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Abstract

We study the problem of online subspace learning in the

context of sequential observations involving structured per-

turbations. In online subspace learning, the observations

are an unknown mixture of two components presented to

the model sequentially — the main effect which pertains to

the subspace and a residual/error term. If no additional re-

quirement is imposed on the residual, it often corresponds

to noise terms in the signal which were unaccounted for by

the main effect. To remedy this, one may impose ‘struc-

tural’ contiguity, which has the intended effect of leverag-

ing the secondary terms as a covariate that helps the esti-

mation of the subspace itself, instead of merely serving as

a noise residual. We show that the corresponding online

estimation procedure can be written as an approximate op-

timization process on a Grassmannian. We propose an ef-

ficient numerical solution, GOSUS, Grassmannian Online

Subspace Updates with Structured-sparsity, for this prob-

lem. GOSUS is expressive enough in modeling both homo-

geneous perturbations of the subspace and structural conti-

guities of outliers, and after certain manipulations, solvable

via an alternating direction method of multipliers (ADMM).

We evaluate the empirical performance of this algorithm

on two problems of interest: online background subtraction

and online multiple face tracking, and demonstrate that it

achieves competitive performance with the state-of-the-art

in near real time.

1. Introduction

Subspace learning methods have been extensively stud-

ied in vision with applications spanning motion analysis,

clustering, background estimation, and deriving semantic

representations of scenes [11, 7, 6, 13]. Within the last few

years, new developments in matrix factorization [36, 3] and

sparse modeling [25, 38] have led to significant renewed

interest in this construct, and has provided a suite of new

models and optimization schemes for many variants of the

problem. An interesting version that several authors have

proposed recently is Online Subspace Learning [37, 4, 15].

Here, observations are presented sequentially, in the form

of an unknown mixture of the primary subspace(s) plus a

residual component. The objective is to keep an estimate

of the contributing subspace(s) updated as the observations

continually present themselves.

The standard strategy of modeling the foregoing online

estimation question is to assume that the observation is an

unknown mixture of two components. The first relates to

the subspace terms comprising one or multiple subspaces

(and with or without regularization). Statistically, one may

regard this term as the main effect which explains most of

the measurement. But fitting the signal to high fidelity will

necessarily involve a large degree of freedom in the sub-

space term, and so the model allows for a small amount of

compensatory residual error — this corresponds to the sec-

ond term contributing to the observed signal. To encourage

the residual quantity to be small, most proposals impose a

sparsity penalty on its norm [24, 15]. Therefore, the main

technical concern, both in the “batch” and online settings, is

to efficiently estimate the subspace and if possible provide

probabilistic guarantees of correct recovery.

Within the last year, a particularly relevant application

of online subspace learning is in the context of keeping up-

dated estimates of background and foreground layers for

video data1. Here, one exploits concepts from matrix com-

pletion for subspace estimation, by drawing i.i.d. samples

from each incoming frame, and adjusting the current sub-

space parameters using only the sub-sampled data [15]. The

mass of the signal outside the support of the subspace may

then be labeled as foreground. This strategy works quite

well when the background is completely static: essentially,

the model has seen several hundred frames and has con-

verged to a good estimate already. However, when there

are small but continual variations in the background (e.g., a

swaying tree) and/or it is undergoing changes due to cam-

era motion, zoom or illumination differences, it takes time

1We will use this as a running example throughout the paper in an effort

to make certain ideas concrete (we present results for another application

in Section 5.2, thereby demonstrating the generality of the method).
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for the subspace estimates to stabilize. Here, the residual

must then compensate for a less than ideal estimate of the

main effect, which leads to salt-pepper isolated foreground

regions, scattered over the image. One reason for this unsat-

isfactory behavior is that the model does not enforce spatial

homogeneity in the foreground region. Imposing ‘structure’

on the secondary term, such as asking for contiguity, has the

highly beneficial effect that the residual serves a more im-

portant role than merely accounting for the error/corruption.

From a statistical modeling perspective, the residual struc-

ture acts as a covariate that improves the estimate of the

main effect (the background reconstruction via subspace

modeling). Consequently, in the background/foreground

setting, we see that the estimated foreground regions are

far more meaningful. The resultant improvements in per-

formance are quite significant, compared to the alternative.

