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Abstract
Illumination variation remains a central challenge in ob-

ject detection and recognition. Existing analyses of illumi-
nation variation typically pertain to convex, Lambertian ob-
jects, and guarantee quality of approximation in an average
case sense. We show that it is possible to build models for
the set of images across illumination variation with worst-
case performance guarantees, for nonconvex Lambertian
objects. Namely, a natural verification test based on the dis-
tance to the model guarantees to accept any image which
can be sufficiently well-approximated by an image of the
object under some admissible lighting condition, and guar-
antees to reject any image that does not have a sufficiently
good approximation. These models are generated by sam-
pling illumination directions with sufficient density, which
follows from a new perturbation bound for directional illu-
minated images in the Lambertian model. As the number
of such images required for guaranteed verification may be
large, we introduce a new formulation for cone preserving
dimensionality reduction, which leverages tools from sparse
and low-rank decomposition to reduce the complexity, while
controlling the approximation error with respect to the orig-
inal model.1

1. Introduction
Illumination variation remains a central challenge in ob-

ject detection and recognition. Changes in lighting can dra-

matically change the appearance of the object, rendering

simple pattern recognition techniques such as nearest neigh-

bor ineffective. Various approaches have been proposed to

mitigate this problem, for example using nonlinear features

based on gradient orientation [13], using quotient images

[18] or total variation regularization [6]. These approaches

are often effective in practice, but can break down under

extreme illumination. Moreover, because of the nonlinear-

ity of the feature extraction step, clearly characterizing their

domain of applicability is challenging.

An alternative approach is to attempt to explicitly char-

acterize the set of images of the object generated under

1This work was supported by ONR N00014-13-1-0492. YZ was also
supported by a special scholarship from the Wei Family Foundation.

varying lighting. The seminal work [2] argues that images

of a given object with fixed pose and varying illumination

should lie near a convex cone in the high-dimensional image

space. Many subsequent works have attempted to capture

the gross structure of this cone using low-dimensional con-

vex cone or linear subspace models [1, 15]. These models

have been used for recognition in many subsequent works

[9, 20, 21, 19], and have been extended in a number of di-

rections [8, 16]. The promise of subspace or cone models,

compared to feature-based approaches described above, is

that, by reasoning carefully about the image formation pro-

cess, it might be possible to guarantee to well-approximate

all images of the object under clearly delineated conditions.

It is worth asking then, what approximation guarantees

do current results afford us? For convex, Lambertian ob-

jects, by an elegant interpretation of the Lambertian re-

flectance as spherical convolution [1, 15], people showed

that for uniformly random directional lightings, a nine di-

mensional spherical harmonic approximation captures on

average about 98% of the energy [1, 8]. In this work, we

ask whether it is possible to build models that (i) guar-

antee robustness to worst case lighting, over some clearly

specified class of admissible lighting conditions, and (ii)

work even for nonconvex objects, whose cast shadows cre-

ate moving boundaries and render low-dimensional linear

model ineffective, and (iii) have low storage and computa-

tional complexity? We study these questions in the context

of a model problem in object instance verification, in which

one is given an object O at a fixed pose, and ask whether

the input image is an image of this object under some valid

illumination condition. We develop rigorous guarantees for

this problem, for general (including nonconvex) Lambertian

objects. Our results show how to build a model that guar-

antees to accept every image that can be interpreted as an

image of the object under some lighting condition, and to

reject every image that is sufficiently dissimilar to all im-

ages of the object under valid lighting conditions.

Similar to [12, 14, 19], our work approximates the illu-

mination cone with a conic combination of certain images

on its boundary. Empirically, such constructions may re-

quire relatively large numbers of images [14], but no rigor-

ous results of this nature are currently known. To address
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this problem, we start from the goal of producing a suf-

ficiently accurate representation of the illumination cone,

and derive, in terms of the properties of the object and the

scene, sufficient sampling densities for this goal to be met.

Our bounds depend on the level of ambient illumination,

and a notion of convexity defect of the object. They make

precise the intuitions that: (i) it is more difficult to operate

in low-light scenarios and (ii) nonconvex objects are more

challenging than convex objects.

The number of images required to guarantee perfor-

mance can be large. To address this problem, we introduce

a new approach to cone preserving complexity reduction.

