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Abstract

The archetype hull model is playing an important role in
large-scale data analytics and mining, but rarely applied to
vision problems. In this paper, we migrate such a geometric
model to address face recognition and verification together
through proposing a unified archetype hull ranking frame-
work. Upon a scalable graph characterized by a compact
set of archetype exemplars whose convex hull encompasses
most of the training images, the proposed framework ex-
plicitly captures the relevance between any query and the
stored archetypes, yielding a rank vector over the archetype
hull. The archetype hull ranking is then executed on ev-
ery block of face images to generate a blockwise similarity
measure that is achieved by comparing two different rank
vectors with respect to the same archetype hull. After inte-
grating blockwise similarity measurements with learned im-
portance weights, we accomplish a sensible face similarity
measure which can support robust and effective face recog-
nition and verification. We evaluate the face similarity mea-
sure in terms of experiments performed on three benchmark
face databases Multi-PIE, Pubfig83, and LFW, demonstrat-
ing its performance superior to the state-of-the-arts.

1. Introduction
The primary purpose of face analysis is to compute a

robust and effective similarity measure between any input

pair of face images. Such a measure is expected to sup-

press intra-personal face variations due to varying expres-

sions, poses, and illumination conditions. Nowadays, rapid-

ly growing face image resources stemming from online pho-

to albums as well as social networks provide new opportu-

nities and meanwhile pose new challenges to existing face

processing approaches. How can we take advantage of the

gigantic amount of face information on the Web? One feasi-

ble approach is to upgrade current face processing systems

by augmenting web-crawled face images into their training

datasets, which therefore requires the face systems to be

easy for re-training and scalable to accommodate massive

web data.

Figure 1. One visual example showcasing an archetype hull of face

images. We view face images as points in the image space, where

the polytope composed of a few archetype faces encloses almost

all points. Any point can be represented by a convex combination

of the archetypes, and these archetypes hence form a convex hull

of the entire point set.

To pursue the scalability, we leverage a small set of

archetype exemplars to represent a large training set of face

images. These archetypes constitute a convex hull which

encompasses most faces in the training set. To the best of

our knowledge, the archetype hull model has not been ap-

plied to the face area. The use of archetypes along with

the produced archetype hull may open up a new avenue to

enable traditional face processing approaches scale up to

massive face datasets. To illustrate, Fig. 1 showcases face

archetypes and an archetype hull to model face images. In

this paper, we seek such archetypes using an efficient sim-

plex volume maximization algorithm. Subsequently, we

build a scalable graph by virtue of the archetypes whose

size is much smaller than the training data size. More-

over, we propose a novel graph-based ranking framework

which explicitly captures the relevance between any query

and the stored archetypes, yielding a rank vector over the

archetype hull. The archetype hull ranking is then applied to

every block of face images, leading to a blockwise similar-
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ity measure between any face pair through comparing two

different rank vectors with respect to the same archetype

hull. After integrating blockwise similarity measurements

with learned importance weights, we eventually achieve a

sensible face similarity measure that is readily applicable to

both face recognition and verification tasks. We evaluate the

face similarity measure in terms of experiments carried out

on three benchmark face databases Multi-PIE [7], Pubfig83

[20], and LFW [9], and demonstrate that the performance

of the proposed face similarity measure is superior to the

state-of-the-arts.

2. Related Work

In the face recognition literature, a large number of sub-

space methods [25][3][19][17][26][27][13][8][28] working

on holistic facial features have been proposed. Recently, lo-

cal facial descriptors [18][1][5] achieved greater accuracy

gains on many benchmark datasets. The local descriptors

attempt to extract distinctive features of image textures like

SIFT [18] or local micro-patterns of face shapes like LBP

[1]. However, intra-personal variations caused by varying

expressions, poses, and illumination conditions remain a

potential obstacle to these appearance-based methods.

The success of sparse representation [30] in face recogni-

tion has inspired the face community to consider the sparse

properties of the subspaces hidden in face image ensem-

bles. Nevertheless, the subspace sparsity holds if there are

sufficient face examples in each class to cover intra-personal

variations, which could not be satisfied under unconstrained

recognition environments such as the LFW database.

As mentioned before, one of the major challenges of

modern face recognition is the explosive growth of face da-

ta. Some efficient learning methods could provide promis-

ing solutions. For example, the LARK method [22] devel-

oped a special kind of features to obtain a training free clas-

sifier. Lately, a scalable neighborhood graph, Anchor Graph
[14], was proposed to accommodate massive training sam-

ples, and has shown excellent performance in large-scale

semi-supervised learning [16] and image retrieval [31]. In

this paper, we employ the Anchor Graph model to deal with

large quantities of face images since it scales linearly with

the training set size in terms of both space and time com-

plexities.

