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Abstract

In this paper we propose an object tracking method in
case of inaccurate initializations. To track objects accu-
rately in such situation, the proposed method uses “motion
saliency” and “descriptor saliency” of local features and
performs tracking based on generalized Hough transform
(GHT). The proposed motion saliency of a local feature em-
phasizes features having distinctive motions, compared to
the motions which are not from the target object. The de-
scriptor saliency emphasizes features which are likely to be
of the object in terms of its feature descriptors. Through
these saliencies, the proposed method tries to “learn and
find” the target object rather than looking for what was
given at initialization, giving robust results even with inac-
curate initializations. Also, our tracking result is obtained
by combining the results of each local feature of the tar-
get and the surroundings with GHT voting, thus is robust
against severe occlusions as well. The proposed method
is compared against nine other methods, with nine image
sequences, and hundred random initializations. The exper-
imental results show that our method outperforms all other
compared methods.

1. Introduction
Various tracking methods have been developed over the

past decade and have proven to be successful for many

applications [22]. To track objects accurately, problems

such as non-rigid deformations [7, 14, 9], partial occlu-

sions [1, 17], and drifting [20, 4] have been tackled giv-

ing promising results. However, the applicability of con-

ventional methods are still limited in actual environments

due to their sensitivity to initializations (illustrated in Fig-

ure 1). One of the major assumptions many conventional

trackers have is that the target object is given rather accu-

rately. Therefore, the trackers are sensitive to how they were

initialized at the first frame. Practically, this is not a trivial
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Figure 1: Example of tracking in case of occlusions and

with clumsy initializations. Slight difference in initializa-

tions for the occCup sequence (left column), leading to

different results for the same frame (right column). Best
viewed in color.

task and leads to loss in tracking performances. Also, in

actual environments, severe occlusions exist where almost

all of the target object is occluded, which not many trackers

are capable of dealing with.

The performance degradation of conventional trackers

under inaccurate initializations is a problem which has not

been well addressed yet. There are methods with automatic

initialization for trackers such as the method by Mahade-

van and Vasconcelos [16], but still, they do not account for

cases when these initializations fail to give an accurate ini-

tialization. Performance degradation from inaccurate ini-

tializations is closely related to drifting problems. In many

tracking methods, such as [7, 1, 10, 11, 20], the model for

the target object is constructed using the initial target infor-

mation given at the first frame. Then, the methods adapt
the target model with the tracking results for each frames.

During the adaptation, rather than learning about the tar-

get object and enhancing the model, noise gets involved in

the learning process and the performance of the tracker de-

grades. This drifting phenomenon is evident even in online
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boosting based methods [10] or methods which create clas-

sifiers [3, 16]. This drifting would cause trackers to be more

sensitive to initializations, since having more noise from the

beginning would cause faster drifting. In [11], [20], and

[4], the authors tackle the drifting problem with sophisti-

cated learning strategies. Both methods show robust results

against drifting, but still are vulnerable against inaccurate

initializations. A recent method by Kalal et al. [13] uses

P-N learning scheme, which incorporates results from both

detector and tracker to avoid such problems, but still, their

work is mainly focused on the problem of trackers drifting.

Even without considering drifting problems, a small inac-

curacy in initialization can cause much problem.

A major cause for conventional trackers being over sen-

sitive to initializations is much based on the fact that they

treat the given initialization as a fixed prior. When we only

have a single frame to use, constructing the target model

solely based on the initialization is reasonable. However,

as more frames or more data is given, it is obvious that we

would need to figure out what the target object is like, rather

than just trying to adapt the model we learned from the ini-

tialization. This means that we need to question the given

prior and not believe it thoroughly. Godec et al. [9] recog-

nize this problem as a limitation of bounding-box based ap-

proaches. Using the initialization by a bounding-box, they

build a classifier to roughly classify pixels into foreground

and background. With the rough classification result, they

again perform Grab-cut [19] to segment the target object.

Though their aim was to well-describe non-rigid deforma-

tions and reduce drifting effects, their method is closely

related to the initialization problem of trackers. Unfortu-

nately, their method suffers from randomness of the perfor-

mance due to the purely random nature of their classifier.

