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Abstract

In this paper we propose a method for the localization of
multiple facial features on challenging face images. In the
regression forests (RF) framework, observations (patches)
that are extracted at several image locations cast votes for
the localization of several facial features. In order to fil-
ter out votes that are not relevant, we pass them through
two types of sieves, that are organised in a cascade, and
which enforce geometric constraints. The first sieve filters
out votes that are not consistent with a hypothesis for the
location of the face center. Several sieves of the second
type, one associated with each individual facial point, fil-
ter out distant votes. We propose a method that adjusts on-
the-fly the proximity threshold of each second type sieve by
applying a classifier which, based on middle-level features
extracted from voting maps for the facial feature in ques-
tion, makes a sequence of decisions on whether the thresh-
old should be reduced or not. We validate our proposed
method on two challenging datasets with images collected
from the Internet in which we obtain state of the art results
without resorting to explicit facial shape models. We also
show the benefits of our method for proximity threshold ad-
justment especially on ’difficult’ face images.

1. Introduction
Detecting semantic facial features on face images is of-

ten the first step for many tasks in Facial Analysis includ-

ing face and facial expression recognition [16, 21]. Re-

cent works attempt to make a transition from facial images

recorded in laboratory settings or in controlled conditions

to face images “in the wild” [4, 10, 12, 30, 6]. However,

they still have difficulties with low quality face images, head

pose variation and partial occlusions, especially when real-

time detection is needed.

In this paper, we address the problem using random

forests, given their good performance in various challenging

computer vision tasks like video synopsis[29], action recog-

nition [13], human pose estimation [23], object recognition

[26] and facial feature detection [10]. In this framework

classi�er

voting
elements

0

update threshold 1

1

Individual 
sieve

face center
    sieve

classi�er
0

update threshold

Figure 1: Our approach estimates the facial feature points

in 2D images using votes from random regression forest.

Before accumulating the votes to a Hough map, our method

refines them by a cascade of sieves.

(see Figure 1), we follow a part-based approach in which

first observations are extracted at several local regions in

the face, and then each observation is propagated in the tree

and votes for the localization of facial features as well as

for a number of hidden variables such as the center of the

face and the head pose angles. Our approach introduces a

bank of sieves, each one associated with one of the variables

in question (i.e. either a facial feature, or the center of the

face). Essentially, each sieve operates as a filter that rejects

votes that are not relevant/useful for the estimation of the

variable associated with the sieve in question.

The sieve that is associated with the hidden variable (i.e.

the face center) rejects votes that are not consistent with hy-

potheses that are generated by a search for local maxima

in the voting space for the variable in question. This in-

troduces global consistency, imposes geometric constraints

in the form of implicit facial shape models, and deals with

irrelevant votes due to, for example, occlusions. This dif-

ferentiates our method from classic regression forests that

treat votes in a completely independent way, i.e. there is

no mechanism that encourages consistent predictions. The

sieves associated with the individual facial features are re-

sponsible of rejecting votes with low accuracy. Each sieve

adjusts a threshold that controls the minimum allowed prox-

imity (equivalently the maximum allowed offset) between

the facial feature in question and the location at which the

observations are extracted. With a large threshold, that is

at high proximity, we select votes with small offsets to the

facial feature in question. Those are expected to have high

localization accuracy, unless they are contaminated due to
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conditions like noise, shadows and occlusions. With a small

threshold, we select votes with large offsets and in this way

introduce facial shape constraints and robustness to occlu-

sions. Such a threshold is widely used in regression forests

applications like [13, 23, 10, 28]. In contrast to using a

fixed threshold that is learned during training, in our work

we learn a classifier who controls a procedure in which the

proximity threshold is gradually reduced. In this procedure,

the decision on whether the threshold should be decreased

or not is taken by a classifier that is built on middle-level

features that are extracted from the current voting map for

the location of the feature in question.

Finally, the detection is carried out on Hough voting

maps formed by the cast votes after they are filtered by

the cascade of sieves. Our contributions are validated on

two challenging face image datasets, namely, the Labeled

Faces in the Wild and the Annotated Facial Landmarks

in the Wild. We show that with the proposed approach,

and without explicitly introducing shape models, we ob-

tain state-of-the-art performance in both datasets. We also

show how that the benefits of using sieves and determining

an image-dependent and facial-feature-dependent threshold

are higher for the ’difficult’ images in both datasets.