This approach leverages tools from convex programming –

in particular, sparse and low-rank decomposition [4, 5] – but

introduces a new constrained formulation which guarantees

that the conic hull of the output will well-approximate the

conic hull of the input. The low-rank and sparse decomposi-

tion leverages our qualitative understanding of the physical

properties of images (low-dimensionality, sparsity of cast

shadows) [1, 15, 21, 4, 22], while the constraint ensures that

the output of this algorithm is always a good approximation

to the target cone. Empirically, we find that the output is

often of much lower complexity than the input. This sug-

gests a methodology for building instance verifiers that are

both robust to worst case illumination, and computationally

efficient. Numerical experiments illustrate our bounds and

their potential for worst case verification. All mathematical

claims are proved in the appendix.

2. Problem Formulation and Methodology

Cone Models for Illumination. We consider images of

size w × h, and let m = wh, each image can be treated as

a vector y ∈ R
m. We are interested in the set of images

of an objectO that can be generated under distant illumina-

tion. These images form a subset C0 ⊆ R
m. Each distant

illumination can be identified with a nonnegative function

f : S2 → R+, whose value f(u) is the intensity of light

from direction u. We use the notation F for the set of non-

negative, Riemann integrable functions on S
2. Mathemati-

cally, F is a convex cone: sums of nonnegative, integrable

functions are again nonnegative and integrable.

We assume a linear sensor response: the image is a lin-

ear function of the incident irradiance. By linearity of light

transport and linearity of the sensor response, the observed

image y ∈ R
m is a linear function y[f ] of the illumi-

nation f : if the object is subjected to the superposition

f = f1 + f2 of two illuminations f1 and f2, we observe

y[f1 + f2] = y[f1] + y[f2]. Since f resides in the con-

vex cone, the set C0
.
= y[F ] ⊂ R

m of possible images is

also a convex cone. Note, however, that the fact that C0 is a

convex cone holds under very mild assumptions.

The detailed properties of C0 were first studied in [2],

and a great deal of subsequent work has been devoted to

� �

� �

Figure 1. Ambient level α. Left: typical images from the cone

Cα, for ambient levels α = 0 up to α = 5. In each example fd
is an extreme directional illumination. Images rendered from [17].

Right: illumination cones Cα with varying ambient level α.

understanding its properties [15, 1, 8]. Most of this body

of work has been devoted to simple, analytically tractable

models such as convex, Lambertian objects. For such ob-

jects, interesting statements can be made about the gross

shape of C0.

The cone C0 can be interpreted as the set of all images

of the object under different distant lighting conditions. In-

tuitively speaking, we expect the problem of representing

images y under different illuminations to be more challeng-

ing when the light has a stronger directional component.

To capture the relative contribution of directional and ambi-

ent components of light, we introduce a family of function

classes Fα, indexed by parameter α ∈ [0,∞). Illumina-

tions in Fα consist of an ambient component αω, where

ω(u) = 1/area(S2) is the constant function on the sphere,

and an arbitrary (possibly directional) component fd:

Fα =
{
fd + αω | fd ∈ F , ‖fd‖L1

≤ 1
}
, (1)

For each ambient level α, we have a cone

Cα
.
= {ty[f ] | t ≥ 0, f ∈ Fα} (2)

For any α ≤ α′, Cα′ ⊆ Cα. In this sense, the choice of α
induces a tradeoff: as α becomes smaller, Cα becomes more

complicated to compute with, but can represent broader il-

lumination conditions. Our complexity bounds in Section

3 will make this intuition precise. Figure 1 shows rendered

images of a face under various ambient levels α ≥ 0. Our

methodology is compatible with any choice of α > 0.

Verification using Convex Cones. Our methodology

asks the system designer to select a target level of ambient

illumination α, and hence choose a target cone C = Cα. At

test time, we are given a new input image y ∈ R
m. The ver-

ification problem asks us to decide if y could be an image of

object O: Is y an element of C? Or, if y is subject to noise,

Is y sufficiently close to C? The distance from y to C in �2-

norm is d (y, C)
.
= inf {‖y − y′‖2 | y′ ∈ C} . Any cone C

is nonnegatively homogeneous: if z ∈ C, tz ∈ C for all

t ≥ 0. To obtain a scale invariant criterion, we can work

with the angle: ∠ (y, C)
.
= asin (d (y, C) /‖y‖2), giving

the following simple, natural test for object detection:
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Figure 2. Two detection rules. The angular detector accepts

points based on their angle with the cone C. An approximate an-

gular detector guarantees to accept any point within angle τ of C,

and to reject any point with angle greater than (1 + η)τ . In the in-

termediate region (white) there are no restrictions on its behavior.