3. Archetypes and Archetype Hull

Archetype is initially termed in psychology [11] to de-

scribe a very typical and universally understood exemplar

among a group of objects. Archetypal analysis aims to find

a compact set of “pure types”, i.e., so-called archetypes,

such that the typical patterns of this group of objects are

covered in the archetypes and the other objects are simply

emulations or combinations of the archetypes.

3.1. Concept of Archetypes

The concept of archetypes actually exists in a variety

of disciplines including literature, philosophy, psychology,

marketing [12], and statistics [6]. The idea of archetypes is

recently introduced into pattern recognition [23] and infor-

matics [24][21]. Understanding the concept of archetypes

in face recognition is intuitive: people can easily remem-

ber someone with a very distinctive facial appearance; some

people are thought of being very similar to a few distinc-

tive faces. Such phenomena serve as the evidence of iden-

tifying archetypes and correlating unknown faces to known

archetypes in a recognition process.

Mathematically, the convex hull of archetypes encom-

passes almost all points in a data set, and the archetypes

inherently reside on the border of the point cloud formed by

the data set. To exploit the idea of archetypes along with

their produced archetype hull, there are two core problems:

1) how to find the archetypes, and 2) how to correlate one

input sample with the archetypes.

3.2. Archetype Seeking

The time efficiency of finding archetypes is an impor-

tant concern. It is known that for an input data set X of

n points with d dimensions, the time complexity for com-

puting a convex hull enclosing X is as high as O
(
nd/2

)
[23][24]. For a set of tens of thousands of images with

high-dimensional descriptors, exactly solving this convex

hull problem quickly becomes computationally intractable.

To this end, a few algorithms have been designed to achieve

approximate solutions, of which the simplex volume max-

imization algorithm [24] can provide a good approximate

solution in a linear time complexity O(n). Given a point set

X = {xi ∈ R
d}ni=1, we intend to search for m archetypes

U = {uj ∈ X}mj=1 whose convex hull forms an (m − 1)-
simplex in geometry. Because searching for the archetypes

U is geometrically equivalent to maximizing the volume of

the simplex produced by U , the simplex volume maximiza-

tion algorithm uses a sequential seeking strategy to find m
archetypes such that their produced simplex has the maxi-

mum volume.

In distance geometry [4], the volume of an (m − 1)-
simplex S(u1, · · · ,um) is obtained by the Cayley-Menger
determinant. With a mild assumption that all simplex ver-

tices are equidistant, the Cayley-Menger determinant gives

a simplified volume formula as

V ol(S)2m−1 =
a2(m−1)

2m−1((m− 1)!)2

(
2

a4

m−1∑
j=1

m−1∑
j′=j+1

d2j,md2j′,m+

2

a2

m−1∑
j=1

d2j,m − m− 2

a4

m−1∑
j=1

d4j,m − (m− 2)

)
,

(1)
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Algorithm 1 Archetype Seeking via Simplex Volume
Maximization

Input: An input data set X = {xi ∈ R
d}ni=1, the number m

(� n) of required archetypes.

Initialize
randomly sample a point xt from X ,

u1 = arg max
xi∈X

‖xi − xt‖,

a = 0, D
(1)
i = D

(2)
i = D

(3)
i = 0 ∀i ∈ [1 : n];

for k = 1, · · · ,m− 1 do
for i = 1, · · · , n do

D
(3)
i ←− D

(3)
i + ‖uk − xi‖D(1)

i

D
(1)
i ←− D

(1)
i + ‖uk − xi‖

D
(2)
i ←− D

(2)
i + ‖uk − xi‖2

end for,

a ←− max
{
a, {‖uk − xi‖}ni=1

}
,

i∗ ←− arg max
i∈[1:n]

(
aD

(1)
i − k−1

2
D

(2)
i +D

(3)
i

)
,

uk+1 ←− xi∗ ,

end for.

