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Abstract

We present a method to track the precise shape of a dy-
namic object in video. Joint dynamic shape and appear-
ance models, in which a template of the object is propa-
gated to match the object shape and radiance in the next
frame, are advantageous over methods employing global
image statistics in cases of complex object radiance and
cluttered background. In cases of complex 3D object mo-
tion and relative viewpoint change, self-occlusions and dis-
occlusions of the object are prominent, and current meth-
ods employing joint shape and appearance models are un-
able to accurately adapt to new shape and appearance in-
formation, leading to inaccurate shape detection. In this
work, we model self-occlusions and dis-occlusions in a joint
shape and appearance tracking framework. Experiments on
video exhibiting occlusion/dis-occlusion, complex radiance
and background show that occlusion/dis-occlusion model-
ing leads to superior shape accuracy compared to recent
methods employing joint shape/appearance models or em-
ploying global statistics.

1. Introduction
In many video processing applications, such as post-

production of motion pictures, it is important to obtain the

shape (silhouette) of the object of interest at each frame

in a video. Although many methods have been proposed,

much work remains. Many existing tracking methods (e.g.,

[21, 11, 7, 12]) are built on top of partitioning the image into

foreground and background based on global image statis-

tics (e.g., color distributions, edges, texture, motion), which

is advantageous in obtaining shape of the object. How-

ever, in tracking objects with complex radiance and clut-

tered background, partitioning the image based on global

statistics may not yield the object as a partition. An alterna-

tive approach is to deform a template (the radiance function

defined on the region of the projected object) to match the

object in shape and radiance in the next frame (the deformed

shape yields the object of interest). We will refer to this al-

ternative approach as joint shape/appearance matching.

A difficulty in tracking by joint shape/appearance match-

ing is that 3D object and camera motion imply that parts

of the object come into view (dis-occlusions) and go out

of view (occlusions); therefore, an initially accurate tem-

plate, even when warped through a non-rigid deformation,

becomes an inaccurate model of the object in later frames.

Thus, it is necessary to update the template by removing

occluded regions and including dis-occluded regions.

In this work, we model self-occlusions and dis-

occlusions in tracking by joint shape/appearance match-
ing. Small frame rate implies moderately large non-rigid

deformation of the projected object between frames. Thus,

we represent the large non-rigid deformation as an integra-

tion of a time-varying vector field (see e.g.,[5]) defined on

evolving region (or domain of interest). Since an occlusion

is the part of the template that does not correspond to the

next frame, occlusions and the deformation are coupled, and

thus, a joint optimization problem in the large deformation

and occlusion is setup, and a simple, efficient algorithm is

derived. We note that dis-occlusions can be detected only

with priors on the object. We show how to use a prior that

the object radiance is self-similar, so that dis-occluded re-

gions between frames can be detected by measuring image

similarity to the current template. To ensure robust esti-

mates of the object’s radiance across frames, recursive fil-

tering is used.

Contributions: Our main contribution is to formu-

late self-occlusions and dis-occlusions in tracking by joint

shape/appearance matching. Occlusions have been modeled

in shape tracking, but existing works do so either in a frame-

work with simpler models of radiance (e.g., [7]), i.e., color

histograms, or are layered models with complex radiance

(e.g., [16]) that can cope with occlusions of one layer on

another, but not self -occlusions or dis-occlusions. Second,

we solve dis-occlusions with the similarity prior mentioned

above.

1.1. Related Work

Most shape tracking techniques (e.g., [15, 21, 11, 7]) ex-

tend image segmentation techniques such as active contours

(e.g., [17, 9, 20, 10]). These techniques build on discrim-
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inating the foreground and background using global im-

age statistics (e.g., color distributions, texture, edges, mo-

tion). However, when the object has complex radiance and

is within cluttered background, discriminating global image

statistics leads to errors in the segmentation. Some methods

try to resolve this issue by using local statistics (e.g., [18]).

Other methods use temporal consistency to predict the ob-

ject location / shape in the next frame (e.g., [15, 21, 25]) to

provide better initialization to frame partitioning. In [11],

dynamics of shape are modeled from training data, con-

straining the solution of frame partitioning; however, train-

ing data is only available in restricted scenarios. While pro-

viding improvements, images with complex object radiance

and cluttered background still pose a significant challenge.