For several other interesting applications which we discuss

later in the paper, the benefits are clear, though the notion of

structure (i.e., structured sparsity operator) is different and

better reflects the needs of that domain.

This paper. Consider a regression model, Y = f(W ) +
ε. If the distributional properties of the second term is

known (e.g., Rician, Poisson), it must improve the esti-

mation of f(·). We seek to translate this simple idea to

the problem of Online Subspace Learning, by incorporat-

ing structure (i.e., via a group norm) on the secondary term.

The key contributions of this paper are: 1) Show how group

sparsity based structural homogeneity can be incorporated

within estimation problems defined on Grassmannian man-

ifolds; 2) Present an efficient online optimization scheme

where most constituent steps reduce to simple matrix opera-

tions; 3) Demonstrate for two example applications (online

background subtraction and online multiple face tracking)

using a variety of datasets, that the method gives competi-

tive empirical performance in near real time.

2. Related Work

Subspace learning, and more generally, learning low

dimensional multi-linear models has a long and rich his-

tory in Computer Vision. The contemporary suite of algo-

rithms for this problem may be classified into a few sep-

arate categories, which nonetheless share important sim-

ilarities. Models inspired from dimensionality reduction

techniques build upon the traditional principal component

analysis (PCA) framework. For instance, Robust subspace

learning [11, 13] and Generalized Principal Component

Analysis (GPCA) [34] take a hybrid geometric/statistical

view of separating heterogeneous ‘mixed’ data drawn from

one or more subspaces. Building upon classical approaches

based on factor analysis, independent component analysis

(ICA) and its variants [23] parameterize the subspace as a

combination of a small set of sources [18], and work well

for subspace estimation applications such as action recog-

nition [21], segmentation [27] and facial pose analysis [23].

More recently, theory from compressive sensing (also, ma-

trix completion) [9], and matrix factorization [3] have been

successfully translated into new models and optimization

schemes for this problem. An important representative from

this group, which has found a multitude of vision appli-

cations, is Robust Principal Components Analysis (RPCA)

which expresses the measurement as a combination of a low

rank matrix and a �1-regularized noise component [24, 8].

Separately, several authors express subspace estimation as

a non-negative matrix factorization (NMF) [36, 6, 3] and

give rigorous recovery guarantees. While the literature de-

voted to the batch setting above is interesting, there is also

brisk research activity in vision, especially in the last two

years, focused on the online version of this problem. This

has led to a set of powerful online subspace learning meth-

ods [37, 4, 15], which are related to the above ideas as well

as a parallel body of work in manifold learning [14, 32]

— they leverage the fact that the to-be-estimated signal lies

on a Grassmannian [32]. In particular, GROUSE [4] and

GRASTA [15] (an online variant of RPCA) show how the

subspace updates can be accurately maintained in real time

by using sub-sampling ideas. Our framework leverages this

body of work, and we will point out similarities to known

results in the presentation that follows.

3. Model design

Notations. We denote matrices by non–bold upper case

letters (e.g. V ), vectors by bold lower case (e.g. x) and

scalars by non-bold lower case letters (e.g., μ). Subscripts

and superscripts will denote frame numbers, iterations, in-

dices, etc., which will be explained as needed.

This section describes the various sub-components that

make up the main model studied in this paper. As intro-

duced in Section 1, the data V is a composition of a main

effect (or signal) B and a secondary term (or outlier) X .

That is, V = B +X where V,B,X ∈ R
n×m, n is the data

dimensionality and m is the number of observations. The

signal B is given as a linear combination of d sources (sub-

space basis) in n dimensions, denoted by U = [ud]. This

assumption is reasonable since the variation in signal across

consecutive frames is small enough that it allows the few

(d � n) degrees of freedom to recover most changes. The

orthogonal structure of U implies that it lies on a Grassman-

nian manifold Gn,d embedded in a n-dimensional Euclidean

space. Let the coefficient matrix be W . In the absence of

any error, we have B = UW . Now, if v ∈ R
n is an ob-

servation and x ∈ R
n is the corresponding outlier vector

(lies outside the support of the subspace given by U ), then

v = Uw+x, where w is the coefficients vector for the cur-

rent observation. This expression is under constrained when

both the signal and the outlier are unknown. To drive the es-

timation procedure, we impose a regularization constraint
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expressing what constitutes a ‘good’ outlier, for instance,

contiguity. That is, we may ask that the outlier be spatial

coherent ensuring that isolated detections scattered across

the image are strongly discouraged. The implicit expecta-

tion is that this makes x more meaningful in the context of

the application, and so usefully biases the estimation of the

subspace. We elaborate on the notion of structure next.

