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Abstract

Many tensor based algorithms have been proposed for
the study of high dimensional data in a large variety of com-
puter vision and machine learning applications. However,
most of the existing tensor analysis approaches are based
on Frobenius norm, which makes them sensitive to outliers,
because they minimize the sum of squared errors and en-
large the influence of both outliers and large feature noises.
In this paper, we propose a robust Tucker tensor decom-
position model (RTD) to suppress the influence of outliers,
which uses L1-norm loss function. Yet, the optimization on
L1-norm based tensor analysis is much harder than stan-
dard tensor decomposition. In this paper, we propose a sim-
ple and efficient algorithm to solve our RTD model. More-
over, tensor factorization-based image storage needs much
less space than PCA based methods. We carry out extensive
experiments to evaluate the proposed algorithm, and verify
the robustness against image occlusions. Both numerical
and visual results show that our RTD model is consistently
better against the existence of outliers than previous tensor
and PCA methods.

1. Introduction

Image or video storage and denoising problems are two
important research topics in computer vision area, espe-
cially with the development of online social media, which
provides tons of images and videos everyday. In a typi-
cal image storage problem, an image is represented as a
1-d long feature vector, and then this long vector denotes
one data point in a high dimensional space. But as we all
know, an image can be naturally represented as a 2-d ma-
trix, with each element denoting the feature value on that
specific spot. The 1-d vector denotation of an image makes
it convenient for subspace learning, such as principal com-
ponent analysis (PCA)[19] and linear discriminant analysis
(LDA)[2] used in face recognition area.

Recently, some of other subspace learning algorithms
applied on 1-d vector data are studied, such as locality pre-

serving projection (LPP)[10] and localized linear models
(LLM)[7], which are proven to be efficient. However, the
1-d vector denotation strategy as a whole ignores the neigh-
borhood feature information within one image, while 2-d
matrix denotation retains the important spatial relationship
between features within one image.

Therefore, a lot of tensor decomposition techniques are
studied in computer vision applications. For example,
Shashua and Levine [16] adopted rank-one decomposi-
tion to represent images, which was described in detail in
[18]. Yang et al. [22] introduced a two dimensional PCA
(2DPCA), in which, one-side low-rank approximation was
applied. Generalized Low Rank Approximation of Matri-
ces (GLRAM) was proposed by Ye et al. [23], and the
method projected the original images onto one two dimen-
sional space. Ding and Ye proposed a two dimensional sin-
gular value decomposition (2DSVD) [6], which computes
principal eigenvectors of row-row and column-column co-
variance matrices. Other tensor decomposition methods are
also proposed and some of them are proven to be equivalent
to 2DSVD and GLRAM in [11]. High order singular value
decomposition (HOSVD) [14] were proposed for higher di-
mensional tensor by Vasilescu and Terzopoulos [20].

In above tensor analysis algorithms, an image is denoted
by a 2-d matrix or second order tensor as itself, which re-
tains the neighborhood information within the image itself,
and then a set of images can be denoted by a third-order
tensor. They minimize the sum of squared errors, which
is known as frobenious norm, in which large errors due to
outliers and feature noises such as occlusion, after being
squared, dominate the error function and force the low rank
approximation to concentrate on these few data points and
features, while nearly ignoring most of other data points.

Over the years, there are many different approaches pro-
posed to solve this problem both on 1-d vector data and 2-d
matrix data. [24] [17] [8] [1] [4] [12] [13] [9] [5]. The ap-
proach using pure L1-norm is used widely because it offers
an simple and elegant formulation [1] [4] [12] [9] to sup-
press the impact coming from noisy data or features.

A difficulty of pure L1-based methods is that the opti-
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mization tends to be hard. Several computational methods
have been proposed [1] [4] [12] [9]. These methods are ei-
ther complicated or difficult to scale to large problems.

In this paper, we propose a robust Tucker tensor de-
composition (RTD) model to deal with images occluded by
noisy information, and also propose a simple yet compu-
tationally efficient algorithm to solve the L1-norm based
Tucker tensor decomposition optimization. This method
also provides some insights to the optimization problem
such as the Lagrangian multiplier and KKT condition. We
also carry out extensive experiments in face recognition,
and verify the robustness of the proposed method to image
occlusions. Both numerical and visual results demonstrate
the effectiveness of our proposed method.

