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Abstract

Light fields are image-based representations that use
densely sampled rays as a scene description. In this paper,
we explore geometric structures of 3D lines in ray space
for improving light field triangulation and stereo match-
ing. The triangulation problem aims to fill in the ray space
with continuous and non-overlapping simplices anchored
at sampled points (rays). Such a triangulation provides
a piecewise-linear interpolant useful for light field super-
resolution. We show that the light field space is largely bi-
linear due to 3D line segments in the scene, and direct tri-
angulation of these bilinear subspaces leads to large errors.
We instead present a simple but effective algorithm to first
map bilinear subspaces to line constraints and then apply
Constrained Delaunay Triangulation (CDT). Based on our
analysis, we further develop a novel line-assisted graph-
cut (LAGC) algorithm that effectively encodes 3D line con-
straints into light field stereo matching. Experiments on
synthetic and real data show that both our triangulation
and LAGC algorithms outperform state-of-the-art solutions
in accuracy and visual quality.

1. Introduction

Rays are directed lines in 3D space. They represent the
visual information about a scene by their associated radi-
ance function [1]. A light field (LF) [17, 9] captures a dense
set of rays as scene descriptions in place of geometry. To
represent each ray, a LF uses a two-plane parametrization
(2PP). Every ray is parameterized by its intersections with
two parallel planes: [s,t] as the intersection with the first
plane II,; and [u, v] as the second with II,,. Rays in a LF
hence form a 4D space.

This paper explores ray geometry of a common primi-
tive, 3D line segments. Previous studies show that the LF
space is largely linear: a 3D scene point maps to a 2D ray
hyperplane [39, 38]. This indicates that a LF can be “trian-
gulated”, i.e., the 4D can be partitioned into a set of space
filling and non-overlapping simplices. For a 2D Epipolar-
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Figure 1. Bilinear ray structures. (a) A 3D line segment [ maps to
a bilinear subspace in a LF; (b) [ maps to a curve on a diagonal
cut; (c) Brute-force triangulation creates volume.

Plane Image (EPI), the simplices are 2D triangles; for a 3D
LF, they are tetrahedra; and for the complete 4D LF, they are
pentatopes. The triangulation provides a natural anisotropic
reconstruction kernel: any point in the space can be approx-
imated using a convex combination of the enclosing sim-
plex’s vertices (samples).

The simplest triangulation method is to apply high-
dimensional Delauney Triangulation [8]. Such triangula-
tions produce simplices (or pentatopes if in 4D) of “good
shapes”. However, triangulating the LF as such leads to se-
vere aliasing, as shown in Fig. 3. A better approach is to
align simplices with ray geometry of 3D scene. For exam-
ple, we can first estimate the disparity (depth) of the fea-
ture pixels (rays), map them to the hyperplane constraints,
and apply Constrained Delaunay Triangulation (CDT) [27].
We show this approach is still insufficient to produce high
quality triangulations: the LF space contains a large amount
of non-linear, or more precisely, bilinear substructures that
correspond to 3D line segments. Brute-force triangulation
of these bilinear structures leads to large errors and visual
artifacts. We instead present a new solution that combines
the bilinear and hyperplane constraints for CDT.

Our ray geometry analysis of 3D lines also leads to a new
LF stereo algorithm. We first introduce a new F3 energy
term to preserve disparity consistency along line segments.
We then modify the binocular stereo graph via the general
purpose graph construction framework [15] and solve it us-
ing the extended Quadratic Pseudo-Boolean Optimization
algorithm [25]. We validate our approach on both Middle-



bury datasets, Stanford LF datasets [32] and real LF data
acquired by the Lytro camera [19]. Experiments show that
both our LF triangulation and stereo matching algorithms
outperform state-of-the-art solutions in accuracy and visual
quality.

2. Related Work

LF Space. The LF ray space is a vector space. Any lin-
ear combination of the [s, t, u, v] coordinate of two rays is
still a valid ray. This contrasts with the 6D Pliicker coor-
dinates [10] which do not form closed vector space. Ponce
[22] applies projective geometry to analyze ray structures.
Yu and McMillan [39] use General Linear Cameras (GLCs)
to analyze all 2D linear structures (hyperplanes) in 4D LF
ray space. Their studies have shown that the LF ray space
is largely linear and hence suitable for triangulation: scene
geometry such as 3D points or parallel directions maps to
GLCs. We show that special care needs to be taken to han-
dle non-linear (bilinear) ray structures.