2. Related work
Two different sources of information are usually ex-

ploited for facial feature detection: face appearance and

spatial shape. Instead of modelling them together like the

classic AAMs [8], several methods have focused on using

shape models to regularize the local detections like the Con-

strained Local Models (CLMs) [22], Branch & Bound opti-

mization [2] and tree structured shape models [30]. Instead

of using parametric shape models, non-parametric repre-

sentations of shape constraint include [4] and a series of

cascaded pose regression approaches [12, 11, 6, 5]. Local

detectors can be grouped into two categories: classification

based methods like SVM in [4]; regression-based methods

like boosted regression [24] and Regression Forests (RF)

[10, 28]. [7] and [27] proposed to impose shape models on

RF. In this work, within the RF framework, we introduce

non-parametric shape constraints.

In terms of rejecting irrelevant observations for regres-

sion, our work is related to [19]. Our approach is also re-

lated to methods that analyse RF votes. In particular, [3]

modelled the joint distribution over all the votes and the hy-

potheses in a probabilistic way, rather than simply accumu-

lating the votes. [17] studied the geometric compatibilities

of the votes in a pairwise fashion within a game-theoretic

setting. [20] learned latent variables for votes weighing.

These methods were developed for person/object detection

and focused on intra-class geometrical agreement, while

the consistency in our problem is inter-class, since we con-

sider the localization of all facial points.

3. Sieving Random Forest votes
Our method can be built on top of any part-based voting

approaches. In this section, we first describe two baseline

regression forests and then present our proposal to use a

cascade of sieves to refine votes.

3.1. Regression forests

The forests that we use here, use image patches as ob-

servations. Once a regression forest (or Hough forest) is

trained, at testing stage, observations arrive at tree leaves

and cast votes for the hidden or target variables [9]. We

build on two recent conditional regression forest frame-

works: CRF-D [10] and CRF-S [23].

3.1.1 CRF-D [10]

CRF-D introduces conditional regression forests that model

the appearance and location of facial feature points condi-

tioned on the head pose yaw angle. Specifically, the head

pose is quantized in five discrete labels and the training set

is also partitioned into five subsets.Then one forest is trained

on each subset. An additional forest is trained for the task of

head pose estimation. During testing, the head pose forest

is utilized first, and then the estimated head pose informa-

tion determines how many trees will be selected from each

subset.

Following the usual practice, the information gain IG
criterion is used to select the split function. It is defined

as IG(φ) = H(P) −∑S∈{L,R}
|PS(φ)|
|P| H(PS(φ)). φ is

a split function candidate which, when applied to a set of

image patches P , splits it into two sub sets: PL and PR.

Let us denote withH(P) the class uncertainty and define it

as H(P) = −∑N
i=1

∑
j p(ci|Pj)

|P| log
(∑

j p(ci|Pj)

|P|
)

, where

p(ci|Pj) denotes the probability that the patch Pj is infor-

mative about the location of the facial feature point i, that is

defined as:

p(ci|Pj) ∝ f(|dij |) = exp

(
−|d

i
j |
α

)
. (1)

f(·) is a function that transforms the distance dij into a prox-

imity measure. This proximity metric is used throughout

this paper. The constant α controls the steepness of this

function and is set to α = 1
8 . The distance dij is defined as

fractions of the face size.

At leaf nodes, the relative offsets to each facial feature

point are summarized by a weighted offset vector. This vec-

tor is used to cast votes for observations that arrive at the

leaf in question during testing. Similarly, at each leaf node

we summarize the relative offsets to the face center. For-

mally, at a leaf note, the vote associated with the ith facial

feature point is given by:

vi = (Δi, ωi,Δ
0
i , ω

0
i ), (2)
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where Δi = d̄i, ωi =
1

trace(Σi)
with d̄i and Σi are, respec-

tively, the mean and the covariance matrix of the offsets of

the ith facial feature point. The first two items are the same

as in [10]. Δ0
i is the mean value calculated on the offsets of

the face center and ω0
i is the corresponding weight. Figure 1

shows some voting elements, each with a red arrow to the

face center and a green arrow to one point target.