2. Robust Tucker Tensor Decomposition (RTD)

Standard Tucker tensor decomposition [14] uses recon-
structed tensor Y to approximate the original tensor X ,

Yijk =
P∑

p=1

Q∑
q=1

R∑
r=1

UipVjqWkrSpqr (1)

where Y is a third order tensor, Y ∈ �ni×nj×nk , U ∈
�ni×P , V ∈ �nj×Q, W ∈ �nk×R, S ∈ �P×Q×R is a core
tensor, which couples different 3rd order multi-linear poly-
nomials. Therefore, mathematically, Y can be expressed
as the following (Eq.(2)), which simplifies the tensor con-
structing expressions in next sections.

Y = U ⊗1 V ⊗2 W ⊗3 S (2)

Tucker tensor decomposition has the following cost func-
tion [18],

min
U,V,W,S

‖X − Y ‖2F =

ni∑
i=1

nj∑
j=1

nk∑
k=1

(
Xijk − Yijk

)2

s.t. UTU = I, V TV = I,WTW = I

(3)

It is well-known that the solution to the above optimiza-
tion is given by high order singular value decomposition
(HOSVD) [14], which will be introduced in the algorithm
part. As we can see, the standard Tucker tensor decomposi-
tion uses Frobenius norm to decompose the original tensor.
Frobenius norm is known for being sensitive to outliers and
feature noises, because it sums the squared errors. While,
L1-norm just sums the absolute value of error, which re-
duces the influence of the outliers comparing to the Frobe-
nius norm. So the more robust against outlier version of
Tucker tensor decomposition is formulated using L1-norm.
L1-norm of a third order tensor A with size ni×nj ×nk is
defined as ‖A‖1 =

∑ni

i=1

∑nj

j=1

∑nk

k=1 |aijk|. Therefore,

the robust Tucker tensor decomposition (RTD) is formu-
lated as,

min
U,V,W,S

‖X − Y ‖1 =

ni∑
i=1

nj∑
j=1

nk∑
k=1

∣∣∣Xijk − Yijk

∣∣∣
s.t. UTU = I, V TV = I,WTW = I

(4)

Illustration. Before going any further, we want to give
a glance at the denoising effect by RTD first. Figure 1
and Figure 2 illustrate the reconstructed effect on AT&T
data set, with existence of two different occlusion strate-
gies, which will be explained in details in the experiment
part. In both figures, images of the second row represent
the reconstructed images by RTD and those of the fourth
row represent images reconstructed by Tucker tensor de-
composition. In both noise and corruption cases, Robust
Tucker decomposition gives clearly better reconstruction.

3. Efficient Algorithm for Robust Tucker Ten-
sor Decomposition

The standard Tucker decomposition can be efficiently
solved using the HOSVD algorithm [14]. In this paper, we
propose an efficient algorithm to solve robust Tucker tensor
decomposition. We employ the Augmented Lagrange Mul-
tiplier (ALM) method [3] to solve this problem. ALM has
been successfully used in other L1 related problems [21].

One important finding of this paper is that ALM is ex-
tremely well suited to this RTD model. The algorithm itera-
tively solves two sub-problems: One is a simplified LASSO
(see Eq.(7)) with simple exact solution; Another is a stan-
dard Tucker tensor decomposition of Eq.(3). This enables
us to utilize existing software to efficiently solve the RTD.
Outline of the algorithm. We first rewrite the objec-
tive function of robust Tucker tensor decomposition equiv-
alently as

min
U,V,W,S,E

‖E‖1
s.t. E = X − U ⊗1 V ⊗2 W ⊗3 S

UTU = I, V TV = I,WTW = I

(5)

Now we use ALM approach by enforcing the equality
constraint E = X − U ⊗1 V ⊗2 W ⊗3 S using Lagrange
multipliers (matrix Λ) and quadratic penalty. Then ALM
becomes to solve the following problem,

min
E,U,V,W,S

‖E‖1 + 〈Λ, X − U ⊗1 V ⊗2 W ⊗3 S − E〉

+
μ

2
‖X − U ⊗1 V ⊗2 W ⊗3 S − E‖2F

s.t. UTU = I, V TV = I,WTW = I

(6)

where scalar μ is the penalty parameter, 〈P,Q〉 is defined
as

∑
ijk PijkQijk .
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Figure 1. Samples of occluded images and reconstructed images on AT&T face data. First row is the input occluded images; Second row
is from RTD; Third row is from L1PCA; Fourth row is from Tucker decomposition; Fifth row is from PCA.