LF Acquisition. Our work is also motivated by recent
advances on LF acquisition where reliable depth estima-
tion and LF super-resolution are in urgent needs. Earlier
camera-array based systems [32] are bulky and expensive,
although they can acquire high (spatial) resolution LFs.
More recent approaches aim to capture the LF using a sin-
gle commodity camera. Ng [20] designs a hand-held LF
camera that places a microlens array in front of the cam-
era sensor to separate converging rays. This design has led
to the commercial LF camera Lytro [19]. Lumsdaine et al.
[18] introduce a slightly different design by focusing the
microlens array on a virtual plane inside camera. In this
case each microlens image captures more spatial samples
but fewer angular samples on the refocusing plane. Levin
and Durand [16] use the dimensionality gap prior to recover
the 4D LF from a 3D focal stack without depth estimation.

LF Stereo. The availability of LF cameras has also re-
newed the interest on multi-view reconstruction. The semi-
nal work by Kolmogorov and Zabih [14] extend the binoc-
ular graph-cut solution to multi-view stereo. In addition
to the data and the smoothness terms, they add an occlu-
sion term for handling complex occlusions. Based on the
graph framework, Woodford et al. [37] further incorpo-
rate the second order smoothness priors and optimize the
non-submodular objective function via Quadratic Pseudo-
Boolean Optimization (QPBO) [25]. Bleyer et al. [3] im-
pose soft segmentation and minimum description length as
priors to solve for a non-submodular objective function.
Most recently, Wanner and Goldliicke [26, 35] apply struc-
ture tensor to measure each pixel’s direction in 2D EPIL
They then encode the estimated edge directions into dense
stereo matching with consistency check. Most previous al-
gorithms, however, do not explicitly consider or aim to pre-
serve the geometry of 3D lines.
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Figure 2. Triangulating a 2D LF (an EPI). (a) A scanline from
a stereo pair; (b) RG Delaunay triangulation (bottom) performs
poorly on LF super-resolution (top); (c) Using disparity as addi-
tional edge constraints, Constrained Delaunay triangulation sig-
nificantly improves LF super-resolution.

3. Ray Geometry of 3D Lines

We first briefly reiterate the ray geometry of 3D lines
[38, 23]. If a 3D line [ is parallel to II,, and I, we can
represent it with a point P = [P, PY, P?] on [ and its
direction [y*,~Y,0]. All rays passing through [ satisfy the
following linear constraint:

As+ Bt+Cu+ Dv+ E =0, (1)

where A =Y —4YP* B =~"P* — 4% C =~YP* D =
—*P* E = v*PY — ~Y P This reveals that lines in the
3D scene that are parallel to 1L, will map to linear sub-
spaces in the LF and hence can be triangulated.

If [ is not parallel to II,,,, it then can be directly parame-
terized by a ray under 2PP as [ug, vo, So, to]. All rays pass-
ing through [ satisfy the following bilinear constraint:

S — 80

t—to
’U*’UO.

)

U — U
The bilinear ray geometry is particularly important since a
real scene usually contains many linear structures unparal-
lel to the image plane. This reveals that the LF ray space
contains a large amount of bilinear structures. In Fig. 1
(a), we construct a 3D LF by stacking a row of LF images
and cut it using the videocube tool [33]. Fig. 1 (b) shows a
cut through a volume where 3D lines on the checkerboard
appear curved due to their bilinearity.