3.1.2 CRF-S [23]

The CRF-S [23] was used for human pose estimation. [28]

adapted their Partial Model for facial feature localization.

This model shares tree structures for all states of the global

variables. At the leaf node, one model is learned for each

state k of the global variable. Then, a relative vote associ-

ated with ith facial feature point in state k is given as:

vik = (Δik, ωik,Δ
0
ik, ω

0
ik) (3)

where Δik is the mean-shift mode of the largest cluster and

ωik is the relative size of the cluster. Δ0
ik and ω0

ik that are

related to the offsets to the center of the face are learned in

the same way.

During testing, as in [23] and [28], the state of the global

variable, i.e. the k in Eq. (3) is estimated first and then

the voting model with the estimated state will be used. The

model becomes the same as in Eq. (2). Thus, we drop the

index k in the following discussion.

3.1.3 Inference from votes

During testing, the patches extracted from a test image are

fed to the forest and when they arrive at a leaf note, they

cast votes for the localization of the facial features. Let us

denote by Vi = {vi} the set of votes for the facial point i.
Each voting element vi is associated with a location zi in the

image from where the corresponding patch was extracted.

Then, the voting element vi casts a vote at yi = zi + Δi.

Following the dominant paradigm, e.g., [14, 6, 10], we con-

struct a Hough map for each facial feature point by accu-

mulating the votes. The density for the facial feature point

i at pixel location y′i in the Hough map is therefore approx-

imated as:

p(y′i) ∝
∑
vi∈Vi

ωi exp

(
−‖y

′
i − yi
hi

‖22
)
· δ(f(Δi) > λi)

(4)

where hi is a learned per-point bandwidth. f(Δ) is the

proximity metric defined in Eq. (1). δ(·) is the Dirac

delta function that only allows votes for which the proxim-

ity test, using the proximity threshold λi, is satisfied. This

vote selection process is regarded as a sieve, which in this

case is associated with an individual facial point. Then a

mode finding algorithm like mean-shift can be applied on

the Hough map for detection.

However, spurious maxima can occur in the voting maps.

This can happen for many reasons, including occlusions due

to head pose and visual obstructions such as hair, glasses,

hands, etc. In this work, instead of explicitly learning shape

models to constrain the local detection, as in [7, 27], we

propose to use a cascade of sieves that impose geometric

constraints and filter the votes in order to remove false hy-

potheses.

3.2. Face center sieve

��� ��� ��� ���

��� �	� �
� ���

Figure 2: Face center sieve. (a) A vote consists of two offset

vectors, one to the target point (green arrow) and the other

to face center (red arrow). (b) Original set of votes for the

left brow center. (c) The absolute face center votes, those in

green are regarded as consistent to the face center. (d) The

remaining voting elements filtered by the face center sieve.

(e) All voting elements are used to localize the face center

(red dot). (f) and (h) are the Hough maps generated from

votes of (b) and (d) respectively. (g) shows the correspond-

ing detection results.

A face center sieve is used to reject votes that are not con-

sistent with the localization of the facial center. Recall that

each voting element also contains a weighted relative vector

to the face center, i.e. (Δ0
i , ω

0
i ). Then, the absolute vote to

the face center is y0i = zi+Δ0
i . As shown in Figure 2e when

calculating the face center, voting elements from all the fa-

cial points are accumulated into V0 = {(Δ0
i , ω

0
i )}Ni=1. We

aggregate the votes as in Eq. (4), i.e., the density estimation

for the face center at y′0 is approximated by:

p0(y
′
0) ∝

∑
(Δ0

i ,ω
0
i )∈V0

ω0
i exp

(
−‖y

′
0 − y0i
h0

‖22
)

(5)

where h0 is a fixed bandwidth. A mean-shift algorithm is

employed to find the mode in the voting map that is the

estimate of the face center ŷ0.