3.1. Structured sparsity

For the background estimation example, the tex-

ture/color of the foreground objects (i.e., outliers) is homo-

geneous and so the outliers should be contiguous in an im-

age. For multiple face tracking (which we elaborate later),

we need to track a set of faces in a given video where the

subspace constitutes the faces themselves. But the outliers

created by occlusions are not pixel sparse, instead, consti-

tute contiguous regions distributed at different face posi-

tions [19]. As an example, consider a person wearing sun-

glasses or if a shadow or irregular illumination is distorting

a part of the face. We do not want such occlusions to cause

large changes in the online updates and destroy the notion

of a face subspace. Instead, we must allow the x term to

subsume and accommodate such structured deviations from

a ‘face’ subspace.

To formalize this prior on the outlier, we use structured

(or group) sparsity [39, 16, 17]. For one image frame, the

groups may correspond to sets of sliding windows on the

image, super-pixels generated via a pre-processing method

(which encourages perceptually meaningful groups), or po-

tential face sub-regions. A n × n (n is the dimensionality

of each observation) diagonal matrix Di is used to denote a

“group” i. Each diagonal element of Di corresponds to the

presence/absence of a pixel in the ith group, as

Di
jj =

{
1 if pixel j is in group i;

0 otherwise.
(1)

where Di
jj is the jth diagonal element of Di. A penalty

function is then defined as,

h(x) =

l∑
i=1

μi‖D
ix‖ (2)

where μi gives the weight for group i and l is the number

of such groups. Di is sparse and allows overlap with other

Djs (i �= j), so that we can form groups from overlapping

homogeneous regions (groups may also be disjoint, if de-

sired). Our group sparsity function h(·) in (2) has a mixed

norm structure. The inner norm is either l2 or l∞ (we use

l2) forcing pixels in the corresponding group to be simi-

larly weighted, and the outer norm is l1 which encourages

sparsity (i.e. only few groups are selected). In general, the

design of Dis depends on the needs of the application. We

will give specific examples shortly.

3.2. Model

With these components in hand, we can now present our

main model. Given an input data V ∈ R
n×m, our model

estimates the subspace matrix U , the coefficient vector w,

and the outlier x, at a given time point (where v denotes the

given current observation) by the following minimization,

(λ is a positive regularization parameter)

min
UTU=Id,w,x

l∑
i=1

μi‖D
ix‖2 +

λ

2
‖Uw + x− v‖22 (3)

4. Optimization

While model (3) faithfully models our requirements, op-

timizing it can be challenging. This is due to the non-

smoothness of the mixed norm and non-convexity arising

due to the orthogonal structure of U . In fact, several recent

papers [26, 10, 29] are devoted to ideas for optimizing the

structured sparsity norm objectives alone, and even by it-

self, it gets complicated due to overlapping groups. Specif-

ically, one may require the design of specialized proximal

operators, and the running time of many existing schemes

(∼ 30 minutes, [29]) is impractical for problem sizes en-

countered in our application.

Observe that at any given time point, the model has al-

ready processed many frames before it, and has obtained a

reasonable estimate of U . Because the changes in U are

not drastic from one frame to the other, local updates of the

variables in (3) are sufficient in practice. This is a compro-

mise since obtaining a global optimum for the nonconvex U
is unlikely anyway. We adopt a block-wise approach which

solves for a subset of variables keeping the others fixed. In

particular, we observe (3) is convex for (w,x) when U is

fixed, which can be computed efficiently. A sequential up-

date scheme [28] is used when optimizing for U , while still

preserving its orthogonality. Below, we give a detailed anal-

ysis of these sub-procedures and outline methods to opti-

mize each component and the overall model.

4.1. Solve for tuple (w,x) at fixed U∗

As x is shared across the two terms in the objective in

(3), we introduce a set of slack variables {zi} for each Dix.

This gives the following sub-problem

min
w,x

l∑
i=1

μi‖z
i‖2 +

λ

2
‖U∗w + x− v‖22

s.t. zi = Dix, i = 1, · · · , l.