4. Light Field Triangulation

The simplest LF triangulation is regular-grid (RG) trian-
gulation. Given a regularly sampled LF, we can first build
4D hypercubes using two corners (s, t, u,v) and (s +1,¢+
1,u + 1,v + 1) and then triangulate each hypercube. Let
us consider a 2D LF, an EPI formed by the same horizon-
tal scanlines in a row of LF images. Fig. 2 (b) shows the
RG triangulation of the EPI. If we use this triangulation to
super-resolve the LF, i.e., by rasterizing the triangles, the
result exhibits severe aliasing. This is because RG trian-
gulation is analogous to bilinear interpolation and does not
consider scene geometry (e.g., object depth or disparity).
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4.1. Constrained Delaunay Triangulation

To improve RG triangulation, we can add epipolar con-
straints. Using stereo matching, we can first estimate every
pixel’s disparity and map it to a 2D hyperplane [38, 23] as
a constraint. In the 2D EPI case, each pixel maps to an
edge where the slope of the edge corresponds to its dis-
parity (depth). We can then apply Constrained Delaunay
Triangulation (CDT) [27]. We call this scheme EPI-CDT
or E-CDT. Fig. 2 (c) shows an E-CDT triangulation and
its super-resolution result. Specifically, we first detect 47
salient feature points along the scanline and add their cor-
responding EPI constraints. Our triangulation applies CDT
to all pixels with these edge constraints. Fig. 2 (c) show the
closeup views of the triangulation. E-CDT greatly reduces
aliasing while providing a continuous interpolant.

An apparent question is whether we can directly apply
E-CDT to triangulating higher dimensional LFs. The sec-
ond column of Fig. 3 shows the E-CDT result of two im-
ages forming a 3D LF from the Middlebury Venus dataset.
Specifically, we detect 10, 132 feature points (6% of total
pixel) and use their disparities as edge constraints. We use
the Tetgen [29] to conduct Constrained Delaunay Tetrahe-
dralization. To illustrate its quality, we synthesize a new
intermediate view between two source views by rasterizing
the tetrahedralized 3D LF. The new view improves RG at
non-occlusion regions but exhibits strong aliasing near lin-
ear occlusion boundaries.

To analyze the cause of aliasing, let us consider a 3D line
segment [ whose image is (I{,1¥)— (13, 13) in LF view (s, t).
Assume the disparity of /; and /5 are dy and d2 respectively.
If dy # da, by Eqn. 2, [ maps to a bilinear surface S formed
by four corners (s, 1§,1Y), (s,13,15), (s+1,1§+d1,1Y), and
(s + 1,15 +do,1%) in 3D (s, u,v) LF space. In geometric
modeling, it is well known that any direct triangulation of .S
from the four vertices of .S will introduce large error: S is
a surface that does not occupy any volume. However, a tri-
angulation of the four vertices will turn .S into a tetrahedron
which will occupy large volume when |d; — da] is large,
as shown in Fig. 1 (c). The tetrahedron will “erode” into
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Figure 3. View interpolation using a triangulated 3D LF. We use the same set of feature points for RG, E-CDT, and B-CDT (ours). B-CDT
produces comparable results to image warping but preserves continuity (no holes).

neighboring space, i.e., nearby pixels will be forced to use
this tetrahedron as the interpolant. Therefore it is important
to add additional constraints onto the bilinear structure.

4.2. CDT with 3D Edge Constraints

We present a simple but effective scheme that directly
maps bilinear ray structures of 3D lines into the CDT frame-
work. Specifically, we apply a subdivision scheme [21] by
discretizing the bilinear surface into slim bilinear patches
and then triangulate each patch. Finally, we use edges of
bilinear patches and disparity hyperplanes as constraints for
CDT. We call this scheme Bilinear CDT or B-CDT.

3D LFs. For a 3D LF, B-CDT can be effectively imple-
mented using Tetgen [29]. In the Venus example (first row
of Fig. 3), we detect additional 303 line segments in the
reference view, subdivide their corresponding bilinear sur-
faces, and add them as constraints for conducting B-CDT.
The new triangulation significantly improves the E-CDT re-
sult: it preserves most sharp edges and exhibits very little
aliasing near occlusion boundaries. Compared with image
warping that results in missing pixels or holes, the B-CDT
provides a continuous representation of the LF where any
new view corresponds to a valid 2D triangulated LF with-
out holes. Notice that the texts on the newspaper are slightly
blurred since they are not selected as constraints.