Since the face center is calculated using votes from the

whole image, its localization is very robust to partial occlu-

sions even if the center itself is heavily occluded. Conse-

quently, we choose to use it as a stable point that is used by

our sieve to reject voting elements that cast votes far from it.

This is shown in Figure 2c. Votes that are cast far away from
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Figure 3: Threshold updating. From left to right, the first

row shows the original face image, all votes for the point

(λ = 0.35), votes passed center sieve and the votes with

updated threshold (λ = 0.22) passed center sieve. The color

indicates the vote weight and the dark terminal is the voting

destination. The second row shows the detection results,

Hough map for original voting, after filtering and re-voting.

the estimated center ŷ0 are not consistent with the global hy-

pothesis and therefore unlikely to contribute to the correct

localization of facial features. Such votes are rejected by

the sieve. Formally, the sieve re-weighs a voting element

vi, according to the proximity between the location of the

vote for the face center (i.e. y0i ) and the estimated face cen-

ter ŷ0, that is:

ωi := ωi · δ(f(|y0i − ŷ0|) > λ0) (6)

where f(·) is the proximity function and δ(·) is the delta

function. As shown in Figure 2d, after filtering by the sieve,

voting elements that violate the face center consistency and

vote for other face center hypotheses, are assigned a zero

weight, i.e. they are removed from the votes set. The ones

that do not violate the face center consistency are kept. In

what follows we will denote set of the remaining votes by

V F . The Hough images that are formed when all the voting

elements are used, the Hough images that are formed after

the re-weighing and the mean-shift modes found on them

are shown in Figure 2.

3.3. Individual sieve threshold updating

Recall that when collecting the votes for an individual

feature point, a threshold is applied. This works as a sieve

that prohibits long distant voting. This threshold is typi-

cally optimized during training and is constant during test-

ing. This works well in most cases but fails when a feature

point is heavily occluded. As shown in Figure 3, in that

case, only few valid voting elements remain after the sieve

of the face center is applied and those voting elements may

contain wrong information. In such cases, the proximity

threshold should be reduced, and patches from further away

regions allowed to cast their votes. Such votes, essentially

introduce stronger facial shape constrains.

In order to determine an image-dependent proximity

threshold λi for the sieve i, we propose a iterative scheme

Figure 4: Comparison of vote orientation histograms ho.

For the same facial point, ho of occluded ones (the right

two) differs significantly from non-occluded ones (the left

two). By contrast, ho of non-occluded points are similar

despite the fact that the face images are quite different.

in which we start with the optimal (for the whole valida-

tion set) value for the proximity threshold λi and at each

iteration decide whether to decrease it or not. The decision

on whether to adjust (i.e. decrease) the threshold is taken

by a classifier who is applied on features that are extracted

from the voting map calculated using the current threshold

value. If a decision to adjust the threshold is taken, then

a new voting map is calculated considering all the voting

elements that pass through the sieve, and the classifier is

again applied on features that are extracted from the new

voting map. We train the individual classifiers in a super-

vised manner. For each facial point we collect a set of train-

ing instances (xi, τ) consisting of a feature vector xi that

is extracted from the voting map, as explained below, and

an adjustment operation label τ ∈ {1, 0}. τ = 0 means

that the point can be localized with high accuracy using the

current threshold value from which xi is extracted. τ = 1
means an adjustment (i.e. decrease) of the threshold leads

to a better estimate. We note that we only consider enlarg-

ing the voting length, i.e. decreasing the value of λ. In our

formulation, we learn a function f : Xv → {1, 0} that min-

imizes the number of wrong decisions, where each decision

is binary: to decrease the threshold or not. In contrast to

other methods that explicitly try to detect occlusions using

image features, we propose to use middle-level features that

are extracted directly from the voting maps that are formed

using the current threshold before and after the face center

sieve is applied, i.e., Vi and V F
i respectively. A description

of the middle-level features xi = (x1
i , x

2
i , x

3
i )

T is included

below:

• x1
i =

∑
v∈V F

i
v

∑
v∈Vi

v , the ratio of the sum of vote weights

after and before the center face sieve is applied.