To track objects robustly with inaccurate initializations

and severe occlusions, we propose a method employing mo-
tion saliency and descriptor saliency of local features to

learn and track the target object based on GHT (a voting

based method which combines partial solutions effectively

to obtain a global solution) [5]. In order to achieve good

tracking results even with inaccurate initializations, we de-

fine the two saliencies related to motions and descriptors

(explained in detail in Section 2). With the two proposed

saliencies, our model learns to put more weight on good

partial results when obtaining the global solution with GHT

voting. In other words, rather than just trying to find what

was given at initialization, the two saliencies work together

to learn the salient characteristics of the target object, which

also results in change of the influences of initial features.

Method in [16] also uses the concept of saliency, but their

definition of saliency is a criterion for selection of features

(features such as colors or or edges, not to be confused with

feature points) similar to [3]. Also, the bottom-up saliency

they use for initialization is a center-surround saliency (un-

like ours which considers target and non-target rather than

center and surround), and does not always guarantee that it

highlights the target object.

With the two saliencies, we use GHT in order to properly

combine the estimates from multiple local feature points.

GHT is a powerful method for combining partial estimates

into a whole used in many tracking methods [9, 12, 2]. Un-

like them, in our case, the mapping table of GHT containing

partial solutions (votes) acts as a model learning descriptor

saliencies. Since we use GHT voting to combine multiple

estimates from local features, our method gives robust re-

sults even if some features of the target object becomes oc-

cluded. Furthermore, we learn the model using all local fea-

tures in the scene and keep local features which move along

with the target object, thus giving robust results even when

all of the target object is occluded (and in case of severe

occlusions). This is similar to the method by Grabner et al.
[12], which creates supporters with nearby features, and use

them to aid tracking in case of severe occlusions. However,

the performance of their method relies much on the primary

tracker being used, which is not always accurate and suffers

from initialization problems, whereas our method success-

fully deals with both problems simultaneously. Dinh et al.
[8] also use supporters to aid tracking, but their method still

treats initialization to be accurate.

2. Proposed Method
The overall scheme of the proposed method is depicted

in Figure 2. Our method is based on GHT. For each frame,

we extract local features. Then, using the learned feature

database (DB), we match each feature to obtain partial so-

lutions for the center of the target object. We then com-

bine the partial results with GHT to obtain a global solu-

tion. When collecting the partial results using GHT, in or-

der to deal with inaccurate initializations, each solution is

weighted according to the two proposed saliencies (the de-

scriptor saliency and the motion saliency).

The feature DB is learned on-the-fly during the track-

ing process. The feature DB keeps track of distinctive fea-

tures w.r.t. their descriptors (descriptor saliency), and where

the center of the target object would be for each item. The

proposed motion saliency is obtained using the learned de-

scriptor saliency of features and the optical flow of the local

feature. The motion saliency is designed so that the features

showing distinctive motion characteristics of the target ob-

ject have higher values. With the two saliencies, the salient

characteristics of the target object are learned in the model

(feature DB). Details of the proposed method are explained

in the following subsections.

2.1. Tracking based on GHT

The proposed tracking scheme using GHT starts by

building a likelihood map for the center position of the tar-
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Figure 2: Overall scheme of the proposed method.
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Figure 3: Illustration of GHT voting with SURF features

get object and obtains the result by finding the maximum

on this map. The likelihood map is created through GHT

by combining the center estimates (votes) from each local

feature point. When combining the estimates, we weight

them w.r.t. their saliencies so that salient features are more

accounted for. Figure 3 is an illustration of this process.

Mathematically, if we denote the estimated center for the

jth feature in the current observation as (xc,j , yc,j) and its

weight as wj , the likelihood map A is defined as

A (x, y) =
∑
j

wj exp

{
− (xc,j − x)

2
+ (yc,j − y)

2

2σ2
A

}
,

(1)

where σA is the standard deviation of the Gaussian kernel

used for combining estimates, which is a parameter control-

ling the smoothness of the likelihood map. This combining

process is refered to as voting in GHT, each partial esti-

mates as votes, wj as voting weights, and the resultant like-

lihood map as the vote map. Since the target object position

changes little between frames, we apply temporal low-pass

filtering (temporal weighted averaging) to the vote map to

take advantage of this fact. Then, with this vote map, we

can find the target object position x̂ as

x̂ = (x̂, ŷ) = argmax
x,y

A (x, y) . (2)

Local Estimates. The estimates from each local fea-

ture point are obtained by matching with the feature DB.

