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Abstract

When a translucent liquid is spilled over a rough surface

it causes a significant change in the visual appearance of

the surface. This wetting phenomenon is easily detected by

humans, and an early model was devised by the physicist

Andres Jonas Angstrom nearly a century ago. In this pa-

per we investigate the problem of determining if a wet/dry

relationship between two image patches explains the differ-

ences in their visual appearance. Water tends to be the typ-

ical liquid involved and therefore it is the main objective.

At the same time, we consider the general problem where

the liquid has some of the characteristics of water (i.e., a

similar refractive index), but has an unknown spectral ab-

sorption profile (e.g., coffee, tea, wine, etc.). We report on

several experiments using our own images, a publicly avail-

able dataset, and images downloaded from the web.

1. Background

When a material absorbs a liquid it changes visual ap-

pearance due to richer light reflection and refraction pro-

cesses. Humans easily detect wet versus dry surfaces, and

are capable of integrating this ability in object detection and

segmentation. As a result, a wet part of a surface is associ-

ated with the dry part of the same surface despite significant

differences in their appearance. For example, when driving

over a partially wet road surface it is easily recognized as a

drivable surface. Similarly, a wine spill on a couch is rec-

ognized as a stain and not a separate object. The same ca-

pability is harder to implement in computer vision since the

basic attributes of edges, color distributions and texture are

disrupted in the wetting process. Engineering algorithms

around these changes has not received attention in published

research. Nevertheless, such capability is needed to cope

with partial wetting of surfaces.

The emphasis of this paper is on surfaces combining both
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Figure 1. A partially wet concrete pavement, water spilled on

wood, water stain on a cap, and coffee spilled on a carpet.

dry and wet parts. Distinguishing between completely wet

and dry surfaces in independent images requires account-

ing for the illumination variations in the scenes, and may

be subject to increased ambiguity in the absence of context.

For example, comparing an image of a dry T-shirt to an im-

age of the same T-shirt taken out of a washing machine is

a more challenging problem since the straightforward solu-

tion is to consider them as different colored T-shirts. How-

ever, the algorithms we develop in this paper apply to this

scenario assuming illumination is the same in both images.

Figure 1 shows examples we analyze: (a) partially wet

concrete pavement, (b) water spilled on a piece of wood,

(c) water stain on a cap, and (d) coffee spilled on a car-

pet. We assume that the wet and dry patches have been

pre-segmented and focus on whether the dry patch can be

synthesized to appear wet under unknown parameters em-

ploying a well-known optical model.

There are several factors that determine the visual ap-

pearance of wet versus dry surfaces. Specifically:

• The physical properties of the liquid involved. The

translucence (or light absorption) of the liquid deter-

mines if interreflection occurs and is visually observed.

Water is translucent, while paint is near opaque. The

light absorption of the liquid as a function of wave-
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lengths affects the overall spectral appearance of the

wet area. Water absorbs slightly more of the green

and red wavelengths and less of the blue wavelength,

while olive oil absorbs more of the blue wavelength

and much less of the red and green wavelengths.

• The size and shape of the liquid affect the optical prop-

erties of the scene. For example, liquid droplets cre-

ate a complex optical phenomenon as the curvature of

each droplet acts as a lens (e.g., a drop of water can

operate as a magnifying lens as well as cause light dis-

persion).

• The illuminant contributes to the appearance of both

the dry and wet patches since it determines the wave-

lengths that are reaching the scene and the absorptions

of the surface and liquid.

• The liquid absorption rate of the material determines

whether a thin film of liquid remains floating apart on

top of the material surface. For example, some plastics

or highly polished metals absorb very little liquid and

therefore a wetting phenomenon without absorption

occurs. Nevertheless, non-absorbed liquids do change

the appearance of the surface as they form droplets.

• Specular reflections may occur at parts of the wet sur-

face and therefore mask the light refraction from air-to-

liquid and interreflections that occur within the liquid-

material complex.

In this paper we study the problem of determining if two

patches within the same image (or two images taken under

similar illumination conditions) can be explained as wet and

dry instances of the same material given that the material,

liquid and illumination are unknown.

