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Abstract

One of the most challenging task in face recognition is
to identify people with varied poses. Namely, the test faces
have significantly different poses compared with the reg-
istered faces. In this paper, we propose a high-level fea-
ture learning scheme to extract pose-invariant identity fea-
ture for face recognition. First, we build a single-hidden-
layer neural network with sparse constraint, to extract pose-
invariant feature in a supervised fashion. Second, we fur-
ther enhance the discriminative capability of the proposed
feature by using multiple random faces as the target values
for multiple encoders. By enforcing the target values to be
unique for input faces over different poses, the learned high-
level feature that is represented by the neurons in the hidden
layer is pose free and only relevant to the identity informa-
tion. Finally, we conduct face identification on CMU Multi-
PIE, and verification on Labeled Faces in the Wild (LFW)
databases, where identification rank-1 accuracy and face
verification accuracy with ROC curve are reported. These
experiments demonstrate that our model is superior to oth-
er state-of-the-art approaches on handling pose variations.

1. Introduction
Human facial images play important roles in security

issues and social media analytics, where many real-world

applications have been successfully developed during the

past decades, e.g., face identification and verification, fa-

cial expression recognition, facial illumination simulation

and removing, aging simulation and age estimation, under

either controlled lab environment, or unrestricted environ-

ment. However, in both environments, pose is one of the

most critical problems since faces in 2D images with dif-

ferent poses are significantly different from each other even

∗indicates equal contributions.

...

...

Figure 1. Framework of random faces guided sparse many-to-one

encoder. Each unique “ID” has many facial images in different

poses. We feed them into the single-hidden-layer neural network,

i.e., the encoder, and set the target values to be random faces (RF).

We design D encoders and therefore have D random faces for

each ID. The concatenated nodes in hidden layers compose the

high-level pose-invariant feature (red nodes in the dash area).

though they are of the same identity.

For most of the state-of-the-art face recognition algo-

rithms, finding correspondence or face alignment is the first

yet the most essential step because all experiments based

on comparisons between registered and test faces need ei-

ther pixel-wise or semantic level alignment. To address the

pose variation, two kinds of alignments are typically used

in applications, i.e., appearance level, feature level. Appar-

ently, appearance level alignment explicitly transforms the

test face to the pose of the registered face, and then con-

ducts any suitable face recognition algorithms; feature level

alignment works in the feature space by projecting all faces

to the discriminative identity feature space, regardless of the

pose.
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Following the line of feature level alignment, in this pa-

per, we aim to learn a high-level pose-invariant and discrim-

inative identity feature. The benefits are twofold. First, this

high-level pose free feature reduces the impact of diverse

poses in the feature space. Second, the feature encodes both

common and private attributes of faces, thus mitigating the

over-fitting and bad extrapolation.

Our feature learning scheme is based on the following

observations: (1) Facial features from different views are

transferable, by either linear or non-linear methods. For

example, we can project side-view facial feature to front-

view facial feature, by a transform function. (2) Faces share

similar structures even though their identities are different.

Therefore, good facial feature should keep its common at-

tributes as well as private ones. Absence of either one leads

to either over-fitting or weak discriminant. (3) Identity is

a unique label for each subject, but identity feature could

be any vector, with arbitrary length. For example, we use

“1” to label the first subject, but its identity feature could

be either vector x1 or x2, or concatenated vector [x1;x2] as

long as they are not identical with other subjects’ identity

feature. And complex identity feature allows us to encode

both its private and common attributes.

Based on above observations, we propose a novel ap-

proach called “random faces guided sparse many-to-one en-

coder” (RF-SME) in this paper, which is outlined in Fig-

ure 1:

First, we build a single-hidden-layer neural network (S-

NN) with sparse constraint that can map faces in different

poses to the unique one (many-to-one), i.e., frontal face,

which guides the supervised feature learning in the hidden

layer. Since the output of this S-NN only relies on the value

in the hidden layer, neurons in the hidden layer are poten-

tially good representations for pose free identity feature.

Second, we enhance the discriminative power of the pro-

posed identity feature by assigning random faces to the tar-

get values of S-NN. In fact, what we need for target val-

ues in S-NN is nothing but an identity representation. In-

troducing multiple random faces allows us to learn multi-

ple encoders which randomly encode private or common

attributes to the identity feature.