Definition 2.1. The angular detector (AD) DC
τ : R

m
+ →

{ACCEPT,REJECT} with threshold τ is the decision
rule

DC
τ (y) =

{
ACCEPT ∠ (y, C) ≤ τ,

REJECT ∠ (y, C) > τ.
(3)

If C is a polyhedral cone, the decision rule (3) can be

implemented using nonnegative least squares. This is effi-

cient if the number n of extreme rays of C is small. If O
is a convex polyhedron with only a few vertices, this is the

case. However, in general, the number of extreme rays in

a V(vertex)-description can be large or even unbounded.2

One remedy is to relax the definition slightly:

Definition 2.2. The η-approximate angular detector
(η−AAD) D̂C

τ,η : Rm
+ → {ACCEPT,REJECT} satisfies

D̂
C
τ,η(y) =

{
ACCEPT ∠ (y, C) ≤ τ,

REJECT ∠ (y, C) > (1 + η) τ.
(4)

Figure 2 displays the AD and its η-relaxation. We can

regard η-AAD as a relaxed version of AD in the sense that

when ∠ (y, C) ∈ (τ, (1 + η) τ ], no demands are placed on

the output of the algorithm. This buffer zone allows us to

work with a surrogate cone Ĉ with much simpler structure,

enabling computationally efficient detection. For example,

if we form a polyhedral approximation Ĉ = cone(Â), the

distance to Ĉ is just the optimal value of the nonnegative

least squares problem

d(y, Ĉ) = min
x≥0

‖y − Âx‖22. (5)

To implement the angular detector D
̂C
ξ for Ĉ, we just need

to solve (5) and compare the optimal value to a threshold.

Moreover, it should come with no surprise that whenever Ĉ

approximates C sufficiently well, we have detector D
̂C
ξ ∈

D̂
C
τ,η , with ξ chosen appropriately.

2For convex, Lambertian objects, in a point sampling model of im-
age formation, the best known bound on the number of extreme rays
in a V-representation of C is quadratic in the number of image pixels:
n = O(m2) [2]. For nonconvex objects or more realistic sampling mod-
els, C may not even be polyhedral.

To make this precise, we need a notion of approximation.

We will work with the following discrepancy δ:

δ
(
C, Ĉ

)
=max

{
sup

y∈C,‖y‖=1

d(y, Ĉ), sup
y∈ ̂C,‖y‖=1

d(y,C)

}
(6)

This is just the Hausdorff distance between C ∩ B(0, 1)

and Ĉ ∩B(0, 1), here B(0, 1) denotes a unit ball around 0.

Hence, it satisfies the triangle inequality: ∀ C̄,

δ(C, Ĉ) ≤ δ(C, C̄) + δ(C̄, Ĉ). (7)

If δ(C, Ĉ) is small, we indeed lose little in working with Ĉ:

Lemma 2.3. Given cone C, τ > 0 and η ≥ 0, with
(1 + η) τ ∈ (0, π

2 ) and another cone Ĉ, we have D
̂C
ξ ∈

D̂
C
τ,η whenever

• δ(C, Ĉ) ≤ 1
2 (sin (τ + ητ)− sin τ);

• ξ ∈ [asin (sin τ + δ) , asin (sin(τ + ητ)− δ)].

If δ(C, Ĉ) is small, then we can simply apply an angular

test with cone Ĉ, and this will implement an approximate

angular detector for C.

Methodology. We present a detailed procedure of produc-

ing an approximate cone Ĉ. In Section 3, we will show how

to build an ε-approximation C̄ = cone(Ā) to C, where

Ā ∈ R
m×n is a matrix whose columns are images under

point illumination. Then in Section 4, via solving a convex

optimization problem, we form cone Ĉ, a γ-approximation

to C̄, but with much lower complexity. From (7), our result-

ing cone Ĉ (ε+ γ)-approximates C: δ(C, Ĉ) ≤ ε+ γ.