The paper’s contribution is proposing an algorithm for

searching a high-dimensional space of possible liquids, ma-

terial and imaging parameters to determine a plausible wet-

ting process that explains the appearance differences be-

tween two patches. Beyond the basic aspects of the prob-

lem, the results are relevant to fundamental capabilities such

as detection, segmentation and recognition.

2. Related Research

Wet surfaces were considered first as an optics albedo

measurement of various surfaces by Angstrom in 1925 [1].

The proposed model assumed that light reaching the ob-

server is solely stemming from rays at or exceeding the crit-

ical angle and thus the model suggested less light than ex-

perimental data. Lekner and Dorf [3] expanded this model

by accounting for the probability of internal reflections in

the water film and the effect of the decrease of the relative

refractive index at the liquid to material surface. Ther model

was shown to agree more closely with experimental data.

In computer graphics, Jensen et al. [5] rendered wet sur-

faces by combining a reflection model for surface water

with subsurface scattering. Gu et al [6] observed empiri-

cally the process of surface drying of several materials but

no physical model for drying was offered. There has been

little interest in wet surfaces in computer vision. Mall and

da Vitoria Lobo [4] adopted the Lekner and Dorf model [3]

to convert a dry material into a wet appearance and vice

versa. The algorithm was described for greyscale images

and fixed physical parameters. This work forms the basis

of our paper. Teshima and Saito [2] developed a temporal

approach for detection of wet road surfaces based on the

occurrence of specular reflections across multiple images.

3. Approach

Given two patches, Pd presumed dry, and Pw possibly

wet, the objective is to determine if a liquid of unknown

properties can synthesize the dry patch so that it appears vi-

sually similar to the wet patch. We employ the term material

to describe the surface that absorbs the thin film of liquid to

create the wet patch. We leverage the optical model devel-

oped by [3] and used by [4], by formulating a search over

the parameter space of possible materials and liquids.

In this paper we focus on a partial set of liquid on ma-

terial appearances. Specifically, we exclude specular reflec-

tions, non-absorbing materials, and liquid droplets.

3.1. Optics Model

Figure 2 shows the basic model developed in [3]. A light

ray entering the liquid film over the rough material surface

with a probability of 1−Rl where Rl is the reflectance at the

air-liquid interface. A fraction, a, of this light is absorbed by

the material surface, and thus (1−Rl) ∗ (1− a) is reflected

back to the liquid surface. Let p be the fraction of light

reflected back into the liquid at the liquid-air surface. The

total probability of absorption by the rough surface as this

process repeats is described by

A=(1−Rl)[a+a(1−a)p+a(1−a)2p2+...]=
(1−Rl)a

1−p(1−a)
. (1)

Lekner and Dorf [3] show that p can be written in terms of

the liquid ’s refractive index nl and the average isotropically

illuminated surface R:

p = 1 −
1

nl
2
[1 − R(nl)] (2)

where R(n) (n > 1):

R(n) = 3n2+2n+1
3(n+1)2 −

2n3(n2+2n−1)
(n2+1)2(n2

−1) + n2(n2+1)
(n2

−1)2 log(n)

−
n2(n2

−1)2

(n2+1)3 log(n(n+1)
n−1 )

(3)
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Figure 2. The light air-to-liquid and liquid-to-surface model.

Lekner and Dorff [3] proposed that the light absorption

rates of the dry and wet materials are different, and that the

wet material will always have a higher absorption rate. Let

ad and aw be the light absorption rates of the dry and wet

materials respectively, so that aw > ad. Thus the albedo

values for the dry and wet surfaces are 1− ad and A = 1−
aw, respectively, assuming isotropic illumination. Let nr be

the refractive index of the material. For small absorptions,

ad ≈ 1 − R(nr), and aw ≈ 1 − R(nr/nl) and therefore

aw ≈ ad[1 − R(nr/nl)]/[1 − R(nr)] (4)

while for large absorptions aw ≈ ad. An interpolation of

the two values can be expressed as

aw = ad(1 − ad)
1 − R(nr/nl)