Third, we demonstrate the effectiveness of the proposed

method by facial images over different poses captured in

the controlled environment (Multi-PIE) and facial images

in the real-world (LFW) over different poses, mixed with

other impact factors, such as illuminations, expressions.

1.1. Related Work

There are two lines in the related work: (1) face feature

representation, (2) pose-invariant face recognition, which

are highly related to the proposed model in this paper.

In general, face feature representation contains two cate-

gories, namely, holistic feature, and local descriptor. Holis-

tic feature uses the entire face region as the input, followed

by certain operations, e.g., linear projection [28, 3, 10], to

extract discriminative features. On the other hand, local de-

scriptor [17, 21, 8] relies on the hand-craft coding in the lo-

cal patch and assembles these features to form the final rep-

resentation of the entire face. A new trend in feature learn-

ing recently proposes to use statistical learning for more

discriminative and compatible feature [7, 4, 24]. Most of

these feature extraction processes are described as an ap-

pearance honestly reflected low-level image pre-treatment.

Our method is also based on the statistical learning model,

but bears the semantic meaning “many-to-one” as well that

characterizes the high-level pose free feature.

Other than general face feature representation, there are

also a group of pose specified face recognition algorithm-

s. Tied Factor Analysis [23] is a probabilistic approach to-

wards pose-invariant face recognition. The core idea of this

method is to compute identity feature regardless of poses

through a group of angle specified linear functions. In ad-

dition to linear transform, Multi-view Discriminant Analy-

sis (MvDA) [13] explicitly considers the discriminant infor-

mation and jointly learns multiple view-specific transform-

s by optimizing a generalized Rayleigh quotient for object

recognition. Recently, Coupled Latent Space Discrimina-

tive Analysis (CLSDA) [26] has been proposed to tackle

the multiple pose face recognition. The model integrates

Partial Least Squares (PLS) [29], Bilinear Model (BLM)

and Canonical Correlational Analysis (CCA) [11] into one

framework, and considers small pose errors in the latent s-

pace, therefore enhancing the performance. Different from

theirs, our approach generates the identity feature directly

through a non-linear mapping and this identity feature can

be expanded for the purpose of discriminant.

Researchers also adopt local patch based methods to

tackle the pose problem [1, 14]. In [1], authors present an

alignment strategy called “stack flow” that discovers view-

point induced spatial deformities undergone by a face on the

local patch level. They learn the relationship of face images

between every two adjacent angle bin to form an incremen-

tal wrapping knowledge. By this knowledge, virtual frontal

faces can be generated from non-frontal faces through one

or multiple times of face wrapping, and recognition can be

done on the same frontal pose images by off-the-shelf ap-

proaches. [14] further develops the former local patch based

approach by considering maximizing intra-individual corre-

lations. Compared with the previous method, it is more sta-

ble and compact, and reasonably increases the performance.

3D face model has been proposed for pose-invariant face

recognition [2, 22, 16]. Pose Normalization [2] creates a

novel match scheme that for each gallery and probe im-

age, it generates a virtual frontal face, and the similarity

between probe and gallery images could be evaluated on

the same frontal pose condition. 3D Generic Elastic Mod-
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el [22] learns a 3D generic elastic model from 3D face

images. With 3D models, they synthesize a group of vir-

tual face images in different poses for each gallery image

in frontal pose. The recognition process first estimates the

pose angle of the probe face image, and then performs face

matching with virtual gallery face images of the same pose.

Morphable Displacement Field (MDF) [16] also consider-

s generating virtual faces to match the gallery. By using a

convex combination of a number of template displacemen-

t fields, MDF guarantees both global conformity and local

consistency. In brief, above methods heavily rely on auto-

matically and robustly fitting a 3D face model to a 2D input

image, which is easily affected by factors such as illumina-

tion and expression.

2. Pose-Invariant Feature Learning
We detail the proposed framework RF-SME here, which

comprises two components, namely, “sparse many-to-one

encoder” (SME) and “random faces” (RF). Sparse many-

to-one encoder takes responsibility for mapping differen-

t poses to the frontal face, therefore yielding a high-level

pose free feature in the hidden layer contained in the S-

NN. On the other hand, random faces provide many options

for the output of S-NN, and artificially produce many ran-

dom shared structures between two identities. Consequent-

ly, it reduces the over-fitting and enhances the discrimina-

tive power of the model as well. The entire framework is

illustrated in Figure 1.

