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Abstract

Color, infrared, and flash images captured in different
fields can be employed to effectively eliminate noise and
other visual artifacts. We propose a two-image restoration
framework considering input images in different fields, for
example, one noisy color image and one dark-flashed near-
infrared image. The major issue in such a framework is
to handle structure divergence and find commonly usable
edges and smooth transition for visually compelling image
reconstruction. We introduce a scale map as a competent
representation to explicitly model derivative-level confi-
dence and propose new functions and a numerical solver
to effectively infer it following new structural observations.
Our method is general and shows a principled way for
cross-field restoration.

1. Introduction

Images captured in dim light are hardly satisfactory.

They could be very noisy when increasing ISO in a short

exposure duration. Using flash might improve lighting;

but it creates unwanted shadow and highlight, or changes

tone of the image. The methods of [6, 14, 1] restore a

color image based on flash and non-flash inputs of the same

scene. Recently, because of the popularity of other imaging

devices, more computational photography and computer

vision solutions based on images captured under different

configurations were developed.

For example, near infrared (NIR) images are with a sin-

gle channel recording infrared light reflected from objects

with spectrum ranging from 700nm-1000nm in wavelength.

NIR images contain many similar structures as visible color

ones when taken from the same camera position. This

enables a configuration to take an NIR image with less

noisy details by dark flash [11] to guide corresponding noisy

color image restoration. The main advantage is on only

using NIR flash invisible to naked human eyes, making

(a) RGB Image (b) NIR Image

(c) Close-up Comparison

Figure 1. Appearance comparison of RGB and NIR images. (a)

RGB image. (b) Corresponding NIR image. (c) Close-ups. The

four columns are for the R, G, B, and NIR channels respectively.

it a suitable way for daily portrait photography and of

remarkable practical importance.

In previous methods, Krishnan et al. [11] used gradients

of a dark-flashed image, capturing ultraviolet (UV) and NIR

light to guide noise removal in the color image. Considering

rich details in NIR images, Zhang et al. [20] enhanced

the RGB counterpart by transferring contrast and details via

Haar wavelets. In [21] and [16], the detail layer was manip-

ulated differently for RGB and haze image enhancement.

Several methods also explore other image fusion appli-

cations in two-image deblurring [19], matting [17], tone

mapping [7], upsampling [10], context enhancement [15],

relighting [2], to name a few. Bhat et al. [3] proposed

GradientShop to edit gradients, which can also be used to

enhance images.
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We note existing methods work well for their respective

applications by handling different detail layers or gradients

from multiple images. But in terms of two-image high-

quality restoration, there remain a few major and fundamen-

tal issues that were not sufficiently addressed. We take the

RGB-NIR images shown in Fig. 1 as an example to reveal

the noticeable difference in detail distribution and intensity

formation. Structure inconsistency existing for many pixels

can be categorized as follows.

• Gradient Magnitude Variation. In the first row of

Fig. 1(c), letter “D” is with different contrast. It is due

to varied reflectance to infrared and visible light.

• Gradient Direction Divergence. In the second row,

edge gradients have opposite directions in the two

images, which cause structural deviation.

• Gradient Loss. In the last row, the characters are

completely lost in the NIR image.

• Shadow and Highlight by Flash. If one uses flash

only for the NIR image, it inevitably generates high-

light/shadow that is not contained in the other image.

Examples are presented later.

These issues are caused by inherent discrepancy of

structures in different types of images, which we call cross-
field problems. The algorithms to address them can be

generally referred to as cross-field image restoration. Sim-

ple joint image filtering [18, 8] could blur weak edges due

to the inherent smoothing property. Directly transferring

guidance gradients to the noisy field also results in unnatural

appearance.

In this paper, we propose a framework via novel scale

map construction. This map captures the nature of structure

discrepancy between images and has clear statistical and

numerical meanings. Based on its analysis, we design

functions to form an optimal scale map considering adap-

tive smoothing, edge preservation, and guidance strength

manipulation. Aforementioned cross-field issues are dis-

cussed and addressed in this framework. We also develop

an effective solver via robust function approximation and

problem decomposition, which converges in less than 5

passes compared to other gradient decent alternatives that

may need tens or hundreds of iterations.