Output: The m archetypes U = {uk}mk=1.

where a > 0 is the constant distance among m vertices, and

dj,m = ‖uj−um‖. Based on the volume formula in eq. (1),

the sequential archetype seeking principle is expressed as

follows

uk+1 = arg max
xi∈X

k∑
j=1

d̃j,i

(
ak − k − 1

2

k∑
j=1

d̃j,i +

k∑
j′=j+1

d̃j′,i

)
,

(2)

where k ∈ [1 : m− 1], ak = max
xi∈X

max
k′∈[1:k]

‖xi − uk′‖, and

d̃j,i = ‖uj − xi‖. This principle immediately leads to the

efficient Simplex Volume Maximization algorithm depicted

in Algorithm 1. The time complexity of this algorithm is

O(mn). Since m � n is kept as a constant, such a com-

plexity is linear in the data set size n. A visual example

of the algorithm applied to a 2D toy dataset is displayed in

Fig. 2.

4. Archetype Hull Ranking
In this section, we address the problem that we raised in

Section 3: how to correlate an input sample with archetypes.

Note that this sample may be an unseen sample outside the

set of available training samples, and that these archetypes

can be stored in memory for real-time computations.

Since the archetype hull

S(U) =
⎧⎨
⎩

m∑
j=1

θjuj

∣∣∣∣θj ≥ 0, 1 ≤ j ≤ m,

m∑
j=1

θj = 1

⎫⎬
⎭

(3)

encloses most training samples in X , we can project any in-

put sample x ∈ R
d onto S , thereby obtaining a new (lossy)

representation of x in terms of the stored archetypes in U .

Formally, we reconstruct the input x using a convex combi-

nation of the archetypes in U as

min
z(x)∈Rm

‖x−Uz(x)‖2

s.t. z(x) ≥ 0, 1�z(x) = 1, (4)

where U = [u1, · · · ,um] ∈ R
d×m, and z(x) contains the

nonnegative reconstruction coefficients. It turns out that if

d < m the coefficient vector z(x) is sparse and the number

of its nonzero elements is usually far smaller than m. In

an algebraic perspective, z(x) acts as a vectorial mapping

that maps any input sample x to a sparse code in R
m. The

convex optimization problem in eq. (4) can be efficiently

solved using a fast constrained least squares solver.

Through a simple archetype hull projection, we acquire

the new representation Uz(x) for any input sample x,

where the coefficient vector z(x) directly reveals that which

archetypes are relevant to the input x (zj(x) > 0 implies

that the archetype uj is relevant to x). Although projecting

x onto the archetype hull S(U) gives rise to a correlation

between the input x and the archetypes U , such a correla-

tion is somewhat weak in the sense that the information of

the training set X is not fully exploited. In what follows, we

discover a stronger correlation between x and U by propos-

ing a novel graph-based ranking framework.

We first build a data-to-archetype affinity matrix between

the training data X and the archetypes U , that is, Z =⎡
⎣z

�(x1)
· · ·

z�(xn)

⎤
⎦ ∈ R

n×m which satisfies Z ≥ 0 and Z1 = 1.

With the data-to-archetype affinity matrix Z, the theory [14]

of Anchor Graph unveils an approximate data-to-data affin-

ity matrix in an elegant manner. The Anchor Graph affinity

matrix is in a low-rank form of A = ZΛ−1Z� ∈ R
n×n,

where Λ = diag(Z�1) ∈ R
m×m. The low-rank nature

of A lends prominent advantages to storage and computa-

tions, thus making the Anchor Graph scale up to massive

datasets. Let us define a diagonal matrix D ∈ R
n×n whose

diagonal elements stem from the diagonal elements of A,

i.e., Dii = z�(xi)Λ
−1z(xi) for 1 ≤ i ≤ n. As such,

we derive the normalized Anchor Graph Laplacian matrix

as follows (notice A1 = 1)

L̄ = I− (I−D)−
1
2 (A−D)(I−D)−

1
2

= I− (I−D)−
1
2A(I−D)−

1
2 +D(I−D)−1

= (I−D)−1 − (I−D)−
1
2ZΛ−1Z�(I−D)−

1
2 . (5)

By means of this normalized Anchor Graph Laplacian L̄,

we propose a novel graph-based ranking framework which

is capable of scaling up the well-known manifold ranking
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Figure 2. An example of archetype seeking on a 2D toy dataset consisting of 3000 2D points. Every subfigure shows one step of the

archetype seeking process. The area surrounded by a dashed line denotes the current archetype hull produced by the currently chosen

archetypes. The last subfigure shows the final archetype hull which encloses almost all data points, and shows a data point x that is

represented by a convex combination of three archetypes.