The ALM is an iteratively updating algorithm. There are
two major parts, solving the sub-problems and updating pa-
rameters, which will be presented in the following sections.

3.1. Solving the Sub-optimization Problems

The key step of the algorithm is solving the two sub-
programs of Eq.(6) for each set of parameter values of Λ, μ.
Fortunately, this can be solved in closed form solutions for
E and group of (U, V,W, S).
A. Solve for E. First, we solve E while fixing U , V , W and
S. From Eq.(6), the objective function becomes

min
E

‖E‖1 + μ

2
‖E − P‖2F (7)

where P is a constant matrix independent of E:

P = X − U ⊗1 V ⊗2 W ⊗3 S +
Λ

μ
. (8)

This problem has closed form solution

E∗ijk = sign(Pijk)max(|Pijk | − 1/μ, 0). (9)

B. Solve for (U, V,W, S). In this step, we solve U , V , W
and S together while fixing E. From Eq.(6), the objective
function becomes

min
U,V,W,S

μ

2
||Q− U ⊗1 V ⊗2 W ⊗3 S||2F ,

s.t. UTU = I, V TV = I,WTW = I
(10)

where

Q = X − E +
A

μ
; (11)

This is exactly the usual Tucker tensor decomposition.
This is solved by the known HOSVD algorithm [14].
HOSVD is an iterative algorithm. Given initial guess of
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Figure 2. Samples of type 2 (mixed) occluded images and reconstructed images using different methods of AT&T data set. The first row
is from input occluded images; the second row is from RTDreconstructed images; the third row is from L1 PCA; the fourth row is from
Tucker tensor; and the fifth row is from PCA. The cross corruptions can only be removed by RTD.

U, V,W we update U, V,W until convergence.
U is given by the P eigenvectors with largest eigenvalues
of F , where

Fii′ =
∑

jj′kk′
QijkQi′j′k′(V V T )jj′ (WWT )kk′ (12)

V is given by the Q eigenvectors with largest eigenvalues
of G, where

Gjj′ =
∑
ii′kk′

QijkQi′j′k′ (UUT )ii′ (WWT )kk′ (13)

W is given by the R eigenvectors with largest eigenvalues
of H , where

Hkk′ =
∑
jj′ii′

QijkQi′j′k′(V V T )jj′ (UUT )ii′ . (14)

These steps are repeated until convergence. After
(U∗, V ∗,W ∗) are obtained, S is given by

Spqr =
∑
ijk

QijkUipVjqWkr . (15)

3.2. Updating Parameters

In each iteration of ALM, after obtaining consistent E
and (U, V,W, S), the parameters Λ and μ are updated as the
following

Λ ⇐ Λ + μ(X − U ⊗1 V ⊗2 W ⊗3 S − E) (16)

μ ⇐ μρ (17)

where ρ > 1 is a constant.
The complete algorithm is described in Algorithm 1.
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Input: X , P , Q, R
Output: U, V,W, S
Initialize μ = 1/||X ||F , ρ = 1.01, U0, V0,W0

repeat
Compute E using Eq.(9)
Compute U, V,W, S using Eq.(12 - 15)
Λ = Λ+ μ(X − U ⊗1 V ⊗2 W ⊗3 S − E)
μ = min(μρ, 1010)

until Converge

Algorithm 1: RTD Algorithm

We initialize (U, V,W ) either by random or by the solu-
tion to the standard Tucker decomposition. In all these cases
the ALM algorithm did converge. The converged solutions
from different initialization are very close to each other[15],
and there are no visible differences in the reconstructed im-
ages.
Convergence Analysis. By taking derivative of the La-
grangian function w.r.t. E, we obtain the Karush-Kuhn-
Tucker (KKT) condition,

Λijk =

{
sign(Eijk) if Eijk 	= 0

∂|Eijk| if Eijk = 0
(18)

where ∂|Eijk | ∈ [−1, 1] is the subgradient of function
f(x) = |x|.

here we view Λijk as Lagrangian multipliers. We now
verify the KKT condition of our algorithm. The follow-
ing are examples from AT&T dataset, whose tensor size is
56x46x400. More detailed dataset information will be in-
troduced in the experiment part.