1 − R(nr)
+ ad (5)

3.2. Imaging Model

Lekner and Dorff [3] and Mall and da Vitoria Lobo [4]

focused on the albedo change between dry and wet sur-

faces. The model is suitable for estimating reflectance of

a single wavelength but requires extension to aggregated

wavelengths captured by greyscale or color images. In [4],

the model was applied to greyscale images where the true

albedo was approximated by using the maximum observed

brightness in the patch. This assumes that micro-facet ori-

entations of the material are widely distributed. Color im-

ages present two additional issues: cameras (1) integrate

light across spectral zones, and (2) apply image process-

ing, enhancement and compression to the raw images. As

a result, the input image is a function of the actual physical

process but may not be quantitatively accurate.

Our objective is to estimate the albedo of the homoge-

neous dry patch, Pd, for each of the RGB channels (over-

looking the real spectral wavelengths), despite unknown

imaging parameters. It is critical to note that the camera ac-

quires an image that is a function of the albedo, surface nor-

mal and illuminant attributes (direction, intensity and emit-

ted wavelengths) at each pixel, so that estimating the true

physical albedo is challenging in the absence of informa-

tion about the scene. In the following we first describe a

representation of the relative albedo in RGB and then de-

scribe how it is re-formulated to derive possible absolute

albedo values.

Let the albedo of the homogeneous dry material be

AR, AG, AB with respect to the RGB channels. Then,

AR = 1 − aR, AG = 1 − aG, AB = 1 − aB (6)

where aR, aG, aB are the absorption rates of light in the red,

green and blue channels, respectively. Since the value of

each absorption parameter is between 0 and 1, it is pos-

sible to search this three dimensional space in small incre-

ments of aR, aG, aB values. However, these absorption rates

are confounded with the variable surface normals across

the patch as we consider RGB values. Instead, we ob-

serve that the colors of pixels reflect, approximately, the

relative absorption rates of red, green and blue. For ex-

ample, a grey pixel indicates equal absorption in red, green

and blue regardless of the level of the greyness. The sur-

face normal contributes to a scalar that modifies the amount

of light captured by the camera, but does not alter the rel-

ative albedos. Therefore, we can parametrize the albedo

values as AR ∗ (1, rGR, rBR), where rGR and rBR are the

relative albedo values green-to-red and blue-to-red, respec-

tively. This parametrization does not, theoretically, change

due to variation in surface normals. Specifically, consider

a homogeneous patch of constant albedo but variable sur-

face normals, and assuming a Lambertian model, the image

reflectance can be expressed as

IR(x, y) = AR ∗ (N(x, y) · S(x, y))

IG(x, y) = AG ∗ (N(x, y) · S(x, y))

IB(x, y) = AB ∗ (N(x, y) · S(x, y)) (7)

where N(x, y) and S(x, y) are the surface normal and the

illuminant direction at (x, y), respectively (S(x, y) = S for

a distant point light source). The two ratios rGR = IG/IR

and rBR = IB/IR are constant for all pixels (x, y) indepen-

dent of the dot product of the normal and illumination vec-

tors (N(x, y) · S(x, y)) (since they cancel out). In practice,

however, due to imaging artifacts, the ratios are more defuse

and therefore multiple ratios may be detectable over a patch.

Given a dry patch, Pd, we compute a set of (rGR, rBR) pairs.

If the patch were perfectly uniform (in terms of surface nor-

mals), a single pair will be found, but for complex surfaces

there may be several such pairs. We histogram the normal-

ized G/R and B/R values to compute these pairs. Let Sd

denote the set of these ratios computed over Pd.

As a result of the above parametrization, the red albedo,

AR, is unknown and it will be searched for optimal fit and

AG and AB are computed from the Sd ratios.