3. Illumination Cone Approximation
3.1. Extreme Rays of C

As discussed above, under very general circumstances

the set of images y form a convex cone. This follows from

the linearity of y[f ]. For the models we will consider, we

will see that the linear function y[·] can be written as

y[f ] =

∫
u∈S2

ȳ[u] f(u) du, (8)

where ȳ : S2 → R
m is a continuous function. As above,

we are interested in C0 = y[F ]. In this case, the vectors

ȳ[u] form the extreme rays of the cone C0:

Lemma 3.1. Suppose that the imaging map y satisfies (8),
with ȳ[·] : S2 → R

m continuous. Then for C0 = y[F ],
δ
(
C0, cone

({
ȳ[u] | u ∈ S

2
}) )

= 0. (9)

The ȳ[u] can be considered images of O under point il-
lumination from direction u. With this interpretation, the

previous lemma simply asserts that any image y[f ] under

distant, Riemann integrable illumination f can be arbitrar-

ily well approximated using a conic combination of images
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ȳ[u] under point illuminations. The conic hull of these ex-

treme images is (up to a set of measure zero) the cone C0

of images of O under arbitrary Riemann integrable illumi-

nation. We would like a similar expression that works when

the ambient level is larger than zero – we would like to also

approximate the extreme rays of Cα. The following lemma

says that we can use images of the form y̆[u] = ȳ[u]+αya,

where ya is the image of O under ambient illumination:

Lemma 3.2. Suppose that y[f ] satisfies (8) with ȳ[·] con-
tinuous. Set y̆[u] = ȳ[u] + αya, with

ya =
1

area(S2)

∫
u

ȳ[u]du, (10)

and C̆ = cone
({

y̆[u] | u ∈ S
2
}
∪ {ya}

)
. Then, we have

δ(Cα, C̆) = 0.

So, to work with Cα, we can simply work with a modified

set of extreme images y̆[u], which are sums of images un-

der point illumination and the ambient image ya. We still

need to build a computationally tractable representation for

Cα. A natural approach to is to discretize the set of illumi-

nation directions, by choosing a finite set u1, . . . ,uN . The

following lemma asserts that as long as the ȳ[ui] can ap-

proximate any point illumination ȳ[u] in an absolute sense,

the cone generated by the finite set and the cone Cα will not

differ too much:

Lemma 3.3. Let C̄ = cone (y̆[u1], . . . , y̆[uN ],ya), and

δ(C̆, C̄) ≤ 2 supu∈S2 mini ‖ȳ[u]− ȳ[ui]‖2
η�α ‖ya‖2

. (11)

Here η� = sup‖w‖2≤1 infu

〈
w, y̆[u]

‖y̆[u]‖2

〉
≥ m−1/2 mea-

sures the angular spread of Cα.

This substantially simplifies the problem of approximat-

ing Cα: to control the error over all possible images, it is

enough to control the error over images under point illumi-
nation. Below, we will see that this is possible, even for

nonconvex objects, provided the object is Lambertian.

� �

Figure 3. Cone Approximation: Cα and its V-approximation.

3.2. Convexity Defect
We will define two complementary quantities which

measure the nonconvexity of O:

Ambient visibility is a function of the position x on the

object boundary. It is defined as the fraction of directions

that are visible from x, weighted by 〈n(x),u〉:

ν̃(x)
.
=

1

π

∫
〈u,n(x)〉≥0

〈n(x),u〉 ν(x,u) dσ(u) ∈ [0, 1]. (12)

Here, ν is a point-direction visibility indicator function:

ν(x,u) = 1 if point x ∈ ∂O can be viewed from direc-

tion u ∈ S
2 and ν(x,u) = 0 otherwise.

� �

Figure 4. Ambient Visibility ν̃(x)

Gnomon length is a function of illumination direction

u. It is defined as the total length of the edges that cast

shadows on the object itself under illumination from u.3

� �

Figure 5. Shadowing Edges χ[u] (yellow) under directional illu-

mination u (red), with corresponding image on the right.

For convex object, ν̃(x) = 1 and χ[u] = 0 always hold

for any point x ∈ ∂O and any illumination direction u ∈
S
2. For more general objects, their nonconvexity will be

phrased in terms of the extreme values of these quantities:

Minimum visibility: ν�
.
= inf

x∈∂O
ν̃(x) ≥ 0;

Max. gnomon length: χ�
.
= sup

u∈S2
length (χ[u]) .