We approach shape tracking by joint shape/appearance

matching. We use a radiance model that is a dense function

defined on the projected object. Dense radiance functions

have been used (e.g., [8, 13]) for tracking via matching to

the next frame. However, they are box trackers, and do not

provide shape. In [16, 3], a joint model of radiance and

shape of the object and background is used, however, self -

occlusions and dis-occlusions are not modeled.

Occlusions have been considered in optical flow. In

[1, 6], forward and backward optical flows are computed,

and the occluded region is the set where the composition

of these flows is not the identity. In [24, 28], an occlusion

is the set where the optical flow residual is large. In [26],

occlusion boundaries are detected by discontinuities of op-

tical flow. In [2], joint estimation of the optical flow and oc-

clusions is performed. In [22], dense trajectory estimation

across multiple frames with occlusions is solved. We use

ideas of occlusions in [2], and apply them to shape tracking

where additional considerations must be made for evolving

the shape, dis-occlusions, and larger deformations.

2. Dynamic Model of the Projected Object
In this section, we give our dynamic model of the

shape and radiance of the 3D object projected in the imag-

ing plane. From this, the notion of occlusions and dis-

occlusions is clear. The dynamic model is necessary for

the recursive estimation algorithm in Section 5.

LetΩ ⊂ R
2, and I : {1, 2, . . . , N}×Ω→ R

k denote the

image sequence (N frames) that has k channels. We denote

frame t by It. The camera projection of visible points on

the 3D object at time t is denoted by Rt, which we refer

to as “shape” or region. The projected object’s radiance is

denoted at, and at : Rt → R
k. Our dynamic model of the

region and radiance (see Fig. 1 for a diagram) is

Rt+1 = wt(Rt\Ot) ∪Dt+1 (1)

at+1(x) =

{
at(w

−1
t (x)) + ηt(x) x ∈ wt(Rt\Ot)

adt+1(x) + ηt(x) x ∈ Dt+1

(2)

(Rt, at) (Rt+1, at+1)

Ot (adt+1, Dt+1)

wt

Figure 1: Diagram illustrating our dynamic model. Left:

template (Rt, at) (non-gray), right: It+1. Self-occlusions

Ot, dis-occlusions Dt+1 and its radiance at+1
d , the region at

frame t+1 is Rt+1 (inside the green contour), and the warp

is wt, which is defined in Rt\Ot. The curved black line is a

self-occlusion since the arm moves towards the left.

where Ot denotes the subset of Rt that is occluded from

view in frame t+1, Dt+1 denotes the subset of the projected

object that is disoccluded (comes into view) at frame t +
1, adt+1 : Dt+1 → R

k is the radiance of the disoccluded

region, and wt maps points that are not occluded in Rt to

Rt+1 in the next frame. The warp wt is a diffeomorphism

on the un-occluded region Rt\Ot (it will be extended to all

of Rt: see Section 3 for details), which is a transformation

arising from viewpoint change and 3D deformation.

The region Rt\Ot, is warped by wt and the dis-occlusion

of the projected object, Dt+1, is appended to the warped re-

gion to form Rt+1. The relevant portion of the radiance,

at|(Rt\Ot) is transfered via the warp wt to Rt+1 (as usual

brightness constancy), noise added, and then a newly visi-

ble radiance is obtained in Dt+1. The noise models devi-

ation from brightness constancy (e.g., non-Lambertian re-

flectance, small illumination change, noise, etc...).

Organization of the rest of the paper: A template

(a0, R0) of the object is given. Our goal is, given an es-

timate of Rt, at, and It+1 to estimate Rt+1 in It+1. In

Section 3, we derive the method for determining wt, the oc-

clusion Ot, and wt(Rt\Ot) (the warping of the unoccluded

region). In Section 4, we derive a method, given wt(Rt\Ot)
and It+1, to estimate the dis-occlusion of the object, Dt+1.

In Section 5, we derive a recursive estimation procedure and

integrate all steps. See Fig. 2 for a system overview.