2.1. Sparse Many-to-One Encoder

The proposed “sparse many-to-one encoder” (SME) is

based on a single-hidden-layer neural network (S-NN)

(Figure 1). Different from the traditional S-NN learning

scheme, we use this structure to extract discriminative fea-

tures by following a many-to-one mapping. Specifically, in

our problem, the input of the SME is training facial images

over different poses (many), while the target values are fa-

cial images of the same identity as the input but with frontal

pose (one). The basic idea of this encoder is that regardless

of the input pose, we encourage the output of this single-

hidden-layer neural network to be close to the frontal pose

facial image of the same identity. We detail this idea in the

following part.

Suppose there are I subjects, each of which has J differ-

ent poses. We use xj
i ∈ R

n to index the input feature of i-th
person’s j-th pose. We first centralize each feature by the

mean feature of a specific pose over all subjects, namely,

xj
i = xj

i − xj , where xj =
1

I

I∑
i=1

xj
i . (1)

In the feed-forward neural network, the element in the hid-

den layer is essentially the output of a weight function fol-

lowed by an activation. In our model, it functions as a

pose-invariant high-level feature representation, given the

assumption that images of the same subject over differ-

ent poses share the same high-level feature representation

τi ∈ R
m(m � n).

Suppose the transformation function for “input→hidden

layer” is f1, then the above feed-forward process can be

expressed in:

τi = f1(x
j
i ). (2)

Note we ignore superscript j in τ since it is pose free. Sim-

ilarly, we construct another transform function f2 for “hid-

den layer→ouput”, which maps the pose-invariant high-

level feature to the hypothesis output h,

h(xj
i ) = f2(τi) = f2(f1(x

j
i )), (3)

where both f1 and f2 can be expressed as a weight function

followed by a non-linear activation function, namely,

{
f1(x) = σ(W1x+ b1),
f2(x) = σ(W2x+ b2),

(4)

where W1 ∈ R
m×n, W2 ∈ R

k×m, b1 ∈ R
m, b2 ∈ R

k,

and σ is the sigmoid function which has the form σ(x) =
(1 + e−x)−1.

In traditional S-NN model, the target values are ground

truth labels of training data. The objective function of N-

N encourages hypothesis output to be close to these label-

s. However, in our model, we intentionally set the target

values as the frontal pose facial images, i.e., h(xj
i ) ≈ x1

i

(frontal pose face is indexed as j = 1). Since the neurons

in the hidden layer are basis for the output layer, our con-

figuration of the target values enforces that the hidden layer

has to be a pose-invariant high-level representation for the

input.

We formulate objective function of the proposed encoder

as:

min
W1,b1,W2,b2

1

2N

∑
i,j

‖x1
i − h(xj

i )‖22, (5)

where N = I × J is the total number of training images.

This is a typical one-half square-loss function, that given the

formulation of hypothesis h, can be solved via unconstraint

optimization method.

However, due to the high flexibility of the neural net-

work, the model in Eq. (5) easily gets over-fitting. A regu-

larization term is often used on the weight W to overcome

this issue. In this paper, inspired by the comparisons on reg-

ularization terms for regression problem [18], we impose l1
norm on the weights W1 and W2 to promote them to be

sparse. Reasons for sparsity are twofold. First, not all fea-

tures are equally important, especially for faces that have
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(A) (B)

feature feature1 feature2 featureD

Figure 2. Learning feature with random faces. Compared with us-

ing a single frontal face as the target value in (A), random faces

in (B) simulate the overlap facial parts between different individ-

uals by randomness. The feature generated by hidden layer may

contain more discriminative identity information.

significant structure, and being sparse can select the most

critical feature. Second, it can avoid over-fitting. By adding

l1 norm regularization terms to Eq. (5), we have the follow-

ing unconstraint optimization problem:

min
W1,W2,b1,b2

1

2N

∑
i,j

‖x1
i − h(xj

i )‖22 + λ1‖W1‖1 + λ2‖W2‖1,

where ‖W‖1 =
∑

ij |[W ]i,j | is the sum of absolute value

of each element in matrix W . In practice, we solve this

unconstraint optimization problem using L-BFGS optimi-

zor [20] which enables to address large-scale data with lim-

ited memory. Details of the solution is trivial, and can be

found in many related works1.