Fig. 3 row 2 shows our result on the Tsukuba dataset
containing fewer linear structures. In this example, we se-
lect 15, 748 feature points (14% of total pixel) from the ref-
erence image and detect 120 line segments. Same as the
Venus example, we compare E-CDT and B-CDT by ren-
dering an new view between the two reference views. E-
CDT preserves non-boundary contents but exhibits strong
aliasing near the boundary pixels such as the tripod, the
light edges, and the bust. In contrast, B-CDT preserves
both boundary and non-boundary contents. The Tsukuba
scene has a relatively large disparity range and direct warp-
ing produces many holes. To patch these holes, one can use
2D interpolation schemes such as Delaunay triangulation.
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Figure 4. New view (central) synthesis from a 4D LF. Left: a LF of a skyscraper scene. Right: Closeup views of the synthesized results

using different schemes.

Such interpolation, however, is different from B-CDT: B-
CDT provides a consistent triangulation throughout the LF
volume while warping followed by hole patching produces
an ad-hoc triangulation on each slice; Further, B-CDT only
needs to be conducted once while hole patch needs to be
conducted whenever rendering a new view.

4D LFs. Finally, we extend the B-CDT scheme to 4D
LFs. In computational geometry, high dimensional CDTs
[27] remains as an open problem for two reasons. First, a
plausible solution may require inserting a large number of
auxiliary vertices. This also occurs in 3D CDT although
the number of inserted vertices is much smaller. Second,
the computational complexity grows rapidly with respect
to dimensionality [2]. To our knowledge, no practical 4-
dimensional CDT is currently available to the public.

Our solution is to convert the 4D problem to 3D. Specif-
ically, to synthesize a new view Vj; in the 4D LF with four
sample views indexed as Vpo, Vo1, Vio, Vi1, we first de-
tect 3D line segments and apply 3D B-CDT to synthesize
two new views Vo and V1 from 3D LFs Vg — Vi and
Vo1 — Vi1, respectively. Next, we use the same 3D line con-
straints and B-CDT to triangulate a 3D LF Vo —Vj; for syn-
thesizing V. Fig. 4 shows an skyscraper LF with dispar-
ity range [0,300]. Results using RG exhibit severe aliasing
where directly warping produces holes and discontinuity.
Next, we select 90, 269 feature points (11% of total pixel)
and 2092 line segments and apply the pseudo 4D CDT. Our
results exhibits little aliasing while preserving smoothness.

5. Light Field Stereo Matching

Our LF triangulation also provides useful insights on in-
corporating 3D line constraints into multi-view stereo.

5.1. Disparity Interpolant

We first prove the linearity of disparity along a line seg-
ment, i.e., given two endpoints /; and ls of a 3D line seg-
ment [ with disparity d; and ds, the disparity dy, of any inter-
mediate point [, = A\ily + (1 — Ag)lais Agdy + (1 — Ag)da.
This property is well known, e.g., in perspective geome-
try in computer vision and in projective texture mapping in
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computer graphics. We present a different proof based on
bilinear ray geometry of line [.

If [ is parallel to II,, and IIy, then the proof is trivial
since di = do = dj.

If [ is not parallel to 11, and Il, [ can be represented
as a ray (o, to,uo,vo). Consider a specific pixel (s,t) in
camera (u,v) that observes a point P on line [ and pixel
s+ As in a neighbor camera (u + Aw, v) that also observes
P. Both ray (s,t,u,v) and (s + As, t,u + Au,v) satisfy
the bilinear ray constraint (Eqn. 2):

s+As—sg s—sg t—tg 3)
U+ Au—uy u—uy v—1vgy
Therefore, £ = S=w. This reveals that disparity 22 sa

linear function in ¢ along [, i.e., we can linearly interpolate
the disparity along .

5.2. Line-Assisted Graph Cut (LAGC)

To incorporate the linear disparity constraint into multi-
view stereo matching, the most direct approach is to first
detect line segments in the captured LF, then estimate their
disparities, and use them as hard constraints in the graph-
cut algorithm. The top row of Fig. 5 shows the result of
this brute-force approach on a city scene. We render a LF
of the scene (17 x 17 views at 1024 x 768 resolution). We
detect line segments using the state-of-the-art line segment
detector (LSD) [34] for each view (around 1100 x 17 x 17
line segments). For the endpoints of each line segment [,
we iterate over all possible disparities and interpolate the
disparity for all intermediate points. Finally, we find the
optimal disparity assignments to the endpoints that yield to
highest consistency of all intermediate points. The results
are then used as hard constraints for the multi-view graph-
cut (MVGOC) [14]. Fig. 5 shows improvements near edges
and rich texture regions compared with MVGC. However,
if the disparity of the line segment is incorrectly assigned, it
will lead to large errors, e.g., on one of the chimneys on the
building, as shown in Fig. 5.