2. Modeling and Formulation
Our system takes the input of a noisy RGB image I0

and a guidance image G captured from the same camera

position. G can be a dark-flashed NIR image or others

with possible structure variation as discussed above. Other

cross-field configurations are allowed in our framework,

presented in Section 4. Pixel values in each channel are

scaled to [0, 1]. G and I0 could have different number of

channels. Our goal is to recover an image from I0 with

Figure 2. Optimal scale map s computed from images in Fig. 1

according to Eq. (1). Dark to bright pixels correspond to negative

to positive values in different scales.

(a) 2D Images

(b) 1D Signal of Gradient

(c) 1D Signal of Maps
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Figure 3. 1D illustration. (a) Patch in the color image, NIR image

and s map. Plot (b) contains gradients along the vertical line in the

top two patches. (c) shows corresponding s values. Most of them

are zeros; positive and negative values also exist.

noise removed and structure retained. We process color

channels separately.

We introduce an auxiliary map s with the same size as

G, which is key to our method, to adapt structure of G to

that of I∗ – the ground truth noise-free image. The s map is

defined under condition

min ‖∇I∗ − s · ∇G‖. (1)

Here ∇ is an operator forming a vector with x- and y-

direction gradients. Each element si in map s, where

i indexes pixels, is a scalar, measuring robust difference

between corresponding gradients in the two images. Simply

put, s is a ratio map between the guidance and latent images.

The optimal s corresponding to the cross-field example in

Fig. 1 is shown in Fig. 2, visualized as a color image after
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pixel-wise value normalization to [0,1].

We analyze the properties of s with regard to structure

discrepancy between ∇G and ∇I∗, and present them as

follows with the illustration in Fig. 3.

Property of s First, sign of each si can be either positive

or negative. A negative si means edges exist in the two

images, but with opposite directions, as demonstrated in

Fig. 3(c). Second, when the guidance image G contains

extra shadow and highlight caused by flash, which are

absent in ∇I∗, si with value 0 can help ignore them.

Finally, si can be any value when ∇Gi = 0 – that is,

guidance edge does not exist, such as the red letters in Fig.

3(a). In this case, under local smoothness, si being 0 is a

good choice.

In short, an optimal s map should be able to represent

all these structure discrepancies. It is first-of-a-kind to avail

cross-field restoration. Its additional benefit is the special

role as latent variables to develop an efficient optimization

procedure.

More of the Function We denote by I our estimate

towards I∗. Eq. (1) is updated to

min ‖∇I − s · ∇G‖. (2)

As it involves unknowns ∇I and s, which correlate, the

function is ill-posed. We take its variation as a data term

expression, together with regularization on s, to construct

an objective function.

2.1. Data Term about s

In |si∇Gi − ∇Ii|, where i indexes pixels, ∇Gi can be

analogously regarded as a scale map for si due to the dual

relation between si and ∇Gi. It controls the penalty when

computing si for different pixels. The final cost resulted

from |si∇Gi − ∇Ii| is dependent on the value of ∇Gi.

For example, if ∇Gi and ∇Ii are doubled simultaneously,

although s remains the same, the cost from |si∇Gi −∇Ii|
will get twice larger.

To stabilize costs w.r.t. si, we perform normalization

∑
i

|si − ∇xIi

∇xGi
|+ |si − ∇yIi

∇yGi
|, (3)

which is modulated by the two components of ∇Gi. It
removes the unexpected scaling effect caused by ∇Gi.
Further to avoid the extreme situation when∇xGi or∇yGi

is close to zero, and enlist the ability to reject outliers, we
define our data term as

E1(s, I) =
∑

i

(
ρ(|si−pi,x∇xIi|)+ρ(|si−pi,y∇yIi|)

)
, (4)

where ρ is a robust function defined as

ρ(x) = |x|α, 0 < α < 1. (5)

(a) Isotropic Smoothing (b) Anisotropic Smoothing

Figure 4. Isotropic versus anisotropic smoothing of the s map.