The feature DB consists of multiple items, of which each

item contains descriptor information (d), distance to the es-

timated object center normalized with the square-root of the

size of the feature (dr), angle difference between the ma-

jor orientation and the vector to the estimated center (dθ),

saliency of the item (ζ), and the age (α) of the item. If we

denote ith item of the feature DB F as Fi then,

Fi = (di, dri, dθi, ζi, αi) . (3)

For the jth local feature of the current scene, we denote it

as fj = (xj ,dj , sj , θj), where xj = (xj , yj), dj , sj , and θj
is the pixel position, the descriptor, the size (area), and the

major orientation of the feature, respectively. Then, we find

the best matching item using the learned feature DB F(t) at

time t (learning strategy detailed in Section 2.2) in terms of

dj and d
(t)
i , and use this match for voting. In other words,

if there exists i∗j such that

i∗j = argmin
i

{∥∥∥d(t)
i − dj

∥∥∥ | ∥∥∥d(t)
i − dj

∥∥∥ < εd

}
, (4)

where εd is a threshold, we consider feature j to be matched

with F
(t)
i∗j

and vote to (xc,j , yc,j) with weight wj as in Fig-

ure 3, where

xc,j =
√
sjdri∗j cos

(
dθi∗j + θj

)
+ xj (5)

yc,j =
√
sjdri∗j sin

(
dθi∗j + θj

)
+ yj . (6)

Any type of affine invariant feature can be used such as

SIFT [15] or SURF [6] but we used SURF for ease in im-

plementation. Note that in (5) and (6), we take advantage of

the affine invariant properties of the local features and com-

pensate the voting vector to fit the current observation with√
sj and θj . This lets the proposed method to be able to

vote regardless of the scale and rotation change of the target

object.

Voting Weights. The weight wj is designed to account

both the motion saliency ηj and the descriptor saliency ζ
(t)
i∗j

.

We use the multiplication of the two saliencies to emphasize

features which have both saliency values high. Therefore

for the jth detected local feature, the weight is defined as

wj = ηjζ
(t)
i∗j

. (7)

Details about these saliencies and their effects are presented

in Section 2.2 and Section 2.3.

2.2. Descriptor Saliency and Feature DB Update

To learn the salient features of the target object w.r.t. the

shape of the target object, we define the descriptor saliency
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Figure 4: Illustration of the descriptor saliency in action. Detected local features are depicted with circles, having their sizes

as their descriptor saliency values (larger means high). Red means having higer vote map value A. (a) Initial voting for the

target object position, (b) voting after t frames, and (c) voting in case of occlusion. Note that these are not actual experimental

results and are only illustrations.

as how much the descriptor coincided with past consen-

sus. For each item in F(t), the descriptor saliency ζ(t) is

learned to hold how good the partial (voting) results were

when using the item, i.e. the value of the vote map A. Since

our framework is based on GHT, we can simply achieve

this by looking at each votes and DB matches (back projec-

tion). For example, the feature items matched with the fea-

tures pointing to the center of the cup in Figure 3 would be

updated with high saliency values, whereas items matched

with the feature pointing at the wrong direction (e.g. fea-

ture point on the hand) would be updated with low saliency

value.

Initially, F(0) is an empty set without any elements. As

the target object information is provided with a bounding

box in the first frame, feature points inside the bounding box

are added to F(1) with descriptor saliency ζ = 1, and fea-

ture points outside the bounding box are added to F(1) with

descriptor saliency ζ = 0 (Figure 4a). Then, we continu-

ously update the descriptor saliencies using the back pro-

jection result of each vote on A(t). This means that at time

t, if item F
(t)
i has been matched with Mi features (i.e. there

exists Mi number of j such that
∥∥∥d(t)

i − dj

∥∥∥ < εd), the de-

scriptor saliency of this item ζ
(t)
i is updated with the average

of the vote map value for all matches.