Clearly, ν� = 1 and χ� = 0 for convex objects. For general

objects, 1 − ν� and χ� can be interpreted as measures of

nonconvexity. These two quantities capture complementary

information: ν� is localized, depending on properties of the

object at a point, while χ� depends more strongly on the

global geometry. They will play an important role in build-

ing an approximation to the original illumination cone.

3.3. Physical Assumptions
We will introduce hypotheses on the object and the im-

age formation process. Under these hypotheses, we obtain

rigorous bounds for the error ‖ȳ[u]− ȳ[u′]‖2 incurred by

approximating ȳ[u] with ȳ[u′] illuminated from another di-

rection u′.

Object Geometry. Our bounds pertain to triangulated
objects, whose boundary is a union of finitely many ori-

ented triangles:

3For a precise definition of χ[u], please refer to the supplement.
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Definition 3.4 (Triangulated object). We say that O ⊂ R
3

is a triangulated object if for some integer N ,

∂O = ∪N
i=1�i,

�i = conv
{
v
(1)
i ,v

(2)
i ,v

(3)
i

}
, v

(1)
i �= v

(2)
i �= v

(3)
i

�i ∩�j ⊆ {∅} ∪ V ∪ E , ∀ i �= j,

where V and E are sets of vertices and edges respectively,
and each face�i has a unique outward normal ni ∈ S

2.

This geometric assumption captures most of the object

models that are interesting for computer graphics. Notice

that N above can be arbitrarily large – and hence this model

can approximate smooth objects.

Object Reflectance. We consider a Lambertian re-

flectance model. In this model, the object is fully described

by its geometry and its albedo ρ : ∂O → (0, 1], which is

the fraction of incoming light that is reflected at each point

x ∈ ∂O. In the Lambertian model, the key quantity linking

the illumination f and the image y is the outgoing radiance

(radiosity) g : ∂O → R+ at each point x ∈ ∂O. The map

from distant illumination f to outgoing radiance g can be

described in terms of two operators:

The direct illumination operator D: F → L2[∂O] de-

scribes the object’s reflectance after the first bounce of light

from illumination function f(u):

D [f ] (x) =

∫
u

D̄[u](x)f(u)du. (13)

For Lambertian objects,

D̄[u](x) = ρ(x)〈n(x),u〉+ν(x,u). (14)

Here, ν is the same point-direction visibility indicator func-

tion in equation (12).

The interreflection operator T : L2[∂O] → L2[∂O] de-

scribes the how light reflected off the object illuminates the

object itself again:

T [g](x) =
∫
x′∈∂O

ρ(x)

π
g(x′) 〈nx′ ,x−x′〉〈nx,x

′−x〉
‖x−x′‖4 Vx,x′dx′.

Here, V is a point-point visibility indicator function:

Vx,x′ = 1 if point pairs (x,x′) ∈ ∂O × ∂O are mutually

visible and Vx,x′ = 0 otherwise.

For all of the models that we consider, we will show the

operator norm of T will be strictly smaller than one, and so

the operator I−T will be invertible. Under this assumption

the outgoing radiance on the surface of the object can be

written as a convergent series

g[f ] = D [f ] + T D [f ] + T 2D [f ] . . . = (I − T )−1D [f ] .

Sensor Model. We consider a perspective camera, with

a thin lens model that is commonly adopted in computer

vision [11]. Suppose the camera has camera gain γc, focal

length fc and lens diameter dc, and its imaging sensor is

composed of m non-overlapping squares Ii ⊂ R
2 of width

sc, then the value of the i-th pixel is generated by integrating

the radiance over region Ii, hence

yi = Pi[g]
.
=

γc
4

(
dc
fc

)2 ∫
z∈Ii

g(p−1(z))

〈
z

‖z‖2
, e3

〉4

dμ(z).

Here, p represents perspective projection; its inverse maps

an image point to the corresponding point on ∂O. Combin-

ing the expressions for pixels 1 . . .m, we can describe the

image vector y via

y = P[g] = [P1[g], · · · ,Pm[g] ]
T ∈ R

m. (15)

Imaging Operator. As long as ‖T ‖ < 1, the image of O
under point illumination from u is given as follows:

Lemma 3.5. Under our imaging model, with P as in
(15), T as in (15) and D as in (14), we have y[f ] =∫
u
ȳ[u]f(u)du, with ȳ[u] = P(I − T )−1D̄[u].