(4)

Model (4) is convex over {zi} and (w,x), while the con-

straints are affine. A natural choice to solve such a problem

efficiently is the Alternating Direction Method of Multipli-

ers (ADMM) [5], assuming we can show that each resul-
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tant sub-calculations can be performed cheaply. Next, we

demonstrate that this is indeed the case here.

The augmented Lagrangian [28] of (4) is given by

L(w,x, {zi}, {yi}) =
l∑

i=1

μi‖z
i‖2 +

λ

2
‖U∗w + x− v‖22

+

l∑
i=1

yiT (Dix− zi) +

l∑
i=1

ρi
2
‖Dix− zi‖22

(5)

Here ρi are predefined positive parameters, and yi are the

dual variables associated with the constraints. Our update

scheme proceeds as follows. Given the current observation

v and the tuple (wk,xk, {z
i
k}, {y

i
k}) at kth iteration, the

step-by-step updating of the tuple at (k + 1)th iteration is:

(w,x)-minimization: To minimize (5) with respect to

(w,x) alone, keeping all the other parameters fixed, we have

min
w,x

λ

2
‖U∗w + x− v‖22 +

l∑
i=1

yi
k

T
Dix

+

l∑
i=1

ρi
2
‖Dix− zik‖

2
2

(6)

(6) takes the form of a convex quadratic problem in (w, x)

and the closed form solution comes from the linear system,

A
[
w x

]T
= b. Note that DiTDi = DiT = Di, and A,b

are computed as line 2 and 3 in Algorithm 1. Solving this

linear system directly can be computational expensive when

n is large. However, observing the structure of A, we have

the following result. All of our proofs are included in the

extended version:

Observation 1. For λ > 0, U∗TU∗ = Id, ρi > 0, ∀i ∈
{1, · · · , l}, we have A � 0.

Together with the fact that A is sparse, we use a GPU

solver using preconditioned conjugate gradient method

[28], which reduces the running time significantly.

zi-minimization: Minimizing a specific zi for group i, is

independent of the other zj �=i and hence can be solved in

parallel. The objective w.r.t zi takes the form,

min
zi

μi‖z
i‖2 − yi

k

T
zi +

ρi
2
‖Dixk+1 − zi‖22 (7)

Denoting rik = Dixk+1 +
y
i

k

ρi

, (7) has a closed form solu-

tion by the block soft thresholding formula [39] given as,

zik+1 = max{‖rik‖2 −
μi

ρi
, 0}

rik
‖rik‖2

(8)

yi-updating: We can now update yi, ∀i ∈ {1, · · · , l} along

the gradient direction by,

yi
k+1 = yi

k + ρi(D
ixk+1 − zik+1) (9)

The above analysis shows that the key update steps (sum-

marized in Algorithm 1) within a ADMM procedure can all

be performed efficiently. In our implementation, we alter-

natively solve for (w∗,x∗, zi∗,y∗) until the changes in x

and the objective value reaches a desired level of tolerance.

Given the convexity of each item in the tuple, we have the

following convergence theorem.

Theorem 1. For λ > 0, μi > 0, ρi > 0, ∀i ∈ {1, · · · , l},
the sequence {(wk,xk, {z

i
k}, {y

i})} generated by Alg. 1

from any initial point (w0,x0, {z
i
0}, {y

i
0}) converges to

(w∗,x∗, {zi∗}, {yi∗}), which minimizes (5) at fixed U∗.

Algorithm 1 ADMM for solving (w∗,x∗)

In: Subspace matrix: U∗, observation: v, initial: x0, zi
0
,yi

0
, group oper-

ator: Di, hyper-parameters: λ, μ, ρ

Out: Subspace coefficient: w∗, structured outliers: x∗

Procedure:

1: for k = 0→ K do

2: A←

[
λId λU∗T

λU∗ λIn +
∑l

i=1
ρiD

i

]
;

3: b←

[
λU∗Tv

λv −
∑l

i=1
Diyi

k
+

∑l
i=1

ρiD
izi

k

]

4: (wk+1,xk+1) ← minw,x ‖(A[w x]T − b)‖2 using GPU

solver

5: ri
k
← Dixk+1 +

y
i
k

ρi

6: zi
k+1
← max{‖ri

k
‖2 −

μi

ρi
, 0}

r
i

k

‖ri
k
‖2

7: yi
k+1 ← yi

k
+ ρi(D

ixk+1 − zi
k+1

)
8: Stop if tolerance conditions satisfied.