Next, we study how to explicitly encode the disparity
constraint of line segments into MVGC. MVGC aims to
find the optimal disparity label that minimizes the energy



Figure 5. Encoding 3D line segments as hard constraints improves
MVGC but misses important details, e.g. the chimney on the
building.

function Econventional - Edata + Esmooth + EOCCaWhere

Baata = Y po Fa(P.Q), Ea(P,Q)=|[|I(P)—TI'(Q
Esmooth = 2. p pyen Bs(P, Pn),  Es(P, Px) = min(||dp — dpy||, T¢),

Q)2 — K,

C))

where P and @) correspond to the same 3D point given a
disparity, A is the neighborhood of P, T is the truncation
threshold, and K is a constant. The occlusion term F,...
measures if occlusion is correctly preserved when warping
the disparity from I to I’ [14].

We add the fourth line constraint term. Our key observa-
tion is that when assigning disparity labels to the two end-
points, every intermediate point along the line should check
occlusion consistency. Specifically, given the two endpoints
(pixels) I; and [; of line segment ! and an intermediate pixel
lp, = M\el; + (1 — )\k)lj, we define

Elin,e = Zl Zlke[l,,,,lj] El(lh lj7 lk)a

Ey(li, 1, k) = |[Medi;, — diy, + (1= Ai)dy, ]| 5)

Our goal is to minimize the new energy function
Econuentional + Eline-

The work by Boykov et al. [5] and Kolmogorov and
Zabih[13, 14] show that one can minimize F.onyentional
by consecutively solving the two-label problem: at each it-
eration, a new disparity label is added and the algorithm
decides whether each pixel should keep the old disparity or
switch to the new disparity. We follow their convention to
use O for keeping the old label and / for using the new label.
To solve for the two label problem with alpha-expansion
[5], the energy function needs to be regular. For example,
Fhata, Fsmooth and Eyeciusion (the two-variable functions)
are all regular.

Notice that our Ej;,. (Eqn. 5) is a three-variable (F?)
term, i.e., the endpoints and any intermediate point indi-
vidually choose to relabel or not. Fj;,. can be viewed
as a general second order smoothness prior and is gener-
ally non-submodular. Therefore, alpha-expansion is not di-
rectly applicable to minimize Fj;,.. We instead adopt the
extended QPBO approaches proposed by Rother et al. [25].
To briefly reiterate, the QPBO algorithm [12] splits each
node in the graph into two subnodes; when both subnodes
are assigned to the source or sink after min-cut, they will be
assigned the corresponding label. Otherwise, they will be
treated as unlabeled. Theoretically, QPBO can potentially
result in a large number pixels assigned unlabeled. In our
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Figure 6. Comparlson using different optimization schemes. (a)
alpha-expasion.(b) QPBO-I. (c) QPBO-P (d) Reference Image.

experiments, we observe that QPBO results in about 10%
or less unlabeled pixels. This is because an unlabel pixel
is caused by non-submodularity which, in our case, occurs
mostly on the line segments since Ej;,. is non-submodular.
For natural scenes, line segments are generally sparse and
therefore only a small percentage of pixels are unlabeled in
QPBO.

Extensions of QPBO such as QPBO-P and QPBO-I
[4, 25] as well as the more complex QPBO-R [37] have
shown great success on reducing the unlabeled pixels. For
example, QPBO-I uses additional geometry priors (called
the proposals) to improve optimization. We use fronto-
parallel surface priors as proposals. Fig. 6 shows the
results on the city scene using QPBO-P, QPBO-I (with
fronto-parallel surfaces as proposals), and standard alpha-
expansion. QPBO-P and QPBO-I produce comparable re-
sults while alpha-expansion produces noticeable artifacts
such as inaccurate edges.