After learning model parameters W1, W2, b1, and b2, we

obtain the hidden layer output τi for each test xj
i as a pose-

invariant high-level feature, and any classifier can be used

to do the recognition task.

2.2. Random Faces

In the previous model, we set the target value yji as the

frontal facial image of each subject, and encourage yji =

hj
i . This produces output that approximates the frontal face

regardless of input. Therefore, the hidden layer output can

represent the pose-invariant high-level feature.

On abstract level, the frontal face for each subject in the

proposed encoder model is only a representation. There-

fore, any unique matrix can work as this representative dur-

ing the training phase, not necessarily the frontal face of the

input image. In addition, if the training and the test have

no overlapped identification, the model should have strong

extrapolation capability. Apparently, enforcing a specific

target value for each subject will prevent the model from

1http://www.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Aligned Faces

W 1

W 2

Hidden Layer

Target Values

Non-Aligned Faces
Pose 1 To J

W 1
1

W 2

Hidden Layer

Target Values

W 1
2 W 1

J

Pose-Invariant 
Identity Features

…

Figure 3. Left: using full-aligned faces for model-1 by learning a

single W1; Right: using non-aligned faces for model-2 by learning

multiple W1s.

extrapolating. In fact, faces are not totally different, be-

cause they share similar structures. In the next section, we

enhance the extrapolation capability of our model by as-

signing more than one target values to each input image.

We explain how to generate multiple target values for

each input. For each subject i, we generate D random faces

ydi ∈ R
n, 1 ≤ d ≤ D, where each single pixel is i.i.d., and

follows 0∼1 uniform distribution. Apparently, these “ran-

dom faces” are not even faces in terms of appearance, but

they play the same roles of frontal faces as the representa-

tives in training the encoder. For each input xi (we omit

pose index for simplicity), we train D different encoders

and consequently, there are D outputs from the hidden lay-

ers, i.e., [τ1i , τ
2
i , . . . , τ

D
i ]. We pile all this vectors vertically,

and hence obtain the final pose-invariant, well-extrapolated

high-level feature. This process is illustrated in Figure 2.

2.3. Aligned vs. Non-Aligned Face

In this part, we introduce two models corresponding to

two different face alignment strategies, which are shown

in Figure 3. As mentioned before, face alignment is the

most important pre-processing step before feature extrac-

tion. If for each input face with arbitrary pose, we select

dense correspondences (facial landmarks), and extract fea-

tures from local patches defined by these correspondences,

then the feature has already been aligned. Still, we need

frontal faces to guide the hypothesis outputs. We call this

model-1 that we only use one pair of {W1, b1} to generate

the pose-invariant feature without considering pose infor-

mation of the input, in either training or test phase. Howev-

er, dense alignment is often time-consuming and generates

many incorrect correspondences.

We may save time and avoid misalignment by skipping

the face alignment, which motivates us to learn more than

one weight functions and biases corresponding to each pose.

For any test input with pose j, we do not need to align it

to the frontal pose, rather we find its pose-invariant feature
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Figure 4. Samples of landmark localization and across pose align-

ment. Note that some landmarks disappear in the profile images in

the second row. Feature of full-aligned setting is extracted based

on these red landmarks and the areas they defined.

through corresponding W j
1 and bj1. We call this model-2

in this paper.

3. Experiments
3.1. Face Identification Configuration

In this section, we use Multi-PIE [9] database to test the

proposed models on face identification. For full-aligned ex-

periments, we use the state-of-the-art face alignment model

in [30] to do landmark localization, as Figure 4 shown. For

non-aligned experiments, faces are manually cropped and

resized to 128× 128, based on the boundary of the face,

rather than landmarks on the face.

Pose Range. From Figure 4 we can see that when the

pose angle goes beyond 45◦, some face landmarks will dis-

appear. As a result, for aligned faces, we only work on

images of pose angle in [−45◦, 45◦]; while for non-aligned

faces, we can include all poses in [−75◦, 75◦].
Model Parameters. For full-aligned faces, in either

training or test phase, we do not differentiate poses, and

only two pairs of model parameters, i.e., {W1, b1} and

{W2, b2} are learned for input and output layer of S-NN.