ζ
(t+1)
i = βiζ

(t)
i + (1− βi)

1

Mi

Mi∑
m=1

A (xc,m, yc,m) (8)

where m is the index of the matched local feature in the cur-

rent frame, βi is the variable learning rate βi = α
(t)
i /(α

(t)
i +

1). Similarly, we update the voting information of the item

with the average normalized distance and angle from each

feature to the obtained tracking result, and also increment

the age of the item. At time t, with the tracking result x̂(t)

and position of the matched features xm

dr
(t+1)
i = βidr

(t)
i + (1− βi)

1

Mi

Mi∑
m=1

∥∥x̂(t) − xm

∥∥
2√

sm
(9)

dθ
(t+1)
i = βidθ

(t)
i +(1− βi)

1

Mi

Mi∑
m=1

[
∠
(
x̂(t) − xm

)
− θm

]
(10)

α
(t+1)
i = α

(t)
i + 1, (11)

where ‖.‖2 and ∠ (.) is the Euclidean norm and the angle of

a vector, respectively. If an element in F(t) has no match,

i.e. Mi = 0, we do not update that element. Also, the

elements of F(t) which were added in the first frame are

treated as an exception and we never update dr
(t)
i and dθ

(t)
i

for them to prevent the tracker from drifting. Still, since we

update ζ
(t)
i , the effects of initial elements can change. Fig-

ure 4a and Figure 4b is an example of some local features

(features on leaves) having high descriptor saliency at ini-

tialization, but becoming low after learning them correctly

as tracking is performed.

Practical Implementation. Ideally, it would be best if

we add all new unmatched features into the database, but

this would not be practical due to computational and mem-

ory requirements. Thus, to keep F(t) in a reasonable size

without harming the overall performance, we apply an up-

date strategy inspired by the work of Avidan [3]. Except for

the elements of F(t) which were added in the first frame, we

keep the K best elements in terms of ζ
(t)
i and get rid of oth-

ers from F(t). After removing bad elements from F(t), we

add L most motion-salient unmatched feature points into

the DB. The L best considering the motion saliency ηj are

added to F(t+1) with its motions saliency as initial descrip-

tor saliency, i.e. the following 5-tuple

(dj , drj , dθj , ηj , 1) (12)

is added, where

drj =

∥∥x̂(t) − xj

∥∥
2√

sj
, (13)

dθj = ∠
(
x̂(t) − xj

)
− θj . (14)

With this update strategy, if we denote the number of ele-

ments initially added to F(1) as Kinit, the size of F(t) will
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always be smaller than Kinit + K + L. Note that during

the feature DB update, all current local features are consid-

ered. This means that if there are background local features

which help in estimating the target object position, they will

also be learned. These un-occluded salient features can act

as supporters similar to [12], aiding in case of severe occlu-

sions as in Figure 4c.

2.3. Motion Saliency

To capture the characteristics of the target object in terms

of motion, we define the motion saliency of a feature point

with its descriptor saliency and optical flow (Figure 5b),

and emphasize motions which are distinctive (Figure 5d).

By distinctive, we expect the motion of the target object to

stand-out from background motion (including motion from

other non-target objects). For obtaining motions for each

feature points, we use backward optical flow from time t to

time t− 1. The backward optical flow b = (bx, by), where

bx and by are backward optical flows in horizontal and ver-

tical direction, can be easily obtained though KLT [21].

The way we measure the distinctiveness is by construct-

ing a likelihood map of background motions through con-

sensus (Figure 5c). This likelihood map is constructed using

voting strategy similar to the GHT voting used for tracking.

When constructing the likelihood map, we weight each mo-

tion of the detected local feature points so that the resultant

likelihood map would have higher values if the motion is

likely to be from background. Therefore, with the likeli-

hood map we are able to know which motions are similar to

background motions and which are distinct. We will refer

to this likelihood map as the motion vote map. We obtain

the motion saliency of feature point by simply using the in-

verse of the motion vote map value. By doing so, the motion

saliency value will be high when the vote map value is low,

i.e. not similar to background motions. If we denote the

motion vote map as B, then for a feature point fj in the cur-

rent observation with backward optical flow bj , the motion

saliency for this feature ηj can be defined as

ηj = 1− B (bj)

maxB (.)
, (15)

where the motion vote map B is constructed by all features

in the current frame having a matched item i∗j from (4) as

B (b) =
∑

∀j|∃i∗j

(
1− ζ

(t)
i∗j

)
exp

{
−‖b− bj‖2

2σ2
B

}
, (16)

where σB is the standard deviation of the Gaussian kernel

used for voting. Note that for the motion vote map, we

weight the votes with
(
1− ζ

(t)
i∗j

)
, which is the inverse of

descriptor saliency so that the vote map is about background

motions. ηj from (15) has a value in range [0, 1], represent-

ing how distinctive the backward optical flow of a feature

point is from background motions.