Mall and da Vitoria Lobo [4] proposed that assuming a

rough surface, the maximum reflected brightness, Imax, can

be used as a denominator to normalize all values and gen-

erate relative albedo values. In reality, even under these as-

sumptions, Imax is the lower-bound value that should be
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used as denominator to infer the albedo of the patch. More-

over, the values acquired by the camera are subject to au-

tomatic gain, white balance and other processing that tend

to change numerical values. For example, a surface with

albedo equal to 1, may have a value of 180 (out of 256 lev-

els), and therefore mislead the recovery of the true surface

albedo (i.e., suggesting a lower albedo than 1).

The optics framework requires absolute albedo values to

predict the wet albedo of the surface. Therefore, the re-

flectance values should be normalized with respect to an

unknown Rwhite ≥ Imax (typically) which represents the

absolute value that corresponds to the intensity of a fully

reflective surface under the same imaging conditions (in-

cluding unknown camera imaging parameters, and a nor-

mal and illuminant dot product equal to 1.0). Note that for

an ideal image acquisition an albedo of 1 corresponds to

Rwhite = 256, but in practice Rwhite can be lower (e.g.,

for white balance) or higher than 256 (e.g., camera gain).

Determining Rwhite involves a search for the best value

in the range Imax to IUpperBound. While IUpperBound can be

chosen as a large number, the computational cost is pro-

hibitive. Instead, we observe that if we assume that the

patch includes all possible surface normal orientations, then

the maximum intensity, Imax corresponds to (N(x, y) ·

S(x, y)) being 1.0 while minimum intensity Imin corre-

sponds to (N(x, y) · S(x, y)) near zero, for the unknown

albedo A (see Equation 7). Let �n denote a vector of the val-

ues of all the normals multiplied by the illuminant direction

(these values span the range 0..1). Therefore, the brightness

of an object with an albedo of 1 in these unknown imaging

conditions (and including the camera’s image processing)

can be computed as

IUpperBound = 256 ∗ max(A ∗ �n) + 256 ∗ max((1 − A) ∗ �n) (8)

where 256 is the camera’s intensity output range (assuming

no saturation occurred). This is equal to

IUpperBound = Imax + (256 − Imin) (9)

Imax and Imin may be subject to noise and imaging fac-

tors that may create outliers, so we approximate the inten-

sity values as a gaussian distribution with a standard devi-

ation σ and assign Imax − Imin = 4 ∗ σ cropping the tail

values and capturing near 97% of the distribution, so that

IUpperBound = 256 + 4 ∗ σ. This gaussian assumption is

reasonable for a rough surface but for a flat surface, σ is

near zero, and therefore we use IUpperBound = 256+100 as

an arbitrary value. Note that IUpperBound reduces the range

of the search for the best Rwhite and not the quality of the

results. We use the largest value of IUpperBound computed

for each of the RGB channels for all searches.

Imax may be subject to automatic gain amplification

during acquisition. Therefore, the range of values for

Rwhite is expanded to be from 0.75 ∗ Imax to IUpperBound.

The choice of 0.75 is arbitrary since it assumes that the gain

is limited to 33% of the true values, and one could choose a

different values.

Given a pixel from a dry patch, Pd, we can convert its

value to a wet pixel

Pw(x, y) = Pd(x, y)+((1−ad)−(1−aw))∗Rwhite (10)

where aw is calculated using Equation 5 given a specific ad.

Equation 10 is applied to each of the RGB channels using

the respective parameters.

3.3. Liquid Spectral Absorption

The model described so far assumed that the spectral

absorption of the liquid film itself is near zero across all

wavelengths. This is a reasonable assumption for water

since it can be treated as translucent given the negligible

thickness of the liquid present at the surface. We next con-

sider water-based liquids that have different absorption rates

across wavelengths such as coffee and wine (even at negligi-

ble thickness). We assume a refractive index that is equal to

water, however we assume that qr, qg, qb represent correc-

tive absorption rates in RGB, respectively. These correc-

tive rates modify the darkening due to water-based wetness.