3. Occlusions and Deformation Computation
In this section, we model the warp wt as an integration of

a time-varying vector field (see e.g., [5]) to obtain large de-

formations and (with sufficient regularity) a diffeomorphic

registration. While this representation of a warp is standard,

there are important differences in this work: 1) the vector

field is defined on an evolving region and the target region

in the next frame is unknown, and 2) part of the region is
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template target warped template occlusion map occlusion removed dis-occlusion dis-occlusion added

(at, Rt) It+1 at ◦ wt, wt(Rt) wt(Ot) wt(Rt\Ot) Dt+1 (at+1, Rt+1)

(a) Input (b) Section 3 (c) Section 4 (d) Section 5

Figure 2: Illustration of frame processing in our algorithm. (a): Estimate at frame t of the shape and radiance (at, Rt),
and the next image It+1. (b): Simultaneous non-rigid warping and occlusion estimation is performed (first image: warped

template at ◦ wt, second: boundary of warped template in It+1, third: warped occlusion wt(Ot) determined, fourth: warped

template with warped occlusion removed wt(Rt\Ot), fifth: boundary of wt(Rt\Ot)). (c): Dis-Occlusion Dt+1 in It+1

determined from input wt(Rt\Ot). (d): Final shape and radiance (at+1, Rt+1) in frame t+1 (adding dis-occlusion Dt+1 to

wt(Rt\Ot)). Shaded gray regions indicates not defined.

occluded, and the occlusion must be determined.

An occlusion of region Rt is the subset of Rt that goes

out of view in frame t + 1. We compute occlusions as the

subset of Rt that does not register to It+1 under a viable

warp. Thus, the occlusion depends on the warp, but to de-

termine an accurate warp, data from the occluded region

must be excluded, hence a circular problem. As suggested

in [2] for optical flow, occlusion detection and registration

should be computed jointly.

3.1. Energy Formulation

We avoid subscripts t for ease of notation in the rest of

this section. We formulate the problem of given a region

R ⊂ Ω, the radiance a : R → R
k, and I : Ω → R

k to

compute the occluded part O of R, the warp w defined on

R\O, and w(R\O) such that I(x) = a(w−1(x))+η(x) for

x ∈ w(R\O) (where η is noise modeled in (2)).

The warp w is a diffeomorphism in the unoccluded re-

gion R\O. For ease in the optimization (see [14]), we con-

sider w to be a diffeomorphism on all of R; the warp of

interest will be the restriction to R\O. The map w is the

integration of a smooth time varying velocity field:

w(x) = φT (x), φτ (x) = x+

∫ τ

0

vs(φs(x)) ds, (3)

where x ∈ R, T > 0, vτ : Rτ → R
2 is a velocity field

(defined on Rτ = {φτ (x) : x ∈ R}), and φτ is defined

on R for every τ ∈ [0, T ]. The map φτ is such that φτ (x)
indicates the mapping of x after it flows along the velocity

field for time τ , which is an artificial time parameter.

We formulate the energy (to be optimized in O,w):

Eo(O,w; I, a,R) =

∫
R\O

|I(w(x))− a(x)|2 dx+

α

∫ 1

0

∫
Rτ

|∇vτ (x)|2 dx dτ + βoArea(O). (4)

Regularization of w is needed due to the aperture ambigu-

ity, and velocity vτ regularization ensures smoothness of w.

The occlusion area penalty is needed to avoid the trivial so-

lution O = R. Given a moderate frame rate of the camera,

it is realistic to assume that the occlusion is small in area

compared to the object. Note that although w is defined on

all of R, a needs only to warp to I in the unoccluded region

as the data term excludes O.

3.2. Approximate Optimization of Eo

While the lofty goal is to minimize the energy Eo (4)

subject to (3) via a gradient descent, in the interest of com-

putational speed and simplicity, we use a greedy algorithm

to obtain a sub-optimal solution rather than computing the

full Euler-Lagrange equations. The idea is: starting at

τ = 0, solve for the incremental velocity vτ jointly with an

estimate of the occlusion (then linearization of the energy is

valid), deform the region Rτ by the velocity vτ , deform the

radiance a by the accumulation of velocity φ−1
τ , and repeat

the procedure (until convergence of the region Rτ ) with the

deformed radiance aτ = a ◦ φ−1
τ and deformed region Rτ .