9: end for

4.2. Update of U with estimated (w∗,x∗)

The key idea to update U is to refine it from the esti-

mation (w∗,x∗) derived from the current observation v on

the Grassmannian. Given the estimated tuple (w∗,x∗), the

derivative of L(.) in (5) with respect to the components of

U and the gradient are given by

∂L

∂U
= λ(Uw∗ + x∗ − v)w∗T = sw∗

T
(10)

where s = λ(Uw∗ + x∗ − v) denotes the residual vector.

Using identity (2.70) in [2], the gradient on the Grassman-

nian can be computed by

∇L = (I−UUT )
∂L

∂U
= (I−UUT )sw∗T = sw∗

T
(11)

(11) is valid because the residual vector s is orthogonal to

all of the columns of U . It is obvious that ∇L is a rank

one matrix, since s and w∗ are both vectors. Hence, we can

compute the compact SVD of ∇L by ∇L = pσq , where

p = s

‖s‖ , σ = ‖s‖‖w∗‖ and q = w
∗

‖w∗‖ . Following [2,

15], we update U with a gradient stepsize η in the direction

−∇L as

U(η) = U + (cos(ση)− 1)UqqT − sin(ση)pqT (12)
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where η is the stepsize to update the subspace U on the

Grassmann manifold. We incorporate an adaptive stepsize

η using the updating scheme by [20] but in the experiments,

a constant stepsize works well also. To show the validity of

(12), we give the following lemma,

Lemma 1. The subspace updating procedure (12) pre-

serves the column-wise orthogonality of U .

Notice that (12) is related to a stochastic gradient updat-

ing procedure, where at each iteration, we draw an example

in a sequential manner, instead of random sampling. We

compute the gradient from each example, and use this gra-

dient to improve the subspace. The optimal subspace is not

computed fully, and is instead updated by analyzing succes-

sive observations. Additional details on (12) are given in the

extended version. At this point, we are ready to summarize

our optimization pipeline in Algorithm 2.

Algorithm 2 Main Procedure of GOSUS

In: Observation: V , subspace initialization: U0, hyperparameters: λ, μ, ρ

Out: Approximated signal: B, structured outliers: X

Procedure:

1: for t = 1→ T do

2: Solve (w∗,x∗, {zi∗}, {yi∗}) by Algorithm 1;

3: (Optional) Update stepsize ηt ;

4: Update Ut by (12);

5: end for

5. Applications

We apply GOSUS to the problem of fore-

ground/background separation and multiple face track-

ing/identity management. Our implementation and

experiments are publicly available.

5.1. Background Subtraction

Datasets. We used two benchmark datasets: Perception

Test Images Sequences [22] and Wallflower Test Images

Sequences [31], which are heavily used in recent work

[26, 29, 15, 36]. The data includes 12 video sequences, with

a variety of characteristics, such as changing foreground

with static (Bootstrap, Shopping Mall, Hall) and dynamic

(Fountain, Escalator, Waving Trees, Water Surface, Cur-

tain, Campus) backgrounds as well as illumination changes

(Lobby, Time of Day, Light switch).

Experiments setup. GOSUS is compared to three different

models: (i) Batch model: (RPCA) Robust PCA using Inex-

act Augmented Lagrange Multiplier Method [24] (ii) Batch

model: (RPMF) Robust Probabilistic Matrix Factorization

[36], (iii) Online model: (GRASTA) Grassmannian Robust

Adaptive Subspace Tracking [15]. For these baseline meth-

ods, we use code from the corresponding authors’ websites.

For RPCA, the maximum number of iterations was set to

1000 and the regularization parameter was 1

γ
(γ is the num-

ber of pixels in the image frame). The regularization pa-

rameters (one for each of the two factorizing matrices) in

Video Models

Datasets RPCA[24] RPMF[36] GRASTA[15] GOSUS

Fountain 0.94 0.94 0.69 0.99

Escalator 0.91 0.90 0.90 0.96

WavingTrees 0.74 0.84 0.87 0.98

Campus 0.90 0.86 0.77 0.98

Bootstrap 0.87 0.91 0.87 0.93

WaterSurface 0.73 0.84 0.87 0.97

Hall 0.82 0.90 0.76 0.93

Time of Day 0.80 0.85 0.84 0.89

LightSwitch 0.87 0.92 0.62 0.88
Curtain 0.87 0.90 0.88 0.96

Lobby 0.89 0.94 0.70 0.95

ShoppingMall 0.92 0.93 0.90 0.94

Table 1: Area under ROC curves for RPCA, RPMF, GRASTA, GOSUS.