Under our hypotheses, ȳ[u] is continuous in u. From

Lemma 3.3, if we can approximate these ȳ[u] well, we will

have a good approximation for the whole cone.

3.4. Perturbation Bounds

We will show how our assumptions can be used to con-

trol ‖ȳ[u]− ȳ[u′]‖2 in terms of ‖u− u′‖2. The relation-

ship between ȳ[u] and u obviously depends on detailed

properties of O, which have been quantified as two non-

convexity measurements χ� and ν�. The quantity χ� plays

a key role in controlling the direct illumination operator:

Lemma 3.6 (Perturbation of direct illumination). Suppose
that O is a triangulated object with albedo ρ(x) ∈ (0, 1].
Let D̄[u] ∈ L2[∂O] be as in (14). Then for all u,u′ ∈ S

2,∥∥D̄[u]− D̄[u′]∥∥2

L2 ≤ 2 area(∂O) ‖u− u′‖22
+ 32

√
2 diam (O)χ� ‖u− u′‖2 .

Here, area(∂O) is the area of the object surface and
diam (O) is the diameter of the object.

The first term accounts for continuous changes induced

by 〈n(x),u〉+, and the second term accounts for nons-

mooth changes induced by cast shadows. Though cast

shadow could introduce a sharp change of radiance for

some points, the area of those points is always small when

‖u− u′‖2 is small.4

While the other quantity ν� is important in controlling

the interreflection operator:

Lemma 3.7. The operator T satisfies ‖T ‖ ≤ 1 − ν�. If
ν� > 0, ‖T ‖ < 1, and

∥∥(I − T )−1
∥∥ ≤ ν−1

� .

4If O is convex, the bound simplifies to
∥
∥D̄[u]− D̄[u′]

∥
∥2

L2 ≤
area(∂O) ‖u− u′‖22.
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For convex objects, ν� = 1, and the interreflection term

does not participate in image formation process.

We show how to bound ‖P‖ in the appendix. By putting

these three bounds together, we can obtain a final result:

Theorem 3.8. Under our hypothesis, for any pair of illumi-
nation directions u,u′ ∈ S

2 with ‖u− u′‖2 ≤
√
2,

‖ȳ[u]− ȳ[u′]‖2 ≤ 21/4 βfcsc
lν�

×(
2area(∂O) ‖u− u′‖22 + 32

√
2 diam (O)χ� ‖u− u′‖2

)1/2

.

Here, l = min {〈e3,x〉 | x ∈ O} is the depth of the ob-

ject, and β =
γcd

2
c

4f2
c

is a camera parameter.

Number of Sample Images. To our knowledge, this re-

sult, and in particular the perturbation bound Lemma 3.6 are

new, and could be useful for other problems in vision and

graphics. This bound depends only on properties of the ob-

ject and imaging system that can be known or estimated. In

conjunction with Lemma 3.3, it gives a guideline for choos-

ing the sampling density that guarantees a representation

that works for every illumination f ∈ Fα.

In particular, as ‖u− u′‖2 → 0, Theorem 3.8 implies

that ‖ȳ[u]− ȳ[u′]‖2 is proportional to ‖u− u′‖1/22 . We

can deduce that for ε-approximate guaranteed verification

with ambient illumination level α, it would be enough to

have

n(α, ε) =
const(sensor, object)

(αε)4
(16)

sample images – polynomial in the approximation error ε
and dimension m. This is possible due to the very special

structure of the extreme rays ȳ[u] of Cα. In contrast, gen-

eral cone approximation in R
m requires a number of sam-

ples exponential in m [3].

4. Cone Preserving Complexity Reduction
Although the sample complexity n(α, ε) in (16) is poly-

nomial in ε−1, it can still be very large. This makes work-

ing directly with the dictionary Ā ∈ R
m×n problematic in

practice. Hence, we want to work with a surrogate Â which

enables efficient numerical computations while still belongs

to the set Ω0 for guaranteed verification

Ω0
.
=
{
Â∈Rm×n | δ

(
cone(Ā), cone(Â)

)
≤γ

}
(17)

If Â can be expressed as L+S, where L has rank r and S

has k nonzero entries, product Âx can be computed in time

O((m+ n)r + k), much smaller than O(mn). This model

also fits image under varying illuminations (Figure 6): the

low-rank term captures the smooth variations [1], while cast

shadows are often sparse [21]. The effectiveness of such

model under has been noted, e.g., in [4], and exploited for

robust photometric stereo by [22].