For the non-aligned face images, we directly use either

holistic or local feature to describe the input face, and for

each pose j we train a pair of parameters {W j
1 , b

j
1}. In addi-

tion, many methods can be used to approximately estimate

the pose for our non-aligned model. For example, in [5],

people use multi-class SVM to coarsely group poses based

on their appearance, which significantly improves the final

performance. Different form theirs, in this paper, we use

pose estimation model proposed in [30] to infer the pose for

input parameter pair {W j
1 , b

j
1}.

We set the dimension of the feature space, i.e., size of

the hidden layer to be approximately half of the number of

individuals in the training set. For the sparse many-to-one

encoder, we set the output to be the input’s corresponding

frontal face feature. For learning with random faces, we

also set an encoder’s output to be a 2500 dimensional ran-

dom vector, if we use raw images as inputs. We set the

Figure 5. Samples of two different people from LFW database,

including pose, illumination, and expression variations.

sparse constraint parameter λ1 or λ2 to be 0.0001, and use

L-BFGS optimizer to train the model with 400 iterations.

For feature learning with random faces, we set the number

of encoders to be 20, i.e., RF(20) in Table 1, 2, and 3

Running Environment. All experiments are run on an

Intel i7 2600k computer with 16GB memory, implemented

by Matlab 2012b and optimized by parallel CPU computing

techniques (parfor function). In addition, we use L-BFGS2

to solve the unconstraint optimization problem in the pro-

posed model. All comparison methods, e.g., LBP [21],

HOG [8], LDA [3] are tuned to be optimized for the test

purpose based on cross-validation on the training set.

3.2. Face Identification Results

In face identification, we predict each probe image’s i-

dentity by nearest-neighbor classifier. There are two regis-

tration settings.

Setting-1 registers each individual’s frontal face (0◦)

as the gallery. The rank-1 recognition rates for setting-1 are

reported in Table 1. Setting-2 randomly picks up an

image from one individual as the gallery, and this image is

not necessarily to be the frontal one. We repeat this 20 times

and average identification results are reported in Table 3.

Full-Aligned Face. For full-aligned faces, we use land-

marks [30] to locate local patches and extract features there-

in. We extract 20×20 local patches centered at 52 different

landmarks. After that, we assemble all these local patches

to formulate the complete face feature. So the dimension of

the feature for each face is 20 × 20 × 52. We use the first

time appearance of all 337 people’s face images from the

session 1 to session 4 with neutral expression and illumina-

tion to build our data set. Specifically, we use the last 88

individuals’ facial images to build the training set while the

first 249 individuals’ images to build the test set.

In addition, we also report the virtual frontal faces gen-

erated by model-1 (without random faces). That is, for full-

aligned setting, we use the pose-invariant feature of the test

sample to compute hypothesis output h = σ(W2τ + b2).
We illustrate these virtual faces in Figure 6.

2http://www.di.ens.fr/˜mschmidt/Software/
minFunc.html
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Method/Degree −75◦ −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ +75◦ Avg.

3DGEM+Glasses [22] N/A 65.0% 86.7% 97.6% 93.2% 83.5% 65.0% N/A 81.8%
3DGEM+No-Glasses [22] N/A 78.3% 92.2% 97.4% 93.5% 87.0% 83.1% N/A 88.6%

FA (Full-Aligned) N/A 38.2% 55.8% 77.5% 57.0% 50.6% 43.4% N/A 53.8%
FA+LBP N/A 82.3% 99.6% 100.0% 100.0% 98.9% 76.7% N/A 92.9%
FA+HOG N/A 64.7% 94.8% 100.0% 100.0% 94.0% 64.7% N/A 86.3%
FA+LDA N/A 92.4% 98.8% 98.8% 98.8% 96.8% 94.0% N/A 96.6%
FA+Model-1(Ours) N/A 81.5% 93.2% 98.4% 96.8% 92.4% 88.8% N/A 91.8%
FA+Model-1+RF(20)(Ours) N/A 96.8% 100.0% 100.0% 100.0% 100.0% 96.4% N/A 98.8%