RPMF were set to 1. To obtain best possible results from

GRASTA, sub-sampling was turned off and the code was

initialized with the suggested default settings. In GOSUS,

for each color frame, we extract a vector v with size n (i.e,

# of pixels times 3 for the RGB channels). The ADMM hy-

perparameters used were ρi = 0.3/mean(v), ∀i = 1, · · · , l
and stepsize η was 0.01. λ was set using cross–validation

and all μis were set to 1. An initial estimate of the back-

ground subspace was set as a random orthonormal matrix

n× d (where d = 5, n is equal to three times # of pixels in

each frame). The tolerance level for all methods was set at

10−6. Note that RPCA and RPMF see all the data at once

which gives them an inherent advantage over GRASTA. Re-

ceiver Operating Characteristic (ROC) curves, and the cor-

responding area under curve (AUC) values are used as per-

formance evaluation measures.

Group Construction. Together with a 3 × 3 grid group

structure (patches) and hierarchical tree group structure

[19], we also use a coarse-to-fine superpixel group con-

struction. Pixels belonging to each superpixel form a group

which can overlap with others. We employ the SLIC super-

pixel algorithm, with region sizes {80, 40, 20, 10} in order

to generate coarse-to-fine groups [1]. The group construc-

tion captures the boundary information of objects and our

evaluations show this setting works well.

Quantitative Evaluations. Figure 1 summarizes the ROC

plots for 6 videos, representative examples from the three

different data categories that constitute our data. Table 1

presents the AUC values for all 12 videos. The results in-

dicate that GOSUS performs better than all baseline meth-

ods (except on the ‘Light Switch’ video where RPMF was

the best). In particular, from Table 1 we see that GOSUS

competes very favorably with GRASTA, both being online

methods. This is particularly clear in data with dynamic

background (Fountain, Campus) and illumination changes

(Light Switch, Lobby). Also note that RPCA and RPMF

are batch models, and GOSUS attains better performance

than either in almost all categories, which supports the in-

tuition that imposing structure (spatial homogeneity) on the

outliers enables it to improve estimating the subspace.

Qualitative Evaluations. Figure 2 shows the effectiveness
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Figure 1: ROC curves of 6 datasets for three different dataset categories showing the performance of RPCA, RPMF, GRASTA and GOSUS.

of GOSUS in adapting to intermittent object motion in the

background. GOSUS starts with a random subspace and

finds the correct background after 200 frames. At frame t0+
645, a person comes in, sits for a while, and leaves on frame

t0 + 882. GOSUS successfully learn the new background

(notice the pose of the red chair) as early as frame t0+930.

t0 t0 + 200 t0 + 645 t0 + 882 t0 + 930

Figure 2: Effectiveness on adapting to intermittent object motion in the

background. The first row are the original frames, and the second row are

the background learned by GOSUS.

Figure 3 shows example detections for four different

videos (one frame for each) of our algorithm and several

baselines. The first row corresponds to an example with

static background, and GOSUS performs comparably with

others. The last three videos have dynamic background,

where the water surface is moving, trees are swaying, etc.

Observe that outputs of GOSUS contain very few isolated

foreground regions, unlike GRASTA and the other batch

models RPCA and RPMF, which do not regularize the sec-

ondary term at all. Further, the foreground object by itself is

better segmented (very few pixels missing along the bound-

aries) in GOSUS. This shows that the structured sparsity

used in GOSUS, is not only acting as a noise removal fil-

ter (on salt-and-pepper like foreground detections) but also

improves the estimation of the perturbed (dynamic/moving)

subspace. Further note that GOSUS outperforms both batch

models (RPCA and RPMF), since the latter do not use any

form of spatial contiguity. Overall, both Table 1 and Figure

3 indicate that GOSUS improves background subtraction

in various categories, and offers substantial improvements

when the background is dynamic.