Figure 6. Low Rank + Sparse Decomposition. Left: input Ā.

Middle: low-rank term L. Right: sparse term S.

To build a framework for complexity reduction with

guaranteed approximation quality, we start with:

min
L,S

rank (L) + λ‖S‖0 s.t. L+ S = Â ∈ Ω0.

The nonconvex objective rank and �0-norm can be replaced

by nuclear norm and the �1-norm. The nonconvex domain

Ω0 can be replaced by a convex subset Ω1:

Lemma 4.1. If γ′ ≤ γ
γ+1 , we have Ω1 ⊆ Ω0, where

Ω1
.
=

{
Â | max

x≥0,‖Āx‖2≤1
‖Āx− Âx‖2 ≤ γ′

}
. (18)

Finally, by lifting
(
X = xxT

)
and duality, we can obtain:

Theorem 4.2. Let (L�,S�) solve,

min(L,S,μ) ‖L‖∗ + λ‖S‖1
s.t.

[
I L+S−Ā

(L+S−Ā)
T

γ̄ĀT Ā−μ

]
� 0, μ ≥ 0. (19)

with γ̄ ≤ ( γ
1+γ )

2, then δ(cone(Ā), cone(L� + S�)) ≤ γ.

In contrast to existing matrix decompositions (e.g., [4]),

which aim at statistical estimation, and measure quality of

approximation in Frobenius norm, we guarantee approxi-

mation in Hausdorff distance δ(·, ·). This is precisely the

measure required for worst case verification. We call (19) a

cone-preserving low-rank and sparse decomposition. It can

be computed efficiently using the Linearized Alternating

Direction Method of Multipliers (L-ADMM)([23]), which

converges globally with rate O (1/k) [10].

5. Numerical Experiment
We render images from 3D triangulated object models

following a simplified imaging process y[f ] = PD[f ].
Thus, our simulations include cast shadows, but not inter-

reflection. Camera parameters γc = fc = dc = 1 and

sc = 0.003 are fixed through out our experiments.

Verifying the Perturbation Bound. We consider point

illuminations spaced every π
360 angle in spherical coordi-

nates. The ratio5

ratio = max
u,u′

‖ȳ[u]− ȳ[u′]‖2
PerturbationBound(u,u′)

(20)

is always bounded by 1 for any pair of adjacent u and u′.
Table 1 verifies this for three different object shapes:

5Here, PerturbationBound(u,u′) is the bound in Theorem 3.8.
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Object Vase Face Bunny

ratio 0.1809 0.0302 0.0290

Table 1. Tightness of the bounds. Largest ratio r between experi-

mental observation and theoretical upper bound for three different

objects. The bound holds in all cases, and is tightest for the vase.

Order of Perturbation Bound. We next consider the be-

havior of our bounds when ‖u− u′‖2 → 0. Our bounds

predict that in the worst case, the change in radiance D̄[u]
should be proportional to ‖u− u′‖1/22 . We investigate this

using a toy object composed of two perpendicular surfaces

S1 and S2 shown in Figure 7 with u fixed, and u′ changing

slowly. Figure 7 (right) shows how
∥∥D̄[u′]− D̄[u]∥∥ de-

pends on ‖u− u′‖2. We can see that indeed, both the the-

oretical prediction and the computed value are proportional

to ‖u− u′‖1/22 .6 This suggests that in the worst case, our

theory may be tight up to constant factors.

Toy Object
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Experiment
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Figure 7. Order of Perturbation Bound. Here, in both theory and

simulation the change in D̄[u] is proportional to ‖u− u′‖1/2.

Cone Preserving Complexity Reduction. We demon-

strate the ability of our solution to (19) to reduce the com-

plexity of the representation, while preserving the conic

hull. We start n = 648 images of a face under point il-

lumination, with resolution 40× 40. We solve the low-rank

and sparse cone approximation problem in Theorem 4.2 for

varying cone distances γ. Figure 8 plots the ratio complex-

ity of Â and A, or
(m+n)r+s

mn , where r is the rank of the

recovered low-rank term and s is the number of nonzero

entries in the recovered sparse term. The decomposition re-

duces the complexity in all cases; the reduction becomes

more pronounced as α increases. This is expected, since

the cone Cα becomes smaller as α increases.