The optimization scheme is the following equations:

a0 = a, Ψ0(x) = dR(x), φ−1
0 (x) = x (5)

Rτ = {Ψτ ≤ 0}, (6)

vτ , Oτ = argmin
v,O

Ẽo(v,O; I, aτ , Rτ ) (7)

∂τΨτ (x) = −∇Ψτ (x) · vτ (x), x ∈ B2(Rτ ), (8)

∂τφ
−1
τ (x) = −∇φ−1

τ (x) · vτ (x), x ∈ Rτ , (9)

aτ (x) = a ◦ φ−1
τ (x), x ∈ Rτ , (10)

where ∂τ denotes partial with respect to τ , and B2(Rτ ) =
{x ∈ Ω : |dRτ (x)| ≤ 2} where dRτ is the signed distance

function of Rτ . The function Ψτ : Ω → R is a level set

function [19] for the region Rτ , and the evolution of Ψτ is

given by the transport equation (8), i.e., the region Rτ is

updated in direction of the velocity vτ : Rτ → R
2. Note vτ
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is extended to B2(Rτ ) as in narrowband level set methods.

The backward warp φ−1
τ : Rτ → R is computed by flowing

the identity map along the velocity field vτ up to time τ , and

this can be accomplished by the transport equation (9). The

radiance in the warped region, aτ : Rτ → R
k, is computed

at a point by using the value of the original radiance at the

back-warping of the point (10).

The energy in (7) is a linearized version of Eo:

Ẽo(v,O; I, aτ , Rτ ) = α

∫
Rτ

|∇v(x)|2 dx+ βoArea(O)

+

∫
Rτ\O

|I(x)− aτ (x) +∇aτ (x) · v(x)|2 dx. (11)

The energy must be optimized jointly in v and O. The

global optimum in v can be obtained given O, and vice-

versa. Thus, we use an alternating optimization scheme.

Given O, the global optimal for v is determined from

−αΔv(x) =

{
F (x)∇aτ (x) x ∈ Rτ\O
0 x ∈ O

(12)

F (x) = I(x)− aτ (x) +∇aτ (x) · v(x) (13)

with Neumann boundary conditions on ∂Rτ . The above

equation is solved efficiently with a conjugate gradient

solver. Given v, the solution for O is

O = {x ∈ Rτ : (Gσ ∗ F 2)(x) > βo}, (14)

where Gσ is a Gaussian smoothing filter. The global op-

timum for O is when σ = 0, but smoothing is applied to

ensure a spatially regular O. To optimize Ẽo, O is initially

chosen to be the empty set, then (12) is solved, then the

occlusion is updated using (14), and the process is iterated

until convergence (i.e., the set O does not change).

Due to large displacement of the object between frames,

we perform the optimization in a coarse-to-fine manner: at

initial time τ the regularity parameter α is chosen large until

convergence of the energy Ẽo, then α is lowered (to capture

finer details) at larger time τ , and the process is iterated until

convergence of Ẽo. Fig. 3 shows the evolution procedure

(5)-(10) illustrated on an example.

Let τ = T be the time of convergence, Rτ=T - a warping

of R includes a warping of the occluded region Oτ=T , and

thus the warping of the un-occluded region is w(R\O) =
R′

T = Rτ=T \Oτ=T , and does not include the disoccluded

region, which is computed in the next section from R′
T .

For more details and discretization, see [27].

4. Dis-Occlusion Computation
In this section, we describe the computation of the dis-

occlusion Dt+1 ⊂ Ω of the object at frame t + 1 given

the warped unoccluded part of the region wt(Rt\Ot) de-

termined from the previous section, and the image It+1. To

Figure 3: Occlusion estimation and warping. [Top to bot-

tom]: Beginning (τ = 0), intermediate, and final stages of

evolution. [1st column]: radiance aτ , [2nd]: target image I
and boundary of Rτ , [3rd]: velocity vτ , [4th]: occlusion es-

timation F 2 at time τ , [5th]: optical flow color code. The

final occluded region is shown in Fig. 2(b).

determine the disoccluded region of the object (the region of

the projected object that comes into view in the next frame

that is not seen in the current template), it is necessary to

make a prior assumption on the 3D object.

