2, dy2) (5)

where dx = (sjx − skx), and dy = (sjy − sky ).

Theoretically, the optimal shape configuration s∗ can be

obtained through maximizing Equation (3). Benefiting from

the tree-structured model T = (V,E), the global maxi-

mization of Equation (3) can be done efficiently with dy-

namic programming [11, 30].

However, in practice, it is hard to learn an ideal F (I, s)
such that the optimal shape s∗ is exact or very close to the

true shape ŝ. The reason mainly lies in the weak expres-

sion capability of image features and the linear modeling of

F (I, s). Figure 3 illustrates the score distribution of F (I, s)
on an example face image. Here, F (I, s) is learned on a

large set of real world face images. It can be observed that:

(1) We can easily reject the shapes which are far away from

the true shape (e.g., the normalized maximum deviation is

larger than 0.2); (2) The maximal score is not exactly at the

true shape, but at the shape which is near to the true shape

(e.g., about 0.08 deviation).

3.2.2 Efficient shape space pruning

Based on the analysis in Section 3.2.1, in this subsection,

we propose an approach to efficiently prune the candidate

shape space at the global shape level.

As shown in Figure 4, instead of directly predicting the

optimal shape configuration s∗, we turn to predict a shape

subspace S, which excludes incorrect candidate shapes

as much as possible and simultaneously includes the true

shape ŝ in a very high probability. The basic assumption
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is that the optimal shape configuration s∗ estimated accord-

ing to F (I, s) is not far away from the true shape ŝ. The

predicted shape subspace can be expressed as:

S = {s : | ‖s− s∗‖ < r}, (6)

which ensures that the true shape configuration ŝ lies in S
in a very high probability. Here, s∗ is the center of shape

space S, r is a threshold which constrains that the maximum

deviation of ŝ to the true shape s∗. The value of r balances

the accuracy and efficiency of the shape space pruning. A

smaller r means a more compact shape subspace and higher

misdetection rate and vice visa. In practice, the value of

r can be learned from the training set through setting the

recall rate of the ground truth shapes.

It is important to note that in our strategy presented

above, we do NOT filter out the incorrect candidate shapes

simply by thresholding the score of F (I, s), which although

seems more natural for shape pruning. The most importan-

t reason is, in such an alternative strategy, every candidate

shape have to be assessed by 〈w,Ψ(I, s)〉, which leads to

high computation cost for a large shape space.

Similar to independent landmark detectors, the learned

prediction functions are also cascaded for a coarse-to-fine

shape space pruning. In each cascade stage, the optimal

model parameters are learned in the pruned shape space. A-

long with the reduction of the solution space, we give more

trust to the local texture rather than the global shape con-

straints among facial landmarks.

3.2.3 Learning of discriminative structure classifier

Our discriminative structure classifier is learned using the

Structured Output SVM (SOSVM) algorithm [24].

Specifically, given M face images with labeled land-

marks {(I1, ŝ1), (I2, ŝ2), . . . , (IM , ŝM )}, we can learn the

model parameters w through minimization of a constrained

quadratic optimization problem:

min
w,ξ≥0

λ

2
‖w‖2 + ξ

s.t.∀(s1, s2, . . . , sM ) ∈ SM :

1

M

M∑

i=1

〈w,Ψ(Ii, ŝi)−Ψ(Ii, si)〉 ≥ 1

M

M∑

i=1

Δ(ŝi, si)− ξ

(7)

where Δ(ŝi, si) is a loss function which measures the loss

of a shape si if the expected shape is ŝi, λ is a regularization

term. Intuitively, the constraints in Equation (7) requires

that for a training sample pair (Ii, ŝi), F (Ii, ŝi) has to pro-

duce a score that is higher than the score of any other pair

(Ii, si) by at least Δ(ŝi, si). In our situation, the loss func-

tion Δ(ŝi, si) is defined as the average deviation over all

facial landmarks:

Δ(ŝi, si) =
1

n

n∑

j=1

‖ŝij − sj‖, (8)

where n is the number of facial landmarks.

It is worth noting that, our model is different from [30],

which only constrains the score of positive sample (face

with true shape) greater than 1 while that of negative sample

(non-face with any shape) smaller than -1. For the same face

image, they do not have constrains on the relation between

the true shape ŝ and outlier shapes s ∈ S\ŝ at all. However,

this is crucial for learning a good landmark locator.