• x2
i =

∑
vi∈V F

i
f(|yi−ȳi|)

|V F
i |

, the concentration of the votes

after face center sieve. ȳi is the mean value of all the

yi, that is calculated from vi. f(·) is the proximity

function and |V F
i | is the number of votes in the set.

• x3
i = ho, the orientation histogram of the votes after

filtering. It consists of 12 equally divided bins, i.e., 30◦

per bin, as shown in Figure 4.
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In order to train the decision classifier, we collect the

training samples as follows. On a validation dataset, first,

we get the detection results by applying the detector with

the pre-optimized λ0
i and extract the features xi. Then,

for each facial feature, we decrease the value of proximity

threshold λi (i.e. allow distant votes) gradually. For each fa-

cial feature point, we find the optimal value of the threshold

λ̂i, i.e. the one that has led to the most accurate detection.

If λ̂i < λ0
i , we set τ = 1 and vice versa. We then add in the

training set the appropriate training pairs, i.e. (xi, τ = 0)
or (xi, τ = 1). Then, an RBF-kernel based SVM classifier

that predicts τ is trained for each point separately.

3.4. Algorithm summary

The voting map of a feature point is re-estimated if the

threshold of its sieve has been updated (Figure 1). Then, the

new votes are filtered by the face center sieve. This is done

iteratively until there is no proximity threshold update or the

maximum iterations are reached. In order to have real-time

performance we set the maximum iteration number to 3 and

the update step is set to 20% of the current threshold. Al-

most identical results are obtained in our experiment with

a smaller step and a larger max number of iterations. With

a small step size the input to the classifier does not change

much from iteration to iteration; it takes more iterations un-

til either the classifier output changes or the max iterations

are reached. We summarize our method in Algorithm 1.

Algorithm 1 Sieving votes from regression forests

1: initialize all thresholds Λ = {λi} with pre-optimized

values and set maximum iteration number to MaxIter
2: while Λ �= ∅ and MaxIter > 0 do
3: for all λi ∈ Λ do
4: collect voting elements Vi based on λi

5: apply face center sieve and obtain V F
i

6: calculate the middle level feature xi

7: τ ← svmi(xi) � svm classifier for prediction

8: if τ == 1 then
9: λi := λi − 0.2λi

10: else
11: remove λi from Λ
12: end if
13: end for
14: MaxIter– –

15: end while

4. Experiments
We demonstrate the efficacy of our proposed contribu-

tions on two public datasets that contain face images col-

lected from the Internet. The first, contains the 13,233 im-

ages of the Labelled Face in the Wild (LFW) dataset [15]

that are annotated [10] with the location of 10 facial points

and the face bounding boxes. The second, is the Annotated
Face Landmarks in the Wild (AFLW) [18] that contains

real-world face images from Flickr. These images exhibit

a very large variability in pose, lighting, expression as well

as general imaging conditions. Many images exhibit par-

tial occlusions that are caused by head pose, objects (e.g.,

glasses, scarf, mask), body parts (hair, hands) and shadows.

In total, 25993 faces are annotated with up to 21 landmarks

per face. We selected a subset in which all 19 frontal land-

marks (i.e. excluding the two ear lobes) were annotated

(about 6200 images and some are with occlusion). From

this subset, we randomly select 1000 images for testing and

600 images for validation (300 of which were selected man-

ually to ensure they contain occlusions). The rest were used

for training the CRF-S model. Throughout our experiments

we report the localization error as a fraction of the inter-

ocular distance [10, 6, 24].

4.1. Implementation details

CRF-D We used the code and the trained model of the

CRF-D that are publicly available [10]. At each leaf node,

the trained model provides offset vectors to 10 facial points

and it also provides a mean patch offset vector to the center

of the bounding box, i.e. Δ0 in our work. We assign a unit

weight to face center vote, i.e. we set ω0 = 1. Despite the

fact that the definition of the face center is slightly different,

this allows us to evaluate our contributions using the CRF-D

as a baseline.