Application Sketch. To conceptually verify the advan-

tage of our cone approximation methodology in verifica-

tion under poor illumination conditions, we compare the re-

ceiver operating characteristic (ROC) curves for 5 detection

dictionaries obtained from the same 3D face model under

ambient level α = 0.1: convex cone C1 composed of 2592

6In Figure 7, we rescale the theoretical prediction for clearer compari-
son – our goal is only to show the that the exponent is 1/2.
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Figure 8. Cone Complexity Reduction for different nonconvex

objects under zero ambient level (α = 0) (left) and for face under

different ambient illumination levels (right).

images, corresponds to the ε-approximate of the original

illumination cone; C2 is the γ-approximation (γ = 0.11)

of C1 with L + S structure, whose rank r = 25, number

of nonzero entries s = 52699 and the complexity redu-

tion ratio is 0.0539; C3 is rendered under 19 illumination

directions corresponding to subsets 1 and 2 of Yale B [9]

(roughly, the setting of [21]); C4 is rendered under all 64 il-

lumination directions considered in [9]. Finally, motivated

by [1], we also consider the subspace S spanned by 9 princi-

pal components of C1. Also, we have two more ROC curves

for verification results based on local gradient features, LBP

and HOG respectively: the distances are calculated against

the descriptor for ambient image, which act as the training

dictionary here.
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Figure 9. ROC Curves for different dictionaries, with test images

under uniform random illumination (left) and extreme illumination

(right). The dictionaries are C1: ε approximation, C2: low-rank

and sparse approximation, C3-C4: point illuminations distributed

similar to [9], S: nine-dimensional linear subspace.

Our test data consist of 1000 positive images under 1000

illumination directions and 3000 negative images of 3 other

subjects. We consider two distributions for the illumination

directions – uniform on the sphere (roughly corresponding

to the “average case”), and uniform on the set of u ∈ S
2 for

which −0.1 ≤ u3 ≤ 0.4. Here, the u3 axis is the camera

axis. Arguably, the second set is more challenging. Figure

9 shows the ROC for a simple detection test based on the

distance to the models. As suggested by our theoretical re-

sults, both C1 and C2 perform almost perfectly. The simpler

models C3, C4, S perform better than chance, but still break

down frequently. We view this result as illustrating a trade-

off in illumination representation: uniformly good perfor-

mance is possible, if we can afford a more complex repre-
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sentation. The cone preserving low-rank and sparse decom-

position gives a way to control the complexity of the repre-

sentation, while still maintaining this good performance.

6. Discussion
There are several directions for future work. Although

our cone construction scheme guarantees worst case detec-

tion, the number of samples required is likely to be very

large, in particular for small ε: when ε = 0.01, our theo-

rem requires about 1025 images under ambient level α = 1.

We believe there should exist a simpler representation if we

could take advantage of the structure of shadows.

To use the results in a practical recognition system, we

need to account for variations in object pose as well. This

can be done using local optimization heuristics, or simply

building models at a set of reference poses [9]. It will be

important to have very concise models for each pose; the

complexity reduction by convex programming is one means

of achieving this.

Here, we have considered object instance verification,

rather than object instance recognition. The “yes/no”’ ques-

tion in verification forces us to confront basic questions

about the set of images of the object. Nevertheless, we be-

lieve our methodology will be useful for recognition as well.

For example, one could build models Ĉ for each class and

assigning the test sample to the closest model in angle. For

recognition problems, the formulations and goals for sam-

pling and complexity reduction may also change.

We anticipate three classes of practical application of our

results. The first is in instance detection/recognition us-

ing 3D models and 2D test images. The second is in in-

stance detection/recognition with active acquisition of train-

ing data, e.g., in face recognition for access control [19].

The final, more speculative application is in instance detec-

tion/recognition with large families of objects with similar

gross shape and appearance. In face recognition, learned

models for physical variabilities (albedo and illumination)

are often used in conjunction with deformable models [7].

In many practical settings, this approach mitigates the dif-

ficulties associated with small training datasets – they can

work with as few as one image [20]. Our results could

give a way of learning a set of canonical illumination mod-

els, which capture effects such as cast shadows, and which

could be adapted to each new input subject.
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