Equation (7) can be solved by Bundle Method for Regu-

larized Risk Minimization (BMRM) optimization algorith-

m, which is a generic method for minimization of regular-

ized convex functions [23].

4. Experiments
4.1. Datasets and evaluation metric

In this subsection, we describe the training set and the

testing set for our algorithm. To train the individual land-

mark detectors and the structure classifier, we collect about

7,000 face images from multiple databases, such as CMU

PIE [21], FRGC v1 [18], CAS-PEAL [12], FG-NET Aging

[1], and CMU Multi-PIE [13].

To validate the effectiveness of the proposed algorith-

m, we compare it with the state-of-the-art methods on the

BioID [15] and LFW [14] face databases, which are def-

initely excluded from our training set. Specifically, the

BioID database consists of 1,521 images of frontal faces

taken in uncontrolled conditions using a web camera. It fea-

tures a large variety of illuminations, backgrounds and face

sizes. The LFW database is collected from the wild con-

ditions and varies in pose, lighting conditions, expression,

partial occlusion and so on. Specifically, it contains 13,233

facial images of 5,749 subjects. The landmark annotations

are available at http://www.dantone.me/?page id=38.

In our experiments, the normalized root-mean-squared

error (NRMSE) relative to the ground truth is adopted as the

error measurement for the facial landmark detection. The

NRMSE is given as a percentage, computed by dividing the

root mean squared error by the distance between the two

eye centers. The cumulative distribution function (CDF)

of NRMSE is used to evaluate the performance of facial

landmark detection algorithm.

4.2. Training

In our experiments, nine facial landmarks are localized

and evaluated, which include two eye centers, four eye cor-

ners, two mouth corners and the nose tip. Specifically, to

train the detectors for each individual facial landmark, we

10371037



Table 1. Analysis of cascaded shape space pruning.

Landmark
Candidates Size Maximum Deviation Detection Rate (NRMSE ≤ 0.10)

S1 S2 S3 S1 S2 S3 S1 S2 S3

Left eye center 90 52 22 0.46 0.14 0.10 99.2% 98.2% 96.5%

Right eye center 85 51 22 0.41 0.14 0.10 99.1% 98.0% 96.1%

Nose tip 90 53 22 0.44 0.15 0.10 99.2% 98.1% 96.2%

Left mouth corner 87 52 22 0.44 0.15 0.10 99.2% 98.3% 96.4%

Right mouth corner 84 50 22 0.45 0.14 0.10 99.2% 98.2% 96.3%

Outer corner of left eye 88 50 22 0.47 0.14 0.10 99.2% 98.0% 96.1%

Inner corner of left eye 94 52 22 0.49 0.15 0.10 99.0% 97.6% 95.7%

Inner corner of right eye 97 52 22 0.50 0.15 0.10 99.0% 97.5% 95.5%

Outer corner of right eye 91 52 22 0.47 0.15 0.10 99.1% 98.0% 96.1%

generate positive samples by cropping image patch which

is centered at the ground truth landmarks, and synthesize

more positive samples by some transformations. Negative

samples are image patches shifted 5∼8 pixels away from

the manually labeled ground truth position. The cascaded

Real AdaBoost algorithm is exploited to train the individu-

al facial landmark detectors.

To train the discriminative structure classifier, the nor-

malized face images and the corresponding ground truth

shapes are used as the input of the SOSVM learning al-

gorithm. Specifically, in our implementation, the nine fa-

cial landmarks form a tree structure and two different struc-

ture classifiers are cascaded to progressively prune candi-

date shape space. The first one is trained to efficiently filter

most outlier shapes, which are far away from the true shape,

by using computational efficient Pyramid LBP feature. For

the second one, more discriminative HOG feature is applied

for more accurate prediction in the pruned shape space.

4.3. Algorithm analysis

In this subsection, we verify the effectiveness and effi-

ciency of the proposed cascaded shape space pruning algo-

rithm on 13,233 face images from the LFW face database.

Here, for the convenience of expression, we briefly note

the procedure that pruning shape space by independen-

t landmark detectors as “S1”. In addition, the subsequent

two discriminative structure classifiers as noted as “S2” and

“S3” respectively.