Result in (b) from anisotropic smoothing contains higher contrast

structure. The input images are shown in Fig. 5(a).

It is used to remove estimation outliers. We set α = 0.9
in experiments. pi,k, where k ∈ {x, y}, is a truncation

function

pi,k =
1

sign(∇kGi) ·max(|∇kGi|, ε) , (6)

where sign(x) is the sign operator, outputting 1 if

∇kGi is positive or zero and outputting -1 otherwise.

max(|∇kGi|, ε) returns the larger value between |∇kGi|
and ε. The threshold ε is used to avoid division by zero and

is set to 0.004 empirically.

2.2. Data Term for I

The data term for I is simply set as

E2(I) =
∑

i

ρ(|Ii − I0,i|), (7)

where ρ is the same robust function and I0,i is the color

of pixel i in I0. E2(I) requires the restoration result not

to wildly deviate from the input noisy image I0 especially

along salient edges. The robust function ρ helps reject part

of the noise from I0.

2.3. Regularization Term

Our regularization term is defined with anisotropic gra-

dient tensors [13, 4]. It is based on the fact that s values

are similar locally only in certain directions. For instance, s
values should change smoothly or be constant along an edge

more than those across it. As shown in Fig. 4, uniformly

smoothing s in all directions blurs sharp edges.

Our anisotropic tensor scheme preserves sharp edges

according to gradient directions of G. By a few algebraic

operations, an anisotropic tensor is expressed as

D(∇Gi) =
1

(∇Gi)2 + 2η2
((∇G⊥i )(∇G⊥i )T + η21), (8)

where∇G⊥i = (∇yGi,−∇xGi)T is a vector perpendicular

to ∇Gi, 1 is an identity matrix and scalar η controls the

isotropic smoothness. When ∇Gi is much smaller than
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η, Eq. (8) degrades to 0.5 · 1 and the structure tensor is

therefore isotropic.

Generally, the two orthogonal eigenvectors of D(∇Gi)
are

vi,1 =
∇Gi

|∇Gi| , vi,2 =
∇G⊥i
|∇Gi| , (9)

with corresponding eigenvalues

μi,1 =
η2

(∇Gi)2 + 2η2
, μi,2 =

(∇Gi)2 + η2

(∇Gi)2 + 2η2
. (10)

This decomposes the tensor to

D(∇Gi) =
(
vi,1 vi,2

)(μi,1 0
0 μi,2

)(
vT

i,1

vT
i,2

)
. (11)

This form makes it possible to express regularization for

each∇si as

E3(∇si) = μi,1(vT
i,1∇si)2 + μi,2(vT

i,2∇si)2. (12)

Different smoothing penalties are controlled by μi,1 and

μi,2 in directions vi,1 and vi,2, across and along edges

respectively. Stronger smoothness is naturally imposed

along edges. The final smoothing term is thus defined as

E3(∇s) =
∑

i

(
μi,1(vT

i,1∇si)2 + μi,2(vT
i,2∇si)2

)
. (13)

2.4. Final Objective Function

The final objective function to estimate the s map and

restore image I is written as

E(s, I) = E1(s, I) + λE2(I) + βE3(∇s), (14)

where λ controls the confidence on noisy image I0, and β
corresponds to smoothness of s. We describe their setting

in Section 4.

This objective function is non-convex due to the in-

volvement of sparsity terms. Joint representation for s and

I in optimization further complicates it. Naive gradient

decent cannot guarantee optimality and leads to very slow

convergence even for a local minimum. We contrarily

propose an iterative method, which finds constraints to

shape the s map according to its characteristics and yields

the effect to remove intensive noise from input I0.

3. Numerical Solution
To solve the non-convex function E(s, I) defined in

Eq. (14), we employ the iterative reweighted least squares

(IRLS), which make it possible to convert the original

problem to a few corresponding linear systems without

losing generality. This process, however, is still nontrivial

and needs a few derivations.