The advantage of our method using motion vote map is

that we are able to capture distinctive motions regarding

the target object robustly without any sophisticated motion

grouping. As in Figure 5d, even though there are other mo-

tions due to the camera movement, only the distinctive mo-

tions similar to the target object is emphasized.

3. Experiments

We implemented our method (PROP) in C++ with the

OpenCV1 library for SURF and KLT. For all experiments,

the threshold for determining feature point matches εd =
0.1, the variances of the Gaussian kernels for voting σA

and σB are both set to 10, the number of elements to keep

K = 500, and the number of features added L = 100. We

also considered tracking results having A(t)
(
x̂(t)

)
< 0.05

as tracking failures.

We tested our method against nine other representative

trackers. MST [7] and FRAG [1] are kernel-based track-

ers, where FRAG is mainly focused on solving occlusion

problems. OAB [10], SEMI [11], BEYOND [20], and MIL

[4] are boosting based methods. HOUGH [9] is a method

based on Hough forests and TLD [13] is a method with P-N

learning strategy combining the result of both tracker and

detector. SEMI, BEYOND, MIL, and TLD are mostly tar-

geted for solving drifting issues and HOUGH is a method

targeted to overcome inaccuracies arising from a bound-

ing box representation of the target. Finally INVIS [12]

is a method using GHT similar to ours. For the experi-

ments, we used the implementation provided by the authors

of each paper except for MST and INVIS. For MST and

INVIS, we implemented them in C++ according to the pa-

pers. We performed our experiments with nine image se-

quences. Sequences coke, tiger1, and tiger2 are from [4],

sylvester is from [18], occFace and woman are from the

[1], motocross1 and mtn. bike are from [9], and occCup is

our own. Implementation of the proposed method and the

datasets used are available at the first author’s website2. .

Results for critical frames are shown in Figure 7.

To compare results quantitatively, we used manually an-

notated bounding box representation of the target object

as the ground truth. Two measures were used to evaluate

the algorithms; mean error between the ground truth center

point and the tracking result, and the percentage of correctly

tracked frames. By correctly tracked frames, we counted

the tracking result as correct if the center of the tracking re-

sult was inside the ground truth bounding box. The reason

we applied this measure instead of the commonly used over-

1http://opencv.com/downloads.html
2https://sites.google.com/site/homekmyi
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(a) (b) (c) (d) (e)

Figure 5: Example of motion saliency obtained for the woman sequence. (a) Detected local feature points, (b) descriptor

saliency of matched local features and their optical flows (denoted yellow if high saliency and red if low, optical flows

displayed 3 times their original magnitude), (c) motion vote map B, (d) motion saliency for each detected local feature, and

(e) final voting weight from both saliencies. Arrows from (b) to (c) and (c) to (d) illustrate where motions are mapped. Note

that in (b), upper left motion on the cars result in low motion saliency values in (d) whereas down right motion on the person

result in high values. Best viewed in color.

lap criterion is because we are using random initializations

which may have little overlap even from the beginning. This

measure can be understood as a weak condition of tracking

success. When the overlap measure is used, results for all

trackers become degraded since some initializations would

be counted as failures even at the first frame. Still, the

relative performance of trackers remain similar since this

happens equally for all trackers. For trackers being able

to detect tracking failures, we did not use these frames for

computing the mean error. However, they are considered

as tracking failures in the percentage of correctly tracked

frames for fair comparison.

3.1. Tracking with Inaccurate Initializations

To validate the robustness of our method against clumsy

initializations, we have tested trackers with 100 random ini-

tializations. Of the 100, the first initialization is identical

to the ground truth and 20 contain initializations having the

center point of the bounding box fixed at the ground truth

but having different width and height (sampled uniformly

having maximum difference to be 20% of the original width

or height). Another 20 contain initializations having the

same width and height as the ground truth, but with the

center point differing (sampled uniformly having maximum

difference to be 50% of the width or height of the target ob-

ject.) Finally, the remaining 59 have both the width and

height, and the center point differing from the ground truth

in the same sense above.