4.3.1 Efficiency of shape space pruning

In order to analyze the efficiency of shape space pruning,

three kinds of criteria are designed in our experiments:

• Candidates Size. This criterion represents the number

of candidate points remained for each landmark after

one stage.

• Maximum Deviation. It is the maximum deviation of

the candidate points to the ground truth. A smaller val-
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Figure 5. Performance improvement after each cascade stage on

the LFW face database.

ue of this criterion represents a more compact candi-

dates space.

• Detection Rate. This criterion represents the success-

ful detection rate of the candidate point set. If the min-

imum deviation of the candidate points to the ground

truth is smaller than a certain threshold (NRMSE =

0.10 is used in our experiments), we think the candi-

date points contains a successful detection.

In addition, the deviation to the ground truth is normal-

ized by dividing the eye distance. The criteria “Candidates

Size” and “Maximum Deviation” are averaged over the w-

hole test set.

The experimental results are shown in Table 1. It can

be observed that: (1) The remaining candidate number is

greatly reduced after each stage; (2) The maximum devia-

tion of each landmark to the ground truth is reduced from

about (0.40 ∼ 0.50) to 0.10; (3) There is only very small

percentage (about 1% ∼ 2%) of ground truth are wrongly

rejected in each stage along with the pruning of the shape

space.
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(b) Results on the BioID face face database.

Figure 6. Performance comparisons on two publicly available face

databases.

4.3.2 Performance improvement of each stage

In this subsection, we will validate the effectiveness of the

cascaded shape space pruning to improve the performance

of facial landmark detection.

The experimental results are shown in Figure 5. The

average detection accuracy of nine facial landmarks is ex-

plored. It can observed from the experimental results that

detection accuracy improves after each stage. Especially,

when NRMSE is 0.10, the detection accuracy of “S2” is

about 12% higher than detection accuracy of “S1”. In addi-

tion, when NRMSE is 0.05, the detection accuracy of “S3”

is about 10% higher than detection accuracy of “S2”, which

shows that we can get more accurate landmark position in

the pruned shape space.

In addition, in comparison to the algorithm which just

uses independent landmark detectors, our algorithm dose

not increase the runtime much. On an Intel(R) Core(TM)2

2.93GHz machine, the average runtime of our algorithm

on 13,233 face images (250 × 250 pixels) from the LFW

face database is 150.0ms (133.9ms for independent land-

mark detection).

4.4. Comparisons with state-of-the-art methods

In recent years, some promising methods for robust fa-

cial landmark detection emerge [10, 17, 20, 22, 25, 30]. For

the convenience of comparison, we briefly denote them by

Dantone et al. [10], Omron, Milborrow et al. [17], Saragih

et al. [20], Everingham et al.[22], Valstar et al. [25], Zhu

et al. [30]. In this subsection, we compare our method with

these state-of-the-art methods on the BioID and LFW face

databases. It is important to note that the source codes or

executable programs of the competitive methods are avail-

able from the internet. We just use the default parameters

given by the authors. In addition, in order to compare with

these methods fairly, we just compare the common six facial

landmarks, i.e., four eye corners and two mouth corners.

The performance comparisons with these state-of-the-art

methods are shown in Figure 6. It can be observed that our

method outperforms these state-of-the-art methods on these

two face databases.

Some localization results of our method on some chal-

lenging example images are shown in Figure 7 and Figure 8

respectively. It can be observed that our method can locate

the facial landmarks robust and accurately on images with

exaggerate facial expression and partial occlusion.

5. Conclusion and future work

In order to improve the accuracy of facial landmark de-

tection, a cascaded shape space pruning algorithm is pro-

posed in this paper. Through progressively filtering the in-

correct shape configurations, our algorithm can accurately

and efficiently achieve the globally optimal shape configu-

ration from the entire candidate shape space. Specifically,

the candidate shape space is pruned by not only individually

removing candidate points for each landmark but also joint-

ly removing incorrect candidate shapes. To jointly assess

the shape configurations, a discriminative structure classi-

fier is learned using SOSVM. The effectiveness of our al-

gorithm is analyzed on the real world LFW face database.

Moreover, experimental results on the BioID and the LFW

face databases show that our algorithm outperforms some

state-of-the-art methods.

In the future work, we will apply our algorithm to some

other problems, such as the anatomic segmentation and

hand radiographs localization in medical images.
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