We also compare GOSUS with sparse coding based

methods. As shown in Figure 4, our method is compet-

itive with [26], except there are some grid artifacts from

[26] due to their group construction. However, our algo-

rithm achieves 1 ∼ 2 frames per second given the original

image size (no resizing). This is significantly faster than the

bi-level process used in [26], and several orders of magni-

tude faster than speed reported in [29], a method devoted to

optimizing structured sparsity norm.

Original Image GOSUS Mairal et. al [26]

Figure 4: Comparison with [26] using overlapping groups.

5.2. Multiple Face Tracking/Identity Management

Our second application is to track multiple faces (keep-

ing track of the identities) in real world videos, e.g., TV

shows and movies. This problem is extremely challenging

due to the dramatic variation in the appearance of each per-

son‘s face, and the dynamics of characters coming in and
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Original Frame Ground Truth GOSUS GRASTA[15] RPCA[24] RPMF[36]

Figure 3: Example results on Bootstrap, Campus, and Water Surface comparing GOSUS to ground truth followed by GRASTA, RPCA and RPMF.

out. Existing work has achieved the state of art by utiliz-

ing all visual frames, audio, aligned subtitle and script texts

[12, 30]. We aim to tackle this problem using only the visual

data, and in an efficient manner.

We first run Viola-Jones detector [35] on all image

frames. For robustness to pose/expression variation, light-

ing, and partial occlusion, we use a parts-based descriptor

extracted around detected facial features [12, 30]. We detect

13 facial feature points (the left and right corners, center of

each eye and mouth, the two nostrils, tip of the nose, center

of the eyes) and simply extract a pixel-wise descriptor of the

circular region around each feature point (which we trans-

form on to a canonical face). This gives us a 1937 dimen-

sional feature vector v for each face. The structured spar-

sity prior refers to each circular region as a group. This set-

ting can capture the occlusion created by glasses/shadows

as well as self-occlusions due to pose variations.

The tracking and identity management procedure is re-

lated to face recognition approaches reported in [33, 19].

We consider U as a face subspace, with each column rep-

resenting an ‘eigenface’. The observed face vector is de-

scribed by a combination of eigenfaces using w and struc-

tured outliers x, created by occlusion/disguise. w acts as a

signature for each face. False positives from the face detec-

tor are rejected by thresholding the norm of x. We maintain

a window (size 400) for tracked faces. The label for each

face (i.e., identity) comes from a majority nearest neighbor

votes from this window, along with temporal consistency.

When a new face is found, we add a new label/identity to

our signature window.

We demonstrate the effectiveness of GOSUS on several

real world videos from the TV show: ‘The Big Bang The-

ory’. Sample results are shown in Figure 5. Faces marked

with the same number are from the same track. Firstly ob-

serve that Amy in frame 151 and frame 1009, is tracked

correctly even with significant changes in camera shot. The

person marked 7 (Penny) is also correctly tracked over a

long time (frame 1297 through 2012 to 3693). However,

different tracks for the same person may be introduced if

the person (Rajesh/Sheldon marked as 3/4) disappears in

the video for a long time or has dramatic facial expressions.

Though our preliminary application on multiple face

tracking shows promising results for real videos, the cur-

rent pipeline is limited (in terms of efficiency) to the output

from the face detector. On these videos (720 × 1280), it

takes about 2 seconds to detect all possible faces (for each

frame), whereas GOSUS on its own can process all 6000
frames with all detected faces in ∼ 20 seconds. Also note

that the face detector can only detect frontal faces (the face

of the male in frame 151 is missing), and can introduce a

sizeable number of false positives for real world videos.

Improvements to these modules will seamlessly yield im-

provements in the empirical performance of GOSUS.

6. Conclusion

The main contribution of this paper is an intuitive yet

expressive model, GOSUS, which exploits a meaningful

structured sparsity term to significantly improve the accu-

racy of online subspace updates. We discuss the modeling

and optimization aspects in detail. Our solution is based

on ADMM, where most key steps in the update procedure

reduce to simple matrix operations yielding real-time per-

formance for several interesting problems in video analysis.
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Figure 5: Examples of multiple face tracking in the Big Bang Theory. Faces marked with the same number are from the same track. Frame number is

shown on the left top corner. Complete video results are provided on the project website.
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