At convergence, the first 25 elements of computed Eijk
are,

E =

⎛
⎜⎜⎜⎝

0.0012 −0.0003 0.0000 −0.0005 0
0.0005 −0.0005 0 −0.0007 −0.0011
−0.0001 0 −0.0005 −0.0008 0
−0.0002 0 −0.0015 −0.0001 0

0 0 −0.0012 0 0.0001

⎞
⎟⎟⎟⎠

The corresponding 25 elements Λijk are

Λ =

⎛
⎜⎜⎜⎝

1.0000 −1.0000 1.0000 −1.0000 0.2806
1.0000 −1.0000 −0.8213 −1.0000 −1.0000
−1.0000 −0.5164 −1.0000 −1.0000 0.3976
−1.0000 −0.2643 −1.0000 −1.0000 −0.4540
0.0630 0.1762 −1.0000 0.3274 1.0000

⎞
⎟⎟⎟⎠

We see that the above KKT condition are satisfied for ev-
ery elements. When Eijk is nonzero, Λijk is its sign. When
Eijk is zero, Λijk is its subgradient (a value in [−1, 1]).

4. Efficient Algorithm for L1-PCA

In standard computer vision problems, each image is
converted to a vector and a set of images is represented by
a matrix. Here PCA is mostly wide used. The advantage

of tensor approach is that each image retains its 2D form in
tensor representation and thus tensor analysis retains more
information on image collections.

We need to compare the tensor approaches with matrix
approaches. Thus we implement the algorithm for comput-
ing L1PCA. L1PCA is formulated as the following

min
U,V

‖X − UV ‖1 =

n∑
j=1

p∑
i=1

|(X − UV )ij |, (19)

where X = (x1, · · · , xn) contain n images. X ∈ �p×n

where p = rc for r-by-c images. The factor matrices U, V
have sizes of U ∈ �p×k, V ∈ �k×n.
Similarly with solving RTD, Eq.(19) can be rewritten equiv-
alently as

min
E,U,V

‖E‖1, s.t. E = X − UV, (20)

ALM solves a sequence of sub-problems

min
E,U,V

‖E‖1 + 〈A,X − UV − E〉+ μ

2
||X − UV − E||2F

(21)

where matrix A is the Lagrange multipliers.
A. Solve for E. First, we solve E while fixing U and V .
From Eq.(21), the objective function becomes

min
E

‖E‖1 + μ

2
||E − (X − UV +

A

μ
)||2F (22)

This problem has closed form solution:

E∗ij = sign(Pij)(|Pij |−1/μ)+, P = X−UV +
A

μ
. (23)

B. Solve for U, V . Next we solve U and V together while
fixing E. From Eq.(21), the objective function becomes

min
U,V

〈A,X − UV − E〉+ μ

2
||X − UV − E||2F . (24)

Which is is equivalent to

min
U,V

μ

2
||Q− UV ||2F , Q = X − E +

A

μ
; (25)

The solution is given by standard PCA. Denote the singular
value decomposition (SVD) of Q as

Q = FΣGT (26)

Only first k largest singular values and associated singular
vectors are needed. Then the solution of U, V are given by

U = Fk,

V = ΣkG
T
k

(27)

In each iteration of ALM, after obtaining consistent E and
(U, V ), the parameters A and μ are updated as the following

A ⇐ A+ μ(X − UV − E) (28)

μ ⇐ μρ (29)

where ρ > 1 is a constant.
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5. Experiments

In this section, three benchmark face databases AT&T,
YALE and CMU PIE are used to evaluate the effectiveness
of our proposed RTD tensor factorization approach.

5.1. Data Description

The properties of the three data sets we used are summa-
rized in Table 1, and the detailed information of each data
set is given as the following.

Table 1. Description of Data sets

Data set #images nk #Dimensions ni × nj #Class K
AT&T 400 56× 46 40
YALE 1984 48× 42 31
CMU PIE 680 32× 32 68

Table 2. Performance Comparison (Storage, Noise-free Error and
Classification Accuracy) on AT&T data with Block Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 1,030,400 4.7269 × 104 0.6050
RTD 19,672 3.0457 × 104 0.7125
L1PCA 119,040 3.1435 × 104 0.7025
Standard Tensor 19,672 3.3834 × 104 0.6775
Standard PCA 119,040 3.4959 × 104 0.6675

Table 3. Performance Comparison(Storage, Noise-free Error and
Classification Accuracy) on Yale data with Block Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 3,999,744 6.9070 × 104 0.3766
RTD 64,204 4.3685 × 104 0.3896
L1PCA 124,000 4.6886 × 104 0.3311
Standard Tensor 64,204 4.8164 × 104 0.3831
Standard PCA 124,000 5.0806 × 104 0.2989

AT&T: The AT&T face data contains 400 upright face
images of 40 individuals, collected by AT&T Laboratories
Cambridge. Each image is resized to 56x46 pixels in this
experiment.