A realistic assumption is self-similarity of the 3D ob-

ject’s radiance (that is, the radiance of the 3D object in a

patch is similar to other patches). To translate this prior into

determining the dis-occlusion of the object Dt+1, we as-

sume that the image in the disoccluded region of the object

is similar to parts of the image It+1 in wt(Rt\Ot), and for

computationally efficiency, we assume similarity to close-

by parts of the template. This is true in many cases, and is

effective as shown in the experiments.

Although dis-occlusions in image It+1 are parts of the

image that do not correspond to It (i.e., an occlusion back-

ward in time), these parts may be a dis-occlusion of the ob-

ject or the background. It is not possible to determine with-

out additional priors which dis-occlusions are of the object

of interest. Our method works directly from the prior with-

out having to compute a backward warp.

4.1. Energy Formulation of Dis-Occlusions

We now setup an optimization problem for the dis-

occlusion. To simplify notation, we avoid subscripts in

Dt+1 and It+1, and denote R′ = wt(Rt\Ot). The energy

is

Ed(D) = −
∫
D

p(x) dx+ βdArea(D) (15)

where D ⊂ Ω\R′, p(x) ≥ 0 denotes the likelihood that

x ∈ Ω\R′ belongs to the dis-occluded region, and βd > 0
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Br(cl(x)) ∩ {dR′ > ε}
{0 < dR′ ≤ ε}

R′
Br(cl(x))

Br(cl(x)) ∩R′

cl(x)

x

disocclusion

Figure 4: Diagram of quantities used in the likelihood
p(x) of a disoccluded pixel. The dark gray region is the

dis-occlusion to be determined. Light gray region is R′,
region before the dis-occlusion is determined. A pixel x
within the band {0 < dR′ ≤ ε} is depicted, and its closest

pixel to R′, cl(x). The green (blue) region is where the

foreground (background) distribution pcl,f (x) (pcl,b(x)) is

determined.

is a weight. The dis-occluded region, assuming a moderate

camera frame rate, is small in area compared to the pro-

jected object, hence the penalty on area.

Let cl(x) denote the closest point of R′ to x, and

let Br(x) denote the ball of radius r about the point x.

We choose p(x) to have two components (see diagram in

Fig. 4.): one that measures the fit of I(x) to the local dis-

tribution of I within Br(cl(x)) ∩R′ versus the background

Br(cl(x)) ∩ {dR′ > ε} in I , and the second that measures

nearness of x to R′. One choice of p is

p(x) ∝ exp
[
−dR′(x)2

2σ2
d

+ pcl(x),f (I(x))− pcl(x),b(I(x))

]
(16)

where dR′(x) indicates the Euclidean distance from x to R′,
pcl(x),f , pcl(x),b are Parzen estimates of the intensity distri-

bution of I in Br(cl(x))∩R′ (resp. Br(cl(x))∩{dR′ > ε})
where ε is chosen large enough so that the region includes

some background beyond the dis-occlusion.

4.2. Optimization of Ed

The global minimum of Ed is computed in a threshold-

ing step from the likelihood p. Since p decreases exponen-

tially with distance to R′, we assume that D ⊂ {0 < dR′ <
ε}. The dis-occlusion is computed as

D = {x : dR′(x) ∈ (0, ε], (Gσ ∗ p)(x) > βd} (17)

where σ = 0 corresponds to the global optimum, but to

ensure spatial regularity of D, we choose σ > 0. The choice

of βd is based on the frame-rate of the camera and the speed

of the object (the more the speed and the less the frame-

rate, the smaller βd). Fig. 5 shows an example of p, the

dis-occlusion detected, and the final estimate of the region.