5.3. Graph Construction

Next, we construct the graph so that we can reuse min-
cut/max-flow algorithm to minimize our 7 energy func-
tion. We follow the general-purpose graph construction
framework by Kolmogorov and Zabih [15]: each pixel
corresponds to a graph node. We then add the source
s node for label 0, the sink node ¢ for label I, the ¢-
links from the graph nodes to s or ¢, and the n-links be-
tween the graph nodes using 4-connectivity. We decompose
the two variable term E; and E to the corresponding ¢-
links and n-links. For example, for two neighboring nodes
n; and n;y1, we assign weights F(1,0) — E5(0,0) and
Es(1,0) — Es(1,1) to t-links (s,n;) and (n;41,t) respec-
tively, and weight F(0,1) + E4(1,0) — E(1,1) — E4(0,0)
to n-link (n;,n;41). The similar scheme can be applied for
handling F, ..

Different from E, and E,.., E; is F° and auxiliary
nodes and links need to be added to the graph [15]. Specifi-
cally, for each edge tuple (I;,1;, ) (4, j the endpoints and k
the intermediate point), we add three auxiliary n-links (an-
links) I; — 1;, l; — I and [, — [;, as shown in Fig. 7 (b).
We also add an auxiliary sink/source node n}, and the cor-
responding auxiliary ¢-links (at-links) using one of the two
possible assignments: either (I;, n}), (I;,n}), (Ix, n},), and
(n,t) (Group aty) or (n}, l;), (n},1;), (ny,lx), and (s, n})
(Group ats), as shown in Fig. 7 (¢). The selection of the
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Figure 7. Graph construction for our LAGC algorithm. (a) The
conventional graph for two-view stereo matching.(b) For a line

segment (pink), we add auxiliary n-links (green). (c)We also add
an auxiliary node n;, and auxiliary ¢-links (dark blue).

group depends on the weight decomposition of E;. Specifi-
cally, we follow the same procedure in [15] and rename all
8 cases of £} as shown in the Appendix A. We call our
solution the line-assisted graph-cut (LAGC).

5.4. Evaluation

All experiments were conducted on a PC with Intel Core
i7 3.2GHz CPU and 8GB memory. We first evaluate our
algorithm on binocular stereo using the Tsukuba dataset.
Fig. 8 compares the ground truth, global stereo reconstruc-
tion under second order smoothness priors (SOSP) [37],
adaptive ground control point (GCP) [28] (rank 1 for all
four Middlebury datasets [6]), MVGC [14], and our LAGC.
Table 1 lists the percentage of bad pixels and the ranking
(in subscripts) for each method. Compared with MVGC,
LAGC effectively reduces errors and outranks MVGC (13
vs. 35 for non-occlusion, 14 vs. 38 for boundary, and 14 vs.
50 for all pixels). LAGC also preserves edges such as the
feet of the table and the tripod and the arm of the lamp.

Next, we apply LAGC to the LF datasets. The detected
line segments are highlighted in red. We first test on a syn-
thetic LF of a city scene composed of one million triangles.
We render the scene using the POV-Ray ray-tracer [24] to
generate an array of 17 x 17 images, each with a resolution
of 1024 x 768. The scene has a disparity range from O -
16 pixels. Notice that the city scene exhibits repeated line
patterns. Certain regions lack textures while the others con-
tain complex textures. The scene hence is challenging for
classical stereo matching. For this and the following exam-
ples, we fine-tune the parameters for both algorithms and
compare only their best results.

We compare our scheme with the recent globally consis-

Algorithm | non-occlusion all discontinuity
LAGC 1.0013 1.4114 5.3914
MVGC 1.2735 1.9950 6.4838
SOSpP 2.91103 3.5692 7.3357
GCP 1.0314 1.295 5.6016

Table 1. Stereo matching using LAGC (ours), MVGC [14], SOSP
[37], and GCP [28] on Tsukuba. We show both the percentage of
bad pixels and the algorithm’s ranking (in subscripts)
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Ground Truth

Reference Image

Figure 8. Stereo matching on the Tsukuba dataset. Our LAGC
outperforms MVGC [14] and SOSP [37] but is slightly worse than
GCP [28]. However, it better preserves edges, e.g., the left foot of
the tripod. See Table 1 for numerical comparison.