The real liquid absorption rates are computed as

Lr = qr

Lg = awg − awr + qg

Lb = awb − awr + qb (11)

where awr, awg, awb are the respective wet surface absorp-

tions for red, green and blue, respectively (for water). Equa-

tion 10 is modified to account for the liquid absorption rates:

Pw(x, y) = Pd(x, y) + ((1 − ad) − (1 − aw) − (1 − q)) ∗ Rwhite (12)

where the respective parameters for each of the RGB chan-

nels are used. Note that Equation 11 computes relative ab-

sorption rates with respect to qr, so that we recover only

the differences in absorptions between the RGB channels.

Nevertheless, these relative absorptions are informative and

sufficient since the absolute values are intertwined with the

intensity of the illuminant. For example, adding a constant

absorption of 0.1 to each of Lr, Lg, Lb is equal to decrease

in reflected light equal to a 10% loss of illuminant intensity.

Absent prior information, we search the full range of

possible values between 0 − 1.0 for each variable. In prac-

tice, we can, in most cases, limit the search to values be-

tween 0.0 − 0.5 since higher values are likely, when com-

bined with the increased absorption due to wetting, to drive

total light absorption to 1.0 which represents a black ob-

ject. In cases where the Pw shows complete absorption of

a wavelength (e.g., a thick layer of wine or coffee), the 0..1
range is searched. Moreover, values that represent equal ab-

sorptions, qr ≈ qg ≈ qb are unnecessary to consider since
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they are functionally equivalent to water (but they do con-

tribute uniform darkening in all channels that is automati-

cally captured in the computation of the absorption values

of the material). The search is conducted in small incre-

ments of 0.02.

3.4. Similarity Metric

The synthesized wet patch Ps is scored against Pw. A

useful similarity metric is the well-known Earth Mover’s

Distance [7] (EMD). The distance is computed between the

size-normalized histograms of the two patches. The smaller

the distance, the closer the appearance between the synthe-

sized and true wet patches. Given that these patches are

typically taken from different parts of the same image, we

assume that the dry and wet patches are of the same material

as well as have similar surface normal distributions. If the

distributions of surface normals between the two patches

violate this assumption, we have a suboptimal similarity

metric. Devising a metric that accounts for different and

unknown distributions of surface normal remains an open

problem. Note that EMD is not suitable for comparing dif-

ferent materials (e.g., if the wet and dry material are of two

different wood species).

4. Search Space

We summarize the search parameters to determine the

best synthesis, Ps, of Pd given Pw. The refractive index

of the material, nr is unknown. Refractive indices of ma-

terials vary widely, with air being near 1.0 and the highest

measured material (a synthetic material) is 38.6. Common

materials, however, tend to fall between 1−5.0. As a result,

we perform a search on all values of nr between 1.1 − 5.0
in increments of 0.1 (note that if we assume the material

to have higher refractive index than water, the search can be

made between 1.5−5.0). Note that nr is dependent on light

wavelengths (i.e., light wavelengths have slightly different

speeds in the same medium), but accounting for this vari-

ation in the search process is computationally expensive.

Therefore, we use the same nr for the three channels.

We assume the liquid to be water-like, so that nl is

known. Specifically, we assume that nl = 1.331 for the red

channel, nl = 1.336 for the green channel, and nl = 1.343
for the blue channel. This assumption is suitable for most

water-based liquids such as coffee, wine, etc. (in practice,

the ethanol in wine increases the refractive index slightly,

and coffee particles increase it upto 1.5). Other liquids, such

as oil, have different refractive indices, but since we assume

no prior information, we employ the water refractive indices

even when oil may be involved.

The absorption rate of the dry material, ad, is unknown

and falls in the range 0 − 1.0. The discussion in subsection

3.2 uses the albedo AR as a variable and derives the green

and blue albedo values, and thus their absorptions accord-

ingly. Therefore, we perform a search over all values be-

tween 0.05 − 0.95 in 0.05 increments for adR
. The values

Imin, Imax and IUpperBound are pre-computed and then a

search for optimal Rwhite is computed in increments of 20
units for the range 0.75 ∗ Imax and IUpperBound.

Depending on the expected liquid, we can limit the

search to water, or search in a reduced 3D space of liquid

correction absorption rates, qr, qg, qb, as discussed in sec-

tion 3.3. Algorithm 1, below, is for the case of water, but

can be adjusted for an unknown liquid.