YALE: There are totally 38 classes (10 subjects in origi-
nal database with 28 subjects in the extended database) un-
der 576 viewing conditions (9 poses with 64 different illu-
mination conditions). 64 images in different illumination
conditions from 31 classes are selected for our experiment,
so there are totally 1984 images.

Table 4. Performance Comparison(Storage, Noise-free Error and
Classification Accuracy) on CMU PIE data with Block Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 696,320 2.4501 × 104 0.4735
RTD 47,840 0.8578 × 104 0.5294
L1PCA 115,872 1.0388 × 104 0.5279
Standard Tensor 47,840 1.7610 × 104 0.4926
Standard PCA 115,872 1.8419 × 104 0.4882

Table 5. Performance Comparison(Storage, Noise-free Error and
Classification Accuracy) on AT&T data with Mixed Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 1,030,400 2.9635 × 104 0.8725
RTD 19,672 1.8536 × 104 0.9450
L1PCA 119,040 1.9924 × 104 0.9325
Standard Tensor 19,672 2.4942 × 104 0.8875
Standard PCA 119,040 2.5723 × 104 0.8800

Table 6. Performance Comparison(Storage, Noise-free Error and
Classification Accuracy) on Yale data with Mixed Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 3,999,744 4.5618 × 104 0.3725
RTD 64,204 3.3482 × 104 0.4134
L1PCA 124,000 3.6471 × 104 0.3916
Standard Tensor 64,204 4.1843 × 104 0.3678
Standard PCA 124,000 4.0981 × 104 0.3714

Table 7. Performance Comparison(Storage, Noise-free Error and
Classification Accuracy) on CMU PIE data with Mixed Occlusion

Methods Storage Noise-free Error Class ACC
Corrupted X 696,320 2.4532 × 104 0.4562
RTD 47,840 1.7856 × 104 0.5332
L1PCA 115,872 1.8442 × 104 0.5106
Standard Tensor 47,840 2.1427 × 104 0.4762
Standard PCA 115,872 2.1019 × 104 0.4632

CMU PIE: CMU PIE is a face database of 41,368 im-
ages of 68 people, collected by Carnegie Mellon Robotics
Institute between October and December 2000. Each im-
age is resized into 32x32 pixels in our experiment. We ran-
domly select 10 images from each class with different com-
binations of pose, face expression and illumination condi-
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tion.

5.2. Corrupted Images

For evaluation purpose, we generate occluded images
from the above three image data sets. One added advantage
of this approach is that we can compare the reconstructed
images with the original uncorrupt images to assess the ef-
fectiveness of removing the corruption (occlusion).

We use two type of occlusions added to the original input
images to evaluate the effectiveness of proposed RTD ten-
sor method against outliers. First, square block occlusions
with different size are added. The occlusion is generated as
the following, given the size of occlusion d, we randomly
pick up the d× d block position for each image, and we set
pixels in this d × d area to zero. There are some examples
of occluded images using this method in Figure 1.

Second, mixed occlusions with 3 different corrupting
methods are added to the original images. First corruption
methods are called cross occlusions, and the cross has spec-
ified length l and width w. For each class, we randomly
select m images to add cross occlusions. We also randomly
select the position of the cross, and set the pixels in the cross
to the average pixel value of the whole data set. To make the
occlusions realistic and diversified, for each class, on the ba-
sis of cross occlusions, we randomly select m images to add
square block occlusions introduced above. In the end, rect-
angular occlusions are added. Similarly, for each class, we
randomly select m images to add rectangular occlusions.
We randomly set the sizes of each rectangle within a per-
mitted range [a, b], and within each rectangle, some of the
pixels are set to 0, and the rest are set to 1. The first row in
Figure 2 demonstrates this mixed occlusion method.

Figure 1 and Figure 2 only show 1 person of 400 people
in AT&T data set due to space limitation. For AT&T data
set, an 8×8 occlusion is added to every image of each class
in the first type of occlusion. For the second type of occlu-
sion, within each class of images, we first randomly select
m = 2 images to add the cross, and for each selected image
the length of cross is l = 22 and width is w = 3. Second,
we randomly select m = 2 images to add the square block.
Third, we randomly select m = 2 images to add the rect-
angle, and for each added rectangle, the sizes are random
within a ranger of [a, b] = [4, 10]. Similarly, for Yaleb data
set, d = 8 and l = 20, w = 3, m = 12, [a, b] = [4, 10].
For CMU PIE data set, we set d = 6 and l = 15, w = 3,
m = 3, [a, b] = [3, 10].