Initially, robust function ρ(x) in Eq. (5) for any scalar x
can be written as x2/|x|2−α, further approximated as

ρ(x) ≈ φ(x) · x2, (15)

where φ(x) is defined as

φ(x) =
1

|x|2−α + ε
. (16)

ε is a small number to avoid division by 0. We set it to

1E−4 empirically. This form splits the robust function into

two parts where φ(x) can be regarded as a weight for x2. In

our method, following the tradition of IRLS, φ(x) and x2

are updated alternatively during optimization because each

of them can work together with other necessary terms to

form simpler representations, profiting optimization.

Vector Form To ease derivation, we re-write Eq. (14) in

the vector form by taking the expression in Eq. (15) into

computation. It yields

E(s, I) =(s− PxCxI)T Ax(s− PxCxI)

+ (s− PyCyI)T Ay(s− PyCyI)

+ λ(I − I0)T B(I− I0) + βsT Ls, (17)

where s, I, and I0 are vector representations of s, I , and

I0. Cx and Cy are discrete backward difference matrices

that are used to compute image gradients in the x− and

y−directions. Px, Py , Ax, Ay and B are diagonal matrices,

whose i-th diagonal elements are defined as

(Px)ii = pi,x, (Ax)ii = φ(si − pi,x∇xIi),
(Py)ii = pi,y, (Ay)ii = φ(si − pi,y∇yIi),

Bii = φ(Ii − I0,i).

Among them, Ax, Ay and B account for the re-weighting

process and are typically computed using estimates from

previous iterations – Px and Py are normalization terms

from the guidance image. The first three terms in Eq. (17)

correspond to terms E1 and E2; sT Ls is created by E3.

Note the last term sT Ls controls spatial smoothness of s,
where matrix L is a smoothing Laplacian, expressed as

L = CT
x (Σ1V

2
x + Σ2V

2
y )Cx

+ CT
y (Σ2V

2
x + Σ1V

2
y )Cy + 2CT

y (Σ1 −Σ2)VxVyCx (18)

after a bit complicated derivations. Σ1, Σ2, Vx, and Vy are

all diagonal matrices. Their i-th diagonal elements are

(Σ1)ii = μi,1, (Vx)ii = ∇xGi/ max(|∇Gi|, ε),
(Σ2)ii = μi,2, (Vy)ii = ∇yGi/ max(|∇Gi|, ε).
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Algorithm 1 Cross-Field Image Restoration.

1: input: noisy image I0, guidance image G, parameters

β and λ
2: initialize I ← I0, s ← 1
3: repeat
4: estimate s according to Eq. (21)

5: estimate I according to Eq. (23)

6: until convergence

7: output: s map and restored image I

Analysis We note L is actually an inhomogeneous term,

reflecting the anisotropic property of our smoothing regu-

larizer. To understand it, consider the extreme case that∇G
approaches zero. It leads to Σ1 = Σ2 and Vx = Vy =
0, making L a homogenous Laplacian. The resulting s
map is therefore smooth in all directions. But in natural

images, ∇G on an edge is not isotropic and should be with

nonuniform regularization strength. Also, sparse Cx and

Cy lead to the sparse Laplacian matrix L, which facilitates

optimization because many mature sparse-matrix solvers

exist in this community already.

3.1. Solver

We solve for s and I based on above derivations. Results

of s and I in each iteration t are denoted as s(t) and I(t).
Initially, we set s(0) = 1, whose elements are all 1s and

I(0) = I0.

By setting all initial si to 1s, total smoothness is ob-

tained. It yields zero cost for E3(s), a nice starting point

for optimization. This initialization also makes the starting

∇I same as ∇G with many details. Then at iteration t + 1,

we solve two subproblems alternatively

• Given s(t) and I(t), minimize E(s, I(t)) to get s(t+1).

• Given s(t+1) and I(t), minimize E(s(t+1), I) to update

I(t+1).

The procedure is repeated until s and I do not change

too much. Usually, 4-6 iterations are enough to generate

visually compelling results. The algorithm is depicted in

Algorithm 1, with the solvers elaborated on as follows.