Algorithm 1 Dry-to-Wet algorithm

1: procedure DRY2WET (Pd, Pw) �

2: for nr 1.1 : 5.0 do

3: for adR
0.05 : 0.95 do

4: for Rwhite 0.75 ∗ Imax : IUpperBound do

5: for all pairs in Sd do

6: Compute adG
adB

7: Compute awR
awG

awB

8: Compute Ps using Eq. (10)

9: d=EMD(Pw, Ps)

10: dmin = min(dmin, d)
11: end for

12: end for

13: end for

14: end for

15: return dmin and Ps corresponding to dmin �

16: end procedure

5. Experiments

We conducted experiments on three data sets: collected

by us, collected from the web, and a controlled set of dry-

ing objects collected and described in Gu et al. [6]. The

experiments answer the question: given a dry patch, Pd and

a patch likely to be wet Pw, what are the best parameters

that make Pd look most similar to Pw? The answer allows

uncovering physical information about the liquid and the

material which is valuable for computer vision. The answer

may also indicate that no wetting process can make Pd look

like Pw, which is also valuable since it suggests that the two

patches differ in more significant ways.

Note that we focus on applying a physically-motivated

model to the problem and not an image-based appearance

transformation. One could pose the problem differently by

computing a transformation (that has nothing to do with

wetting) that maximizes the similarity between a trans-

formed Pd and Pw. But such transformation does not un-

cover information about the physical process that is in-

volved and is ultimately less insightful.

The patches Pd and Pw are manually delineated. The

border area between the patches is neither fully dry or wet.

Therefore, the border area is rarely synthesized properly.

We exclude these boundary pixels from EMD computation

between Ps and Pw.
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Empirically, we observed that EMD distances below 20

indicate close resemblance and below 10 are near identical

images. Note that EMD does not capture the spatial color

variations (i.e., texture differences). In all figures below,

the numeric values show the EMD distance, followed by

(nr, Rwhite), the next row shows the respective albedo val-

ues AR, AG, AB . In the images of the colored liquids, the

third row shows the albedo of the liquid ALR, ALG, ALB .

Figure 3 shows the results of the closest synthetic wet-

ting of a dry material (images taken from [6]). These im-

ages were taken under controlled illumination but at differ-

ent times, as the initially wet material dried. The top row

shows the dry materials, the middle row shows the real wet

material, both are provided by [6]. The bottom row of im-

ages shows the computed wet materials using our algorithm.

Below each image we provide the physical parameters that

our algorithm uncovered, assuming the liquid is water. Note

that most of the true wet images have some specular reflec-

tions that are not generated by our model. The materials

are (left to right), rock, wood, cloth, wood, felt, paper, card-

board, brick, wood, cloth, cloth and granite. The results in-

dicate that wood is the least successfully analyzed material.

The wet wood has increased spectral divergence in colors

beyond what the dry material exhibits and therefore does

not appear to be correctly captured by the model. Specifi-

cally, the wet wood appears to absorb more of the blue and

green light relative to red, and therefore the wood is tinted

brown-red. We discuss this issue further in Section 6.

Figure 4 shows images we acquired of different wet ma-

terials. From left to right all images have a darker wet patch:

yellow paper (wet on the right side), paper towel, large area

of a cap, a smaller part of the same cap, blue paper, orange

fleece material, grey/blue paper, green paper, orange fab-

ric, and grey/blue fabric. The distances are largest for the

complete green cap and blue paper. The reason is that the

surface normal distributions vary between the wet and dry

patches, and therefore the EMD is not a suitable metric (see

discussion in subsection 3.4). The smaller part of the cap

shows very good synthesis of the dry patch.

Figure 5 shows a collection of images of water-based

wetting of different materials downloaded from the web.

From left to right, raster scan, partially wet: two cardboard

images, concrete, yellow brick, three types of wood, blue

fabric, two images of different types of sand, red tile, red

brick, blue/green brick, striped shirt and grey pants. Two of

the wood images show the largest distances and a discussion

of likely reasons is provided in Section 6. The rest of im-

ages are close to the real wet areas in each image ignoring

the borders between patches.