approach [33][15]. The original objective of manifold rank-

ing is

min
f∈Rn

(1− α)‖f − y‖2 + αf�L̄f , (6)

where y ∈ R
n keeps the initial rank scores, f ∈ R

n saves

the final rank scores, and the parameter 0 < α < 1 controls

the trade-off between proximity to the initial ranks in y and

graph-consistent smoothness of f . Now we adapt the mani-

fold ranking task in eq. (6) into the context of the archetype

hull described in eq. (3). Complying with the convex recon-

struction scheme in eq. (4) led by archetype hull projection,

we assume that the rank score of any training sample xi is

also a convex combination of rank scores {rj}mj=1 of the

archetypes (archetype uj has the rank score rj) with the

same combination coefficients z(xi) as those obtained in

the archetype-based reconstruction. Thus, this assumption

leads to fi = z�(xi)r in which r = [r1, · · · , rm]� is the

rank vector over the archetype hull. Aggregating fi’s for

all training samples, we have f = Zr. After substituting

f = Zr into eq. (6) and using the Anchor Graph Laplacian

L̄ written in eq. (5), we arrive at the following archetype-

driven ranking framework:

min
r∈Rm

(1− α)‖Zr − y‖2 + αr�Z�L̄Zr. (7)

The optimal solution to eq. (7) is easily achieved by

r∗ =

(
Z�Z+

α

1− α
(M1 −M2Λ

−1M2)

)−1

Z�y,

(8)

where M1 = Z�(I−D)−1Z and M2 = Z�(I−D)−1/2Z.

Eq. (8) indicates that when a training sample xi becomes

a query (corresponding to y = [0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0]�), the

resulting rank vector is

rα(xi) =

(
Z�Z+

α

1− α
(M1 −M2Λ

−1M2)

)−1

z(xi),

(9)

which relies on the parameter α. In a natural means, we can

generalize eq. (9) to

rα(x) =

(
Z�Z+

α

1− α
(M1 −M2Λ

−1M2)

)−1

z(x),

(10)

which allows any sample x as a query.

So far, the proposed archetype-driven ranking frame-

work in eq. (7), namely Archetype Hull Ranking (AHR),

employs the scalable Anchor Graph capturing the manifold

structure of the whole training set X to accomplish a strong

correlation (or relevancy) in eq. (10) between any input x
and m archetypes in U . Moreover, computing the relevance

between x and U by eq. (10) is quite convenient, since(
Z�Z+ α

1−α (M1−M2Λ
−1M2)

)−1
can be pre-computed

in O(mn) space and O(m2n) time complexities that still

scale linearly with the training set size n.

It is worthwhile to clarify that our archetype hull rank-

ing approach differs from the ranking approach proposed in

[31] in the sense that our aim is to solve rank scores (r) on

much fewer archetypes while the latter directly solves full

rank scores (f ) on entire training samples.

5. Face Modeling with Archetypes
To ensure the robustness resilient to intra-personal vari-

ations caused by varying poses, expressions, and illumina-

tion conditions, we adopt a block (i.e., image patch) based
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Figure 3. The flowchart of obtaining the proposed face similarity measure.

decomposition to model face images. In detail, we divide

each face image into a fixed number of blocks, then extract

low-level features from each block, and seek archetypes in

block-level feature spaces by applying Algorithm 1.

In this section, we propose to tackle face recognition and

verification together using the archetype hull ranking ap-

proach proposed in Section 4. First, we acquire a block-

wise face similarity measure through harnessing the results

of the archetype hull ranking in an unsupervised or super-

vised manner. Then, we achieve a holistic face similarity

measure by integrating blockwise similarity measurements

with equal or learned importance weights. The flowchart of

our face modeling approach is plotted in Fig. 3.

5.1. Blockwise Similarity Measures

5.1.1 Unsupervised Approaches

Here we present two approaches for attaining blockwise

similarity measures. Note that both of them do not use any

class label information of the training set.

Baseline. Given any pair of feature vectors (q1, q2) at the

k-th block position in face images, the baseline similarity

measure is formulated as

Sbasic
k (q1, q2) = z�(q1)Λ−1z(q2), (11)

which directly uses the affinity function of an Anchor Graph

established over a training set Xk = {xki}ni=1 correspond-

ing to the k-th block position.