Solve for s(t+1) The energy function with respect to s can

be expressed as

E(s) =(s− PxCxI)T Ax(s− PxCxI)

+ (s− PyCyI)T Ay(s− PyCyI) + βsT Ls. (19)

Computation of Ax and Ay depends on estimates s and I
from the previous iteration. We denote by At,t

x and At,t
y the

matrices computed with s(t) and I(t), which lead to

Ẽ(s) =(s− PxCxI(t))T At,t
x (s− PxCxI(t))

+ (s− PyCyI(t))T At,t
y (s− PyCyI(t)) + βsT Ls.

(20)

It is simply quadratic. Taking derivatives on s and setting

them to 0s, we obtain the sparse linear system

(At,t
x +At,t

y +βL)s = At,t
x PxCxI(t) +At,t

y PyCyI(t). (21)

We solved it using pre-conditioned conjugate gradient

(PCG). The solution is denoted as s(t+1).

Solve for I(t+1) Similarly, the energy function to solve for
I is given by

Ẽ(I) =(s(t+1) − PxCxI)T At+1,t
x (s(t+1) − PxCxI)

+ (s(t+1) − PyCyI)T At+1,t
y (s(t+1) − PyCyI)

+ λ(I− I0)T Bt+1,t(I− I0), (22)

where At+1,t
x and At+1,t

y are calculated with available s(t+1)

and I(t). Bt+1,t depends on I(t). The final linear system in
the matrix form is(

(CT
x (Px)2At+1,t

x Cx + CT
y (Py)2At+1,t

y Cy) + λBt+1,t
)

I

= (CT
x PxAt+1,t

x + CT
y PyAt+1,t

y )s + λBt+1,tI0. (23)

The linear system is also solved using PCG and the solution

is denoted as I(t+1).

3.2. Why Does It Work?

According to the linear system defined in Eq. (21), the

resulting si for pixel i is a weighted average of pi,x∇xIi ≈
∇xIi/∇xGi and pi,y∇yIi ≈ ∇yIi/∇yGi, whose weights

are determined by (Ax)ii and (Ay)ii. Even if these weights

are quite different due to noise or other aforementioned

issues described in Section 1, our method can still get a

reasonable solution. We explain why this happens.

Assuming pi,x∇xIi is larger than the other term, in

solving for I according to Eq. (23), si reduces the gradient

in the x-direction and increases the other so that ∇Ii lies

close to s∇Gi. In the meantime, noise is reduced. Then

after each iteration, a less noisy I is put into Eq. (21) to

produce new pi,x∇xIi and pi,x∇yIi, which are closer than

those in previous iterations.

Eventually when the two estimates meet each other, s
converges; I is accordingly optimal. The smoothness term

L in Eq. (21) helps avoid discontinuity in the s map along

edges of G .

We show in Fig. 5(e) the initial constant s map. (f)-

(g) are maps produced in two iterations, and (h) shows the

final s. Initially the map is noisy because of confusing

or contradictive gradient magnitudes and directions in the
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(a) Image I0 with Additive Noise (b) NIR Image G (c) Estimated I (d) Ground Truth

(e) Initial s Map (f) Map s at Iteration 1 (g) Map s at Iteration 2 (h) Final Result

Figure 5. s map estimation in iterations. Given image pairs in (a) and (b), our method can get the high-quality restoration result in (c). The

s maps in different iterations are shown in (e)-(h).

(a) Noisy Image I0 (b) NIR Image G

(c) s Estimate (d) Final I Result

Figure 6. Handling shadow and highlight only existing in the

guidance image G. Our s map automatically suppresses them.

input images. As of more iterations being taken, it becomes

better regularized while not overly smoothed. Our final

scale map adapts the gradients of G to match I0 with noise

removed.

4. Experiments

Suppose the two input images – one is noisy and the

other is clean – are aligned. They can be a RGB/NIR

pair, flash/non-flash ones, or other cross-field images. We

explain our algorithm on noisy RGB and flashed NIR

images due to its generality of structure discrepancy.