Figure 5 shows a collection of images downloaded from

the web of non-water wetting. From left to right, raster scan,

partially wet: coffee on carpet, coffee on wood, wine on

carpet, olive oil on humus, olive oil on wood, tea on fabric,

coffee on fabric, two images of coffee on carpet, wine on

tile, wine on carpet, wine on granite, same image but ap-

plying a water model, wine on carpet, coffee on plastic ta-

ble cloth, coffee on carpet, coffee on shirt, same image but

applying a water model, wine on yellow napkin, and soy

sauce on yellow napkin (the last two images are acquired

by us). The liquid color is rendered with intensity that is

close to the wet area. The wine on granite and coffee on

shirt are used to also demonstrate the results of the water

model as opposed to accounting for different spectral ab-

sorptions. Overall the distances are low with exception to

the olive oil on wood and wine on white carpet (middle of

the bottom group). The olive oil on wood maybe related to

explanations in Section 6 while the wine on carpet shows

marked difference in surface normals between the dry and

wet patches (the wet patches are in focus while the dry patch

is blurred).

6. Open Challenges

The experiments indicated that in some images of wet

wood, the model is not accurate. Figure 7 shows an image

of an outdoor deck, a part of a wetted area used for an exper-

iment, and the synthesized dry patch using our model. The

dry wood appears nearly perfectly grey, while the wet wood

is brown. The wet pixels show high absorption of green

relative to red, and even higher absorption of blue relative

to green and red. The model does not predict this result

given that the liquid is water. A similar phenomenon was

observed in some experiments in Figures 3 and 5.

We suggest two conjectures as to why this occurs. The

first has to do with image acquisition, and suggests that per-

haps the camera is overstating the amount of blue and green

light reflected at the dry patch. The second is that these

woods and their resultant images have a more complex wet-

ting process. Specifically, it is possible that this wood is

composed of 2 layers, the first is very thin and tends to

have only a hint of the spectral properties of the wood, and

the second layer reflects the full spectral attributes of the

wood. The top layer may come to exist due to environ-

mental degradation or dust, but may not exist in freshly cut

wood. For the dry wood in Figure 7 the reflectance is mostly

the result of reflection from the top layer, while upon wet-

ting, the second layer is reached by the water and thus it be-

comes the dominant source of reflectance. Unfortunately it

remains an open challenge to explain these deviations from

the model.

Differences in the distributions of the surface normals

between the dry and wet patches make it harder to deter-

mine similarity (even if a different metric than EMD is

used). This is general computer vision problem that is not

specific to wetting, but is made more challenging by the

complexity of the wetting process.
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8.3 (2.8,195) 8.8(5.0,182) 20.2 (2.1,155) 25.0(1.8,160) 6.4 (5.0,233) 16.4 (5.0,162) 9.2(5.0,247) 3.0(5.0,154) 24.1(5.0,146) 1.5 (4.8,121) 13.3(2.7,131) 7.0(3.8,157)
(0.90,0.89,0.87) (0.05,0.03,0.02) (0.30,0.20,0.15) (0.10,0.08,0.07) (0.05,0.05,0.05) (0.60,0.61,0.62) (0.15,0.14,0.12) (0.10,0.09,0.09) (0.10,0.09,0.08) (0.25,0.27,0.21) (0.15,0.15,0.15) (0.30,0.29,0.28)

Figure 3. Top row, images of dry material, middle row, images of wet materials (water), and bottom row the synthesized wet images.