CRF-S We train the CRF-S on the AFLW dataset. We

discretize the head yaw angle into 3 labels and at each leaf

node conditional models are learned as discussed in Section

3.1.2. We use the same settings such as image features,

maximum tree depth (20), number of tests at the internal

nodes (2000) and forest size (10 trees in total), that are used

by CRF-D. The per-point bandwidth hi are set as by CRF-D

and the thresholds of individual sieves are optimized on the

validation set using a grid search (from 0 to 0.8 with a step

value 0.05), as in [10].

Sieve parameters The parameters that are related to the

face center sieve are the bandwidth for the face center h0 in

Eq. (5) and the threshold λ0 in Eq. (6). All bandwidths,

that is h0 and hi, are set to the same value that is learned

in the validation set. A key parameter is the face center

proximity threshold λ0. Large values of λ0 impose larger

consistency in the votes for the face center, while smaller

values relax the constraint and allow more votes to pass

through the sieve. We optimized this value through grid

search in a validation set (λ0 = 0.4). The SVM models

used for thresholds updating are trained on the validation

set of AFLW using a 10-fold cross validation. Since there

are far fewer occlusions on the three nose points we do not

update the thresholds for them.
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Figure 5: Results on LFW, compared to [10]. Note that the range of the Y axis in right two is different from the left two.

4.2. Experiments on LFW

We first evaluate the contribution of our face center sieve

by comparing with CRF-D [10]. The latter has achieved

state-of-the-art results on the LFW. We randomly select

1000 images from the dataset for testing and put them into

two sets according to the average localization error of the

CRF-D detector. In this way we create an ’easy’ partition,

namely the LFW TestI, where the average point localiza-

tion error of the CRF-D is less than 0.1, and a ’difficult’

partition, namely the LFW TestII, consists of the rest of

the images. We repeated this 4 times and on average 118

out of 1000 face images ended up into LFW TestII. This

small number is due to the fact that the face images in the

LFW dataset are relatively easier. Only a few of them con-

tain occlusions caused by head pose, hair and sunglasses.

The absolute difference of mean error and accuracy (using

the definition of [10]) on the LFW TestI and LFW TestII

are shown in Figure 5. On LFW TestI, there are some

points our method performs slightly worse, but the differ-

ence is negligible. To give the reader an idea, the maximum

difference in the average point error is around 0.05 pixels.

The maximum difference in the accuracy is also very small,

namely around 0.5%. This is expected since our method

is designed to maintain the performance of the baseline RF

on ”easy” images. On the contrary, the improvement on

LFW TestII is noticeable. The reduction in the mean error

for the left eye left point is around 4 pixels and that of the

right eye right point is around 3 pixels. The differences on

other points are not so noticeable. There are three points

(left eye left, left eye right and right eye right) with more

than 6% increase in detection accuracy.

4.3. Experiments on AFLW

We split the test set containing 1000 images into two sets,

AFLW TestI and AFLW TestII, as we did the split in the

LFW dataset. That is, we apply the plain CRF-S detector on

the whole test dataset and put into the AFLW TestI the face

images with average localization error less than 0.1 (663

face images) and into the AFLW TestII the rest (337 face

images). We report results on them separately.

Face center localization. Since our proposed scheme is

based on the face center detection, we evaluate the stability

by measuring the nose tip localization error. As is shown

in Figure 7a, though the localization is not highly accurate,

the performance is very stable: only 2 out of the 1000 test

images have localization error larger than 0.4 and more than

98% of them have localization error less than 0.3.
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Figure 6: Improvement by our method against the error of

CRF-S (all the 19 × 1000 points are shown).

Performance of the sieves. In Figure 7 we report results

that summarize our evaluation of the efficacy of our sieves.

In this comparison, we use the face bounding boxes from

the dataset. In detail, on AFLW TestI, the relative average

error improvement is small, 1.3% (0.0706 vs. 0.0715). The

sieves show improvements only on a few difficult points,

e.g. the left eye brow left corner (4.6%, 0.0809 vs. 0.0848)

and the chin corner (12%, 0.115 vs. 0.13). The proce-

dure of updating individual sieve thresholds does not have

much effect. On the contrary, the relative improvement on

AFLW TestII is large. The average relative improvement in

mean error by using the face center sieve is 37% (0.1039

vs. 0.1648). By automatically updating the thresholds for

individual sieve, there is a further 3% improvement in aver-

age and on difficult points, the relative improvement using

threshold updating is more noticeable, e.g. 18% for both

left eye brow left corner and right eye brow right corner.