Results for all sequences with all initializations are

shown in Table. 1 (PROPm and PROPd are the results of our

method using only motion saliency and descriptor saliency,

respectively). Initialization overlap in the table is defined as

the percentage ratio between the intersection and the union

of the initial bounding box and the ground truth. In Ta-

ble. 1, it can be observed that as initialization overlap de-

PROP OAB SEMI BEYOND HOUGH MIL TLD MST FRAG INVIS

0

20

40

60

80

100

Figure 6: Box plots for % correctly tracked with all initial-

izations.

creases, the average performance of trackers generally de-

grade (lower percentage of correctly tracked frames and

larger mean errors). For percentage of correctly tracked

frames, when considering best results, our method shows

94.2% whereas the second best except the results of our

method is TLD with 60%∼40% overlap showing 89.3%

(denoted by bold blue text). However, when considering the

average performance, with the same condition, our method

shows 84.5% whereas TLD shows 51.3%. Note that the gap

between the best performance and the average performance

our method is relatively small compared to other methods.

This shows that our method is less sensitive to initializa-

tions. Also, in terms of average performance, our method

significantly outperforms other methods including INVIS,

which uses BEYOND as a primary tracker and uses GHT

similar to ours. In case of mean error in the correctly tracked

frames, our method is not best but shows comparable results

against other methods. Occasionally, BEYOND shows best

results in terms of mean error, but the percentage of cor-

rectly tracked frames shows that only a limited number of

frames were tracked. Note that using only one of the two

saliencies degrade performance (PROPm and PROPd).

Figure 6 is a box plot demonstrating the performance of

trackers against different initializations. The whiskers (de-

noted with red pluses) are data points having values more
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than 1.5 inter quartile range away from the median (red

line). In Figure 6, it can be seen that the best performances

(dotted lines) do not differ much. This implies that with

a particular initialization designed for each algorithm, the

performances may not differ much. However, this is not a

trivial task, and when considering average performance, our

method outperforms all other compared methods by signif-

icant amounts.

3.2. Tracking Under Occlusions

To evaluate the performance of our method against oc-

clusions, we have tested our method on sequences coke,

tiger1, tiger2, occFace, woman, and occCup. In these

sequences, occlusion of the target object exist, expecially

with the coke sequence having the object fully occluded at

occasions, and occCup having the object occluded even at

initialization. Critical frames for sequences with occlusions

are shown in Figures 7a to 7i. Figure 7b is an example of

severe occlusion where the target object gets fully occluded.

Our method successfully tracks the target object even in

such case, by learning the features of the hand which moves

together with the target object. In Figure 7e, the target ob-

ject is occluded even at initialization. As in Figure 7f, many

compared methods fail to recognize the cup as the target ob-

ject and fail. However, our method successfully tracks the

target object.

4. Conclusions
A new visual tracking method for tracking objects in

case of inaccurate initialization has been proposed. The pro-

posed method uses motion saliency and descriptor saliency
of local features and obtains the target position through

GHT. The motion saliency of a local feature emphasizes

features having distinctive motions, compared to back-

ground motions. The descriptor saliency emphasizes fea-

tures which are likely to be of the object in terms of its

feature descriptors. Through these saliencies, the proposed

method learns the distinctive characteristics of the target ob-

ject in the image sequence. The saliencies and GHT com-

bined allowed the tracker to have robust performances under

clumsy initializations and occlusions.

The proposed method was extensively tested against

nine other methods, using nine image sequences, and with

hundred random initializations. The experimental results

demonstrated the robustness of our method against initial-

izations and (severe) occlusions, outperforming the other

compared methods significantly.
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Algorithm
Initialization Overlap

100% ∼ 80% 80% ∼ 60% 60% ∼ 40% 40% ∼ 20% 20% ∼ 0%

Correctly

Tracked

Frames

(%)

PROP 87.7±15.3 (90.5) 88.0±15.7 (92.6) 84.6±18.6 (94.2) 72.8±27.0 (92.9) 55.3±32.9 (75.8)

PROPm 80.7±20.7 (82.2) 77.2±23.8 (85.4) 70.5±27.2 (88.5) 64.1±29.5 (87.7) 46.9±34.3 (70.0)

PROPd 41.3±39.9 (42.6) 40.8±34.9 (47.9) 38.2±32.5 (48.5) 34.2±30.5 (48.1) 22.8±25.3 (34.0)