1.2 (3.1,122) 13.5(1.6,165) 31.95(3.0,173) 3.4 (4.9,244) 29.4(2.1,138) 12.06(2.3,191) 8.6 (3.1,214) 9.9(2.8,159) 10.2(2.9,191) 19.7(1.8,158)
(0.90,0.91,0.77) (0.90,0.80,0.59) (0.40,0.76,0.73) (0.40,0.67,0.64) (0.20,0.66,0.91) (0.80,0.20,0.11) (0.85,0.88,0.89) (0.90,0.80,0.59) (0.65,0.34,0.13) (0.90,0.88,0.91)

Figure 4. Top row, input images with wet patches. Bottom row, dry patches synthesized into wet patches assuming water. From left to

right, yellow paper, brown paper towel, large area over a cap, small area of the cap, blue paper, orange fleece, grey/blue paper, green paper,

orange fabric and grey/blue fabric.

Figure 7. Left to right, footprints on dry deck, input for our algo-

rithm, and synthesized output.

7. Summary

In this paper we investigated the problem of visual ap-

pearance change as liquids and rough surfaces interact. The

problem assumes that two patches, the first is known to be

dry and the second is possibly wet are given. Liquid at-

tributes that are close to water, but also allow for varying

absorption rates across spectral wavelengths allow account-

ing for unknown liquids suchs as coffee, wine and oil. Our

experiments indicate an ability to explain wetting effects in

different materials and under unknown imaging conditions.
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7.6 (3.4,351) 25.7 (5.0,290) 15.5 (4.7,131) 8.9 (4.1,250) 13.0 (2.5,270) 48.5 (3.2,173) 39.0 (2.1,189)
(0.85,0.80,0.72) (0.55,0.49,0.41) (0.35,0.32,0.24) (0.85,0.74,0.63) (0.80,0.64,0.55) (0.9,0.71,0.55) (0.9,0.78,0.72)

7.2 (2.6,219) 11.1 (1.8,177) 29.7 (5.0,291) 4.8 (3.1,263) 21.1 (5.0,291) 28.2 (5.0,331) 3.4 (5.0,220) 13.5 (3.9,245)
(0.70,0.71,0.78) (0.80,0.75,0.60) (0.75,0.63,0.47) (0.90,0.71,0.62) (0.55,0.47,0.47) (0.2,0.25,0.26) (0.55,0.56,0.61) (0.20,0.21,0.20)

Figure 5. Web images, top row is input, and second row is synthetic wetting.

14.6 (5.0,282) 9.8 (3.4,162) 6.9 (1.1,184) 26.6 (1.3,164) 40.0 (1.4,132) 13.6 (2.8,207) 3.5 (1.1,268) 7.6 (1.1,184) 2.0 (1.3,209)
(0.65,0.56,0.45) (0.70,0.51,0.2) (0.55,0.48,0.38) (0.90,0.88,0.74) (0.90,0.80,0.70) (0.90,0.83,0.83) (0.90,0.83,0.82) (0.90,0.88,0.85) (0.85,0.73,0.58)

LIQ (0.88,0.73,0.62) (0.82,0.56,0.45) (0.61,0.41,0.39) (0.61,0.53,0.03) (0.67,0.57,0.35) (0.75,0.59,0.38) (0.82,0.65,0.45) (0.93,0.77,0.59) (0.80,0.62,0.43)

7.5 (1.1,184) 13.2 (1.1,286) 24.2 (1.2,271) 71.9 (5.0,351) 52.4 (3.1,264) 8.3 (1.2,311) 14.5 (4.1,178) 5.3 (3.2,176) 13.9 (5.0,196) 8.2 (2.1,191) 18.1 (2.2,184)
(0.90,0.95,0.98) (0.90,0.84,0.84) (0.80,0.74,0.76) (0.65,0.53,0.39) (0.65,0.65,0.65) (0.65,0.61,0.62) (0.85,0.76,0.50) (0.90,0.69,0.68) (0.70,0.53,0.52) (0.85,0.53,0.02) (0.80,0.53,0.05)

LIQ (0.83,0.56,0.56) (0.94,0.57,0.51) (0.83,0.39,0.43) WATER (0.94,0.60,0.65) (0.93,0.68,0.91) (0.72,0.59,0.44) (0.82,0.59,0.51) WATER (0.90,0.44,0.27) (0.94,0.49,0.35)

Figure 6. Web images, top to bottom rows: input, synthetic wetting, and liquid albedo.
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