5.3. Experiment Results

In this section, we compare the performance of our
RTD method with standard Tucker tensor method, L1-norm
PCA method (L1PCA) and standard PCA method at storage
space, the noise reduction effect and classification accuracy.

One of the biggest advantage of our proposed RTD

method is to save image storage space, because for Tucker
tensor decomposition methods, to reconstruct the images,
we only need to store U , V and W , the core tensor S can
be calculated using U , V , W . The sizes of U , V , W are
ni ×P , nj ×Q, nk ×R, respectively. So the storage space
for our L1-norm tensor are

ni × P + nj ×Q+ nk ×R

While for PCA based methods, U and V need to be stored,
and the sizes of U and V are p × k and k × n respectively,
and here p = ni × nj and n = nk. So the storage space for
PCA based methods would be

ni × nj × k + k × nk

The parameters we used in our experiment for each data set
is given in Table 8. Accordingly, the needed storage space
for each method on every data sets can be calculated, which
are given in Table 2, 3, 4. Noise-free Reconstruction Er-

Table 8. Parameters of different Data sets
Data set P ×Q×R k
AT&T 36× 36× 40 40
YALE 30× 30× 31 31
CMU PIE 25× 25× 68 68

ror. Let X be the original images and O be the occlusion.
Then X + O are the input data to tensor decompositions
and PCA. Let Y be the reconstructed images from Eq.(1).
All tensor analysis and PCA minimize ‖(X + O) − Y ‖F .
However, our goal is to recover the true, noise-free im-
ages. For occluded data, we take the original images as
the approximation of the true noise-free images, and con-
sider ‖X − Y ‖F as a measure of the ability to recover the
noise-free images. We thus call ‖X−Y ‖F as the noise-free
reconstruction error. It can be computed for PCA and tensor
decompositions.

The noise-free error for each method is listed in Table 2,
3, 4 for the first type of occlusion and Table 5, 6, 7 for the
second type of occlusion. We can see (1) the noise-free er-
rors for RTD and L1PCA are always smaller than those for
Tucker decomposition and PCA; This shows the effective-
ness of L1 norm for removing corruptions. (2) Noise-free
errors for RTD are always smaller than those for L1PCA;
This demonstrates the advantage of Tensor decomposition
approach.

A byproduct of image denoising is improved classifica-
tion accuracy. Here we perform classification as the demon-
stration and evaluation of denoising effectiveness of the pro-
posed RTD. We use k nearest neighbor (kNN) (we use 1NN
here) as the multi-class classifier. Classification accuracy
on occluded image data are listed in Table 2, 3, 4 for the
first type of occlusion and Table 5, 6, 7 for the second type
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of occlusion. All classification results are based on 2-fold
cross-validation. For each class, we randomly split the im-
ages into 2 parts, and then we set each of the two parts as
training set and the rest part as testing set. The reported
accuracy is the average of 100 times of cross validations.
5.4. Reconstruction Images and Discussion

Figure 1 and Figure 2 demonstrate the sample occluded
images and the corresponding reconstructed images from
different methods. As we can see, the reconstructed images
from our RTD method reduce the occlusion more success-
fully than other methods, which is also shown by the noise-
free error in Table 2, 3, 4, 5, 6, 7, the noise-free error of
our methods are smaller than other methods. Our method
needs far less storage space than PCA based methods, for
example, the storage for PCA based method is 119,040 for
AT&T data set, while for our RTD method, the storage is
only 19,672, that is to say, PCA based methods need 6 times
bigger storage than tensor methods do on AT&T data set.
Classification accuracies on the reconstructed images from
RTD method are higher in most cases, which demonstrated
the effectiveness our method.

6. Conclusion

In this paper, we propose an L1-norm based robust
Tucker tensor decomposition (RTD) method, which is ef-
fective for correcting corrupted images. Our method re-
quires far less storage space than PCA based methods. We
also propose a computationally efficient algorithm to solve
the proposed RTD model. Extensive experiments are car-
ried out to evaluate the proposed RTD. Both numerical and
visual results are consistently better for images with outliers
or noisy features than standard PCA, L1PCA and standard
Tucker tensor decomposition methods. This validates the
effectiveness of the proposed RTD.
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