Computation of dR′ in {0 < dR′ < ε} is done efficiently

with the Fast Marching Method [23], and cl(x) at each point

is simultaneously propagated as the front in the Fast March-

ing Method evolves. Then p is readily computed.

Figure 5: Illustration of disocclusion detection. [1st]:

warped unoccluded radiance defined on R′ (after occlusion

and deformation computation), [2nd]: target image I , [3rd]:

likelihood of dis-occlusion map p (defined in BR′(ε)), [4th]:

computed dis-occlusion D (white), and [5th]: final radiance.

Boundary of final region super-imposed on I is in Fig. 2 (d).

5. Filtering Radiance Across Frames
We integrate the results of occlusion/deformation esti-

mation and dis-occlusion estimation into a final estimate of

the shape and radiance in each frame. To deal with model-

ing noise (specified in (2)), we filter the radiance in time.

Given the image sequence It, t = 1 . . . , N and an initial

template R0 ⊂ Ω, a0 : R0 → R
k, the final algorithm is as

follows. For t = 1, . . . , N , the following steps are repeated:

1. Compute the warping of Rt−1 and Ot−1: wt−1(Rt−1)
and wt−1(Ot−1), resp., and a′

t = at−1 ◦ w−1
t−1 de-

fined on wt−1(Rt−1) using the optimization scheme

described in Section 3.2 with input Rt−1, at−1 and It.

2. Given R′
t = wt−1(Rt−1)\wt−1(Ot−1), the warping of

the unoccluded part of Rt−1, and the image It, com-

pute the dis-occlusion Dt using (17). The estimate of

Rt is then R′
t ∪Dt.

3. The radiance is then updated as

at(x) =

{
(1−Ka)a

′
t(x) +KaIt(x) x ∈ R′

t

It(x) x ∈ Dt

(18)

where Ka ∈ [0, 1] is the gain.

The averaging of the warped radiance and the current im-

age (18) combats modeling noise η in (2). In practice, Ka

is chosen large if the image is reliable (e.g., no specular-

ities, illumination change, noise, or any other deviations

from brightness constancy), and small otherwise.

6. Experiments and Comparisons
We demonstrate our method on a variety of videos that

contain self-occlusions/disocclusions. All examples shown

have over 100 frames (all videos are in Supplementary Ma-

terial). To demonstrate that occlusion/dis-occlusion mod-

eling aids joint shape/appearance tracking, we compare to

Adobe After Effects CS6 2012 (AAE) (based on [4]), which

employs localized joint shape and appearance information
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without explicit occlusion modeling. Note that AAE has

an interactive component to correct errors in the automated

component; we compare to the automated component to

show less interaction would be required with our approach.

To show advantages over tracking using global statistics, we

compare to [12] (publicly available code), which employs

global statistics in addition to other advanced techniques.

Parameters are chosen as: σ = 5 in (17) and (14),

σd = 100 in the likelihood, p in (16), the band thickness for

the domain of p is ε = 30, and the radius of Br in pf,x and

pb,x is r = 3ε (i.e., a 6ε×6ε window). The threshold for the

occlusion stage is βo = Resmin+0.3×(Resmax−Resmin)
where Resmax (Resmin) denotes the maximum (minimum)

value of smoothed residual. The threshold for the dis-

occlusion stage is βd = 0.5 when p is normalized to

be a probability. The gain in the radiance update (18) is

Ka = 0.8. Most parameters can be fixed for the whole

video, and work on a wide range. Most significant parame-

ters are the β’s, and sensitivity analysis is shown in [27].

The first experiment (Fig. 6) shows that occlusion and

dis-occlusion modeling is vital. As the man in the se-

quence walks forward, his legs, arms and back are self-

occluded/disoccluded. Ignoring occlusions (setting O = ∅
in Section 3.2) and dis-occlusion detection, the shape is in-

accurate (first row). Using occlusion modeling but not dis-

occlusions (second row), it is possible to discard the portion

of the background between the legs, and the occluded right

hand in the first frame is removed. Using the dis-occlusion

modeling but not occlusions (third row), disoccluded parts

of the body are detected. However, irrelevant regions of the

background (that can be removed in the occlusion stage) are

captured. Best results (last row) are achieved when both the

occlusion and dis-occlusions are modeled. The fourth row

shows the result of [12], which has trouble discriminating

between face and the background, which share similar radi-

ance. The fifth row shows the result of Adobe After Effects

2012 (AAE), which captures irrelevant background.