Experiment Setting and Running Time Our method has

two parameters β and λ, controlling smoothness of s and

confidence of the noisy input. λ ranges from 1 − 10 and

the value of β is in [0.2, 0.8]. We implement our method

in MATLAB. Current un-optimized implementation takes

about 30 seconds to process an image of size 800× 600.

Color and Flashed NIR Image Restoration In the ex-

ample shown in Fig. 5, some gradients of guidance NIR

image are reversed or weak compared to the noisy color

image. Reversed gradients for the letter “D” are corrected

with the negative values in the resulting scale map s.

In Fig. 6, we show another example with highlight and

shadow only in the flashed NIR image. Our estimated s map

shown in (c) contains large values along object boundaries,

and has close-to-zero values for highlight and shadow. The

restoration result shown in (d) is with much less highlight

and shadow, which is impossible to achieve by gradient

transfer or joint filtering. Fig. 7 gives comparisons with

BM3D [5] and the method of [21], which do not handle

gradient variation. The difference is clear.

We also compare our result with the one presented in

[11], which was generated by taking both UV and IR flashed

image as guidance. Our method, by only taking the IR

flashed image as G, accomplishes the comparable result

shown in Fig. 8.

Flash and Non-Flash Images Our method is applica-

ble to image restoration using flash/non-flash image pairs.

Since the two input images are color ones under visible

light, we use each channel from the flash image to guide

image restoration in the corresponding channel of the non-

flash noisy image. A result with comparison to that of [14]

15421542



(a) Noisy Input (b) NIR Image

(c) BM3D [5] (d) Result of [21]

(e) Our Result (f) Our Map s
Figure 7. Tea-bag example. Whole images are included in our

project website.

(a) Noise Input (b) NIR Image

(c) Result of [11] (d) Our Result

Figure 8. Comparison with [11]. Whole images are available in

our project website.

is presented in Fig. 9. Overall, our recovered structures are

sharp. Gradient reversion in input images also happens in

this configuration due to strong flash. Without handling it, it

is hard to preserve these sharp edges as gradients averaging

(a) Non-Flash Noise Input (b) Flash Image

(c) Result of [14] (d) Our Result

Figure 9. Image restoration from flash/non-flash image pairs.

Complete results are available in our project website.

(a) Haze/NIR Image (b) Results of [16] and [9]

(c) Our Result

(d) Close-ups

Figure 10. Image restoration from haze images. Close-ups shown

in (d) are cut from (a-c). The left two are input NIR and haze

images. The right three patches are results of [16], [9], and our

method.

to nearly zeros are commonly resulted in.

Other Cross-Field Restoration Examples Our method

finds many other applications. We apply it to cross-field

dehazing with color and NIR images captured in haze.

An image recovered from low visibility caused by haze

could suffer from noise and compression artifacts due to

significant gradient enhancement in low contrast regions.

The NIR correspondence however is a hardware solution to
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(a) (b) (c) (d)

Figure 11. Limitation. There is no guidance structure in the

rectangle of (b), making restoration less-constrained. Our two-

image restoration result is shown in (c). This region can be further

single-image denoised, as shown in (d).

see more details in haze. By applying our method to single-

image dehazing result that is noisy and the NIR input, we

can improve the quality. An example is shown in Fig.

10. The single-image dehazing result of [9] contains noise,

and the result of [16], differently, changes the tone. Our

restoration result with an NIR image as guidance G is more

visually pleasing.

More results from our system are available in the project

website (see the title page), including those of depth image

enhancement using Kinect.

5. Conclusion and Limitation
We have presented a system effective for cross-field joint

image restoration. Unlike transferring details or applying

joint filtering, we explicitly take the possible structural

discrepancy between input images into consideration. It is

encoded in a scale map s that can represent all challenging

cases. Our objective functions and optimization make

good use of the guidance from other domains and preserve

necessary details and edges.

The limitation of our current method is on the situation

that the guidance does not exist, corresponding to zero ∇G
and non-zero ∇I∗ pixels. One example is shown in Fig.

11. Because the guidance does not exist, image restoration

naturally degrades to single-image denoising.
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