NA (Non-Aligned) 11.0% 10.0% 17.0% 36.0% 46.0% 21.0% 13.0% 11.0% 20.6%
NA+LBP 4.0% 12.0% 24.0% 61.0% 57.0% 21.0% 13.0% 6.0% 24.8%
NA+HOG 4.0% 10.0% 17.0% 71.0% 65.0% 18.0% 13.0% 6.0% 25.5%
NA+MvDA [13] 29.0% 55.0% 64.0% 70.0% 74.0% 62.0% 58.0% 43.0% 56.9%
NA+Model-2(Ours) 57.0% 75.0% 79.0% 94.0% 92.0% 84.0% 78.0% 61.0% 77.5%
NA+Model-2+RF(20)(Ours) 79.0% 88.0% 92.0% 97.0% 98.0% 96.0% 91.0% 80.0% 90.1%

Table 1. Results from gallery setting-1. In 3DGEM, the model is trained by USF Human-ID database [25] which contains 94 people’s

3D face images. In 3DGEM, they did not consider eyeglasses in training. There are two results reported. “Glasses” means the face

recognition rate on the original testing set (249 individuals) which includes eyeglasses, while “No-Glasses” means the results on a subset

(158 individuals) of the original testing set where there is no eyeglasses. We take eyeglasses into account during training, and the testing

result of our model here is on the original 249 people’s testing set.

Method/degree −75◦ −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ +75◦ Avg.

NA+CLSDA [26] 42.2% 84.4% 96.6% 99.2% 99.2% 96.2% 89.0% 47.7% 81.8%

NA+Model-2+RF(20)(Ours) 50.6% 87.3% 97.9% 99.2% 99.2% 97.4% 91.9% 54.8% 84.8%

Table 2. Identification results compared with the method in [26]. Results of ours is different from that in Table 1 since we follow the same

setting in [26] in this experiment.

From the setting-1 results in Table 1, we can see that

most of methods perform well thanks to the alignmen-

t. Both LBP and LDA achieve very high accuracy, even

though only 2D images are utilized. More surprisingly,

most of the 2D images based method are superior to the

3D model based method proposed in [22]. We believe this

is mainly due to the accurate face alignment by [30] in the

preprocessing step. This setting proves that our method is

superior to others with full-aligned faces. From the setting-

2 results in Table 3, we can see most methods perform worse

compared with setting-1, especially for those using local de-

scriptor, e.g., HOG, LBP, but ours is not affected so much

by the new setting. This indicates that with different regis-

tered faces, our method still performs very well.

Non-Aligned Face. In this experiment, faces are manu-

ally cropped based on the boundary of faces, which do not

rely on any landmarks, and resized to 128 × 128. Since all

faces are not aligned cross poses, we use model-2 to imple-

ment non-aligned face identification where we learn sepa-

rated {W j
1 , b

j
1} for different poses. Apparently, this task is

very challenging, and therefore we expand the training set

and use the last 237 individuals’ facial images in Multi-PIE

as the training set, and the first 100 individuals’ facial im-

ages as the test set.

From the bottom part of Table 1, we can see that all

methods degrade significantly, except ours. Note that since

Figure 6. Virtual frontal faces generated by model-1. Odd rows:

test faces; Even rows: virtual front faces by model-1.

we do not need cross pose alignment, we include profile

(−75◦, 75◦) as well. In addition, we use most recent state-

of-the-art method MvDA [13] instead of LDA [3] in this

table due to its advantage in multi-view learning. Specif-

ically, we compare with the state-of-the-art method [26]

which aims at maximizing correlations between differen-

t poses under the same setting in Table 2. In both tables, we

find that the proposed model works especially well when

the pose variation is large, i.e., > 45◦. Results conclude

that even without face-alignment, our method can still ex-

tract pose-invariant features well.
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Method/Degree −45◦ −30◦ −15◦ 0◦ +15◦ +30◦ +45◦ Avg.

FA (Full-Aligned) 35.0% 46.8% 46.5% 42.6% 43.6% 35.2% 32.3% 40.3%
FA+HOG 56.6% 69.0% 73.8% 72.1% 69.9% 63.9% 50.5% 65.1%
FA+LBP 61.6% 75.9% 85.4% 89.2% 86.2% 74.9% 58.5% 76.0%
FA+LDA 90.1% 95.6% 95.2% 95.0% 94.4% 93.6% 89.5% 93.4%
FA+Model-1+RF(20)(Ours) 90.9% 97.7% 98.1% 98.5% 98.2% 95.7% 87.2% 95.2%

Table 3. Results from gallery setting-2 for full-aligned facial image.
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Figure 7. ROC curves of face verification on LFW database.