Fig. 7 shows tracking of a fish and a skater. When fore-

ground/ background global histograms are easily separable,

[12] performs well, and when occlusions are minor AAE,

performs well as does the proposed method.

In Fig. 8, we have tested our algorithm on challeng-

ing video (more than 100 frames per sequence) exhibiting

self-occlusions and dis-occlusion (crossing legs, viewpoint

change, rotations in depth), complex object radiance and

background in which it becomes difficult to discriminate

between foreground and background global statistics (e.g.,

the woman’s pants have same radiance as car tires). Devia-

tions from brightness constancy are clearly visible (small

illumination change, specular reflections, and even shad-

ows). The latter are handled with our dynamic radiance

update. In these sequences, the methods [12] and Adobe

After Effects 2012 (AAE) have trouble discriminating be-

Figure 6: Modeling Occlusions/Dis-Occlusions is Nec-
essary. [1st row]: occlusion/dis-occlusion detection are

turned off in our method. [2nd]: occlusion modeling done,

but not dis-occlusions in our method. [3rd]: dis-occlusions

detected but not occlusions. [4th]: result of [12]. [5th]: result

of AAE [4]. [6th]: accurate tracking when both occlusion

and dis-occlusion modeling is performed (our final result).

tween object and background which share portions of sim-

ilar intensity, and occlusions (e.g., crossing of legs). In the

“Lady Mercedes,” sequence (top left), after a few frames,

[12] can only track the head of the lady. This is because

the lady’s clothing shares similar intensity as the tires of the

car and some of the background. Thus, the tracker confuses

the clothing with the background and only tracks the head,

which has different statistics from the rest of the images.
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Figure 7: Distinctive foreground/background global
statistics. [Top]: [12], [Middle]: AAE, [Bottom]: proposed

method. When fore/background global statistics are separa-

ble, [12], and AAE, for minor occlusions, performs well.

Sequence Scribbles [12] Adobe Effects 2012 [4] Ours

Library 0.8926 0.9193 0.9654

Fish 0.9239 0.9513 0.9792

Skater 0.8884 0.6993 0.9086

Lady 0.2986 0.8243 0.9508

Station 0.5367 0.8258 0.9216

Hobbit 0.7312 0.5884 0.9335

Marple 0.6942 0.8013 0.9186

Figure 9: Quantitative performance analysis. Average F-

measure (over all frames) computed from ground truth are

shown. Larger F-measure means better performance.

Our method is able to capture the shape of the objects quite

well (quantitative assessment is in Fig. 9). The man at the

station (top right group) at the fourth column shows a limi-

tation of our dis-occlusion detection: dis-occluded parts of

the object that do not share similar radiance as the current

template (sole of shoe) are not detected.

Lastly, we state the running time of our algorithm on a

standard Intel 2.8GHz dual core processor. Note that the

speed will depend on a variety of factors such as the size

of the object and amount of deformation between frames.

On HD 720 video, it is on average 8 seconds per frame for

sequences in Fig. 8 (in C++), while AAE takes 1 second.

Speed-ups are possible, e.g., the joint velocity and occlusion

computation can be sped up using a multi-scale procedure.

7. Conclusion
The proposed technique for shape tracking is based on

jointly matching shape and complex radiance (defined as a

function on the region) of the object across frames. Self-

occlusions and dis-occlusions pose a challenge for joint

shape/appearance tracking, which were modeled and com-

puted in a principled framework in this work. Experi-

ments demonstrated the criticality of modeling occlusions

and dis-occlusions. Comparison to recent methods built

on global image statistics foreground/background separa-

tion and joint shape/appearance modeling without occlusion

modeling demonstrated the effectiveness of the proposed al-

gorithm in situations of complex object/background radi-

ance, and self-occlusions/dis-occlusions.

Future work includes full occlusions of the object by

other objects, and improving dis-occlusion detection.
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