tent depth labeling (GCDL) scheme using the source code
posted by the author of [26, 36]. The top row of Fig. 9 com-
pares the disparity maps computed by GCDL and LAGC.
Recall that GCDL uses the structure tensor to measure local
EPI structures. Therefore, it requires ultra-densely sampled
LFs with a small disparity range (usually between -2 to 2).
As a result, GCDL misses fine details such as the contours
of the chimneys and is highly noisy on surfaces with rich
textures. Its error is also larger on distant buildings. In con-
trast, LAGC accurately preserves most fine details and ro-
bustly handles both distant and close objects. Although a
real scene may not contain as many linear structures, our
result demonstrates that LAGC is robust enough to han-
dle such complex scenes. We then experiment on real LF
data. Fig. 9 row 2 shows the comparison on the Stanford
Lego Gantry dataset [32] composed of 17 x 17 views at
a resolution of 1280 x 960 of a Lego gantry crane model.
The disparity range is between —3 to 5 pixels and we dis-
cretize it into 16 labels. On continuous regions such as the
ground, LAGC produces much smoother disparity transi-
tions whereas the result from GCDL contains large discon-
tinuities. LAGC is particularly good at preserving edges,
as shown on the hoist rope from the crane, the contours
of the headlights and windows, etc. Fig. 9 row 3 shows
the amethyst dataset which is expected to be challenging
to LAGC: it lacks long linear structures but contains strong
view-dependent features. The disparity range is small, from
—3 to 3 pixels. We consider subpixel disparity with step
size 0.2. LAGC can robustly handle this challenging scene
and slightly outperforms GCDL, e.g., by better preserving
the facets of the amethyst.

Finally, we test on a real LF acquired by the Lytro cam-
era [19]. Lytro uses an array of 328 x 328 microlenses, each
with 10 x 10 pixel resolution. We first resample the LF to
a1l x 11 LF at 800 x 800. The disparity range is ultra
small (between —1 to 1 pixels). We discretize the dispar-
ity range using 0.1 step (20 disparity label). The original
GCDL code [26] was not directly applicable to process this
data. At our request the authors of [26] sent us the results
using their modified GCDL. Both LAGC and the revised
GCDL produce reasonable results despite structure and tex-



ture similarities across the scene. Our results, however, bet-
ter preserves linear structure such as the narrow vertical wall
in the background. Additional results and our source code
can be found at the project’s website [40].

6. Limitations and Future Work

We have presented a LF triangulation and stereo match-
ing framework by imposing ray geometry of 3D line seg-
ments as constraints. For LF triangulation, we utilize Con-
strained Delaunay Triangulation and by far our solution is
restricted to 3D and pseudo 4D LFs since 4D CDT is still
an open problem in computational geometry. An immedi-
ate future direction is to experiment our scheme on irregu-
larly sampled LF, e.g., the ones captured by a catadioptric
mirror array [31] or by a hand-held camera [7]. Our cur-
rent super-resolution scheme requires rasterizing ray sim-
plices into voxels. An alternative approach is to use a walk-
through algorithm that picks one face of the ray simplex at
a time and does the orientation test for locating the sim-
plex, a process can be accelerated using parallel processing
on the graphics hardware. Finally, the triangulated LF can
be potentially compressed via geometric compression. For
example, half-edge collapse operator in progressive meshes
[30, 11] can be used to remove edges and vertices while
maintaining a continuous simplex-tiled structure.

For stereo matching, we have experimented on synthetic,
pre-acquired LF, and Lytro acquired LFs. An important fol-
lowing step is test our scheme on the Raytrix data which
have a larger disparity range. In addition, given the increas-
ing interest in LF imaging and the availability of commer-
cial LF cameras, we also plan to build a LF stereo bench-
mark of real scenes analogous to the Middlebury Stereo
Portal[6], for evaluating LF stereo matching algorithms. Fi-
nally, it remains an open problem on how to handle view-
dependent objects in both binocular and multi-view stereo.
In the future, we will investigate robust algorithms for de-
tecting and reconstructing these objects via LF analysis.
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Reference Image

Figure 9. LAGC vs. GCDL [26] in LF. From top to bottom: a city scene LF (17 x 17 x 1024 x 768) rendered using POV-Ray, the Stanford
Gantry LF (17 x 17 x 1280 x 960) and Amethyst LF (17 x 17 x 768 x 1024), and a real LF captured by Lytro [19]. The Lytro result was
generated by the authors of [26] using the modified GCDL.
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