Figure 6 shows that the improvement of our method over

the baseline CRF-S has clearly a positive correlation with

localization error of CRF-S. This shows the efficiency of

our method on difficult images. The reported results are

averages over 4 runs. The improvements are statistically

significant for 4/19 points on the easy images, for 18/19

on difficult images (all, except the nose tip) and for 16/19

points overall (all, except the 3 nose points).

Comparison with the state-of-the-art. We compare the
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Figure 7: Performance on AFLW. (a) Distribution of face center localization error. (b) and (c), mean error results.
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Figure 8: Results of our method on AFLW, compared to [30, 27, 7] and betaface.com. The numbers in legend of (c) are the
percentage of test faces that have average error below 0.1.

overall performance of our proposed method with meth-

ods from the academic community as well as commer-

cial systems, namely (1) the mixture-of-trees (Mix.Tree)

[30], (2) the structured-output regression forests (SO-RF)

in [27], (3) the regression forests based CLM (RF-CLM)

[7] and (4) betaface.com’s face detection module [1]. Since

betaface.com and Mix.Tree models combine face detec-

tion and landmarks detection, for fair comparison we build

our algorithm on top of a Viola-Jones face detector from

the Matlab computer vision toolbox. We manually discard

missed or incorrect detections (e.g. sometimes Mix.Tree

detected a half face) from all the methods when calcu-

lating the error. There are 74 missed face detections for

betaface.com, 113 for Mix.Tree and 89 for matlab Viola-

Jones detector. Mix.Tree failed to detect small faces be-

cause they were trained on high resolution face images.

The intersection test set then contains 776 images (555 in

AFLW TestI and 221 in AFLW TestII). We compare re-

sults of 12 common points to betaface.com and Mix.Tree

as shown in Figure 8a and Figure 8b. On the AFLW TestI

we see that both CRF-S and our method perform better than

Mix.Tree and betaface.com. On AFLW TestII, CRF-S per-

forms significantly worse while the other two methods, and

our method have more stable performance. Our method has

the best performance on both testing sets. In Figure 8c we

compare the average localization error of all the 18 inter-

nal points on a face (the chin center is excluded) of our

method with SO-RF and RF-CLM. We train SO-RF model

on AFLW using the code in [27] using the same experimen-

tal setting as that of CRF-S and compare the reported result

of RF-CLM. The markup of RF-CLM is slightly different

since their results are for 17 points and two are annotated

by the authors. Our method performs on par with RF-CLM

and better than SORF and CRF-S though both RF-CLM and

SORF are based on shape model fitting. An example im-

age is shown in Figure 9 where our method performs better

than not only the local detection method, like CRF-S, but

also the ones using shape models such as [30, 27]. In ad-

dition, we have found that in terms of computational com-

plexity and in terms of how well it deals with low quality

images, our method performs considerably better than the

Mix.Tree model. However, as shown in Figure 10, unlike

the Mix.Tree, our method fails on side view faces since we

have not used such images in training.

Figure 9: Left to right: Results for Mix.Tree, betaface.com,

CRF-S, SO-RF and our method on an image from AFLW.

The blue dots are the 12 common points listed in Figure 8a.
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Figure 10: An example image from AFW [30] with results

from Mix.Tree (Left) and our method (Right)

5. Conclusion and Future Work

In this paper we have proposed a cascade of sieves that

are able to refine votes from regression forests for facial

feature detection. By doing so, the Hough map of each

facial point is only built on reliable votes. Our proposed

framework achieves the state-of-the-art results on two pub-

lic challenging datasets with face images in the wild, with-

out resorting to explicit shape models.

Our results raise some interesting questions. Other than

the face center consistency, can we develop more efficient

ways to measure the quality of the votes before accumulat-

ing them into the Hough map? Can we extract more useful

middle-level features from the votes for high-level vision

tasks such as to measure the face similarity and to recognize

the facial expression? We plan to investigate these questions

in our future work.
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