LBP+CSML, restricted [19] 0.8557± 0.0052

LBP+PLDA, unrestricted [15] 0.8733± 0.0055

LBP+multi-one-shot, unrestricted [27] 0.8517± 0.0061

LBP+Model-1+RF(100), unrestricted 0.8850± 0.0058

Table 4. Face verification accuracy by 10-fold cross validation on

LFW dataset.

3.3. Face Verification in the Wild

“Labeled Faces in the Wild” (LFW) [12] is a bench-

mark database for evaluating face verification algorithm on

“wild” real-world images. This dataset contains 13,000 im-

ages of faces collected from the Internet, and 1680 individu-

als with at least two face images. Since our feature learning

scheme relies on the identity of the training set, we follow

the unrestricted setting of the LFW. All images are cropped

and resized into size of 150× 120, and then LBP feature is

extracted for each of them. We pick 1 fold apart for testing,

and used the rest 9 folds’ individuals who have at least 2 fa-

cial images for training. In this verification experiment, we

run model-1 with 100 random faces, and the size of hidden

layer is 10. Both λ1 and λ2 are set to 0.0001. For compu-

tational efficiency, we reduce the dimensionality of data by

PCA.

We followed the method used in multi-one-shot [27] to

centralize faces according to their poses, which is formulat-

ed in Eq. (1). Then, we adopt model-1 to learn the pose-

invariant feature. After that, both training and test data are

projected into pose-invariant feature space. Each feature

vector is normalized to be of unit length. Then we combine

two facial features in each pair by an element-wise multi-

plication, and use the pairs in the 9 folds, to train a linear

SVM classifier [6]. The optimized penalty parameter C is

learned through cross-validation on the training set. At last,

we use face feature pairs in the test fold for face verification.

We repeat the above process for 10 times, each time with d-

ifferent testing and training folds. The overall verification

performance is stated in Table 4 and Figure 7.

From results we can see that LFW is very challenging

since all the faces are from real-world with arbitrary poses,

expressions as well as illuminations, as shown in Figure 5.

The proposed model using LBP feature is still superior to

state-of-the-art methods.

3.4. Model Selection

In this part, we show how the model parameters λ1, λ2

and size of hidden layer m affect the performance of the

proposed model. We first show effects of different λ1 and

λ2. In Figure 8, we run model-1 on Multi-PIE database with

setting-1. The hidden layer size is fixed at 50. We can see

that with different λ1 and λ2 the performance changes dif-

ferently. Note that results in the left subfigure of Figure 8 is

l1 norm based regularization (our method) while the results

in the middle subfigure are from l2 regularization. In both

subfigures, the improvement by regularization terms over

that without regularization (at the original point) is signif-

icant. Besides, the best performance of l1 norm is slightly

better than that of l2 norm. Although this does not demon-

strate that l1 norm is better than l2 on selecting the most

useful facial structure, it is consistent with the fact that l1
regularization empirically works well [18].

In addition, we also show the impact of code size on

identification in the right subfigure of Figure 8. We run

L-BFGS algorithm 400 iterations with different code sizes,

ranging from 50 to 140. Under this setting, we can see d-

ifferent code sizes have different convergence speeds, but

their final performances are similar.

4. Conclusion
In this paper, we presented a novel many-to-one high-

level face feature learning approach for extracting pose-

invariant and discriminative identity feature from 2D facial
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Figure 8. The recognition performance of l1 (our model) and l2 norm for regularized neural network over different parameters λ1 and λ2.

Left: l1 norm; Middle: l2 norm; Right: Impact of the coder size.

images. First, we designed an l1 norm regularized many-

to-one encoder to remove the impact introduced by diverse

poses from feature learning process. Second, we enhanced

the discriminant of the pose free feature by setting multiple

random faces as the target values of our encoders. Appeal-

ing results on both lab database, i.e., Multi-PIE, and real-

world database, i.e., LFW demonstrate the effectiveness and

superiority of our method.
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