OAB 55.0±35.1 (76.3) 55.4±34.7 (80.6) 50.5±34.6 (88.6) 43.0±32.6 (78.4) 34.8±31.2 (62.9)

SEMI 28.3±23.0 (46.2) 34.3±24.6 (54.7) 30.8±23.0 (65.9) 31.2±24.6 (67.9) 23.9±23.4 (42.2)

BEYOND 28.1±29.7 (44.1) 23.9±27.8 (55.7) 22.9±24.8 (57.6) 21.7±23.8 (56.8) 18.9±21.7 (39.9)

HOUGH 50.0±34.0 (63.9) 46.9±33.1 (71.3) 44.1±33.1 (79.1) 37.7±33.6 (77.1) 26.4±29.6 (51.7)

MIL 56.0±32.2 (62.8) 52.5±30.6 (70.3) 46.7±32.3 (75.4) 37.8±31.6 (74.1) 24.4±25.7 (55.7)

TLD 61.7±32.2 (72.0) 54.3±30.1 (81.8) 51.3±33.7 (89.3) 41.3±31.7 (88.5) 26.6±26.4 (58.5)

MST 43.6±38.1 (50.5) 43.7±37.2 (55.2) 40.1±35.1 (62.4) 29.5±27.3 (56.2) 17.8±17.5 (31.9)

FRAG 43.8±33.9 (57.5) 46.1±31.4 (64.2) 35.6±28.8 (59.1) 25.7±28.5 (46.6) 16.0±23.9 (31.4)

INVIS 50.2±31.4 (71.5) 51.5±29.0 (78.2) 47.9±27.5 (77.5) 43.2±27.2 (71.1) 33.4±26.1 (56.7)

Mean

Error

(pixels)

PROP 21.1±19.7 (17.8) 20.7±17.8 (13.4) 25.2±19.2 (15.5) 34.5±24.4 (19.8) 47.6±31.6 (33.7)

OAB 38.4±41.6 (14.8) 41.1±35.8 (18.3) 45.4±33.5 (18.6) 50.4±34.5 (23.3) 63.6±40.0 (35.6)

SEMI 19.6±21.7 (9.6) 23.0±17.7 (8.0) 41.0±37.7 (16.6) 52.5±36.8 (23.1) 72.7±45.7 (45.4)

BEYOND 12.0±12.9 (6.1) 14.5±12.3 (4.2) 25.9±19.3 (7.2) 38.8±27.1 (14.0) 57.0±34.7 (37.8)

HOUGH 58.3±45.5 (31.5) 56.8±41.9 (26.6) 57.8±42.4 (24.8) 64.2±44.7 (24.6) 89.1±55.7 (44.7)

MIL 39.3±34.4 (20.5) 43.6±35.6 (14.9) 48.9±38.7 (17.3) 60.5±43.2 (20.7) 73.4±49.4 (39.1)

TLD 85.7±95.1 (52.3) 87.0±89.2 (40.4) 92.1±93.8 (30.7) 101.5±97.1 (38.9) 124.2±103.4 (75.4)

MST 75.1±56.6 (51.6) 69.0±51.5 (48.5) 75.6±54.3 (38.4) 83.8±56.4 (49.2) 100.7±58.6 (76.9)

FRAG 66.8±47.4 (44.7) 65.3±46.2 (40.7) 81.4±55.9 (49.0) 95.3±66.1 (72.9) 113.7±70.7 (86.9)

INVIS 60.1±52.0 (34.6) 60.8±50.5 (32.1) 63.2±48.0 (36.3) 68.8±49.4 (42.5) 83.5±50.9 (54.3)

Table 1: Results for all sequences. [average±standard deviation (best average)]. For best average, best results for all se-

quences were averaged. Bold denotes best result among the compared algorithms.
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(a) coke #2

256

(b) coke #256

106

(c) tiger1 #106

239

(d) tiger2 #239

2

(e) occCup #2

211

(f) occCup #211

144

(g) woman #144

301

(h) woman #301
562

(i) occFace #562

1093

(j) sylvester #1093

75

(k) motocross1 #75 (l) mtn. bike #132

25  
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Figure 7: Critical frames for tracking results. Subcaptions denote sequence names and frame numbers. Best viewed in color.
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