Archetype Hull Ranking. The baseline measure merely

takes advantage of archetype hull projection, and essential-

ly takes the intersection between the resulting sparse coef-

ficient vectors z(q1), z(q2) as the similarity. By virtue of

archetype hull ranking, we herewith obtain two rank vectors

rα(q1), r
α(q2) which can capture the more reliable rele-

vancy between q1, q2 and the archetypes in Uk. As such,

we take the cosine similarity between the two rank vectors

SAHR
k (q1, q2) =

(
rα(q1)

)�(
rα(q2)

)
∥∥rα(q1)∥∥∥∥rα(q2)∥∥ , (12)

which measures the extent of the overlapping between q1
and q2’s relevant archetypes disclosed by the archetype hull

ranking with respect to the queries q1 and q2.

5.1.2 Supervised Approaches

Now we intend to leverage the label information of the

training set Xk as well as the archetypes in Uk. Suppose

that there are totally c classes (i.e., persons) in the train-

ing image set. We specially assign a label indicator vector

Yi. = [0, · · · , 0︸ ︷︷ ︸
j−1

, 1, 0, · · · , 0] ∈ {1, 0}1×c to each training

image Ii = {xki}k belonging to the j-th class. Then each

sample in Xk has a ground-truth label and Uk ⊂ Xk does

so. We write a label matrix H =

⎡
⎣H1.

· · ·
Hm.

⎤
⎦ ∈ {1, 0}m×c each

row of which corresponds to an archetype in Uk. Like the

previous subsection, we propose two supervised approach-

es which access the label matrix H in yielding blockwise

similarity measures.

Baseline. For any sample q, the archetype hull projection

results in the convex reconstruction scheme q ≈ Uz(q),
which motivates us to make the assumption that such a

scheme is preserved in the label space. Hence, we can es-

timate the label vector of q as Ŷ(q) = z�(q)H. Subse-
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quently, we take the inner-product between the estimated

label vectors of an input pair (q1, q2) as the similarity:

Sbasic
k (q1, q2) = Ŷ(q1)

(
Ŷ(q2)

)�
= z�(q1)HH�z(q2).

(13)

Archetype Hull Ranking. While eq. (13) offers a se-

mantic similarity measure, we try to discover a more dis-

criminative semantic similarity measure by controlling the

archetype hull ranking. Let us keep the indexes of q’s rel-

evant archetypes revealed by z(q) into an initial reference

set R(q) =
{
j|zj(q) > 0, j ∈ [1 : m]

}
. Afterwards, we

apply the archetype hull ranking to obtain the rank vector

rα(q) from which we acquire another reference set

R̃α(q) =
{
j|rαj (q) ∈ Δ, j ∈ [1 : m]

}
,

in which the set Δ =
{

largest |R(q)| elements in rα(q)
}

and |R(q)| denotes the cardinality of the set R(q). Through

intersecting the two reference sets R(q) and R̃α(q), we can

refine q’s relevant archetypes and thereby re-estimate the

label vector of q as

Ŷα(q) =

∑
j∈R(q)

⋂
R̃α(q) r

α
j (q)Hj.∑

j∈R(q)
⋂

R̃α(q) r
α
j (q)

. (14)

A new semantic similarity measure is then given by

SAHR
k (q1, q2) = Ŷα(q1)

(
Ŷα(q2)

)�
. (15)

Critically, we are able to make the semantic similarity

measure SAHR
k in eq. (15) as discriminative as possible by

tuning the model parameter α ∈ (0, 1). The optimal α∗ is

achieved through performing the semantic similarity vali-

dation on the training set Xk as follows

α∗ = arg min
α∈(0,1)

∥∥∥YY� − Ŷα(Ŷα)�
∥∥∥2
F
, (16)

where Y =

⎡
⎣Y1.

· · ·
Yn.

⎤
⎦ and Ŷα =

⎡
⎣Ŷ

α(xk1)
· · ·

Ŷα(xkn)

⎤
⎦. Eq. (16) im-

plies that with the optimal parameter α∗, the archetype hull

ranking yields the discriminative semantic similarity mea-

sure in eq. (15) that can best fit the ground-truth semantic

similarity YY� in the least-squares sense.

5.2. Face Similarity Measures

In order to acquire a holistic similarity between an input

face pair Q1 = {qk1}k and Q2 = {qk2}k, we can simply

integrate all blockwise similarity measurements {Sk}bk=1 (b
is the total number of blocks) with equal weights, leading to

F (Q1, Q2) =

∑b
k=1 Sk(qk1, qk2)

b
, (17)

where the blockwise similarity measure Sk(, ) can be the

two unsupervised measures in eqs. (11)(12) or the super-

vised baseline measure in eq. (13).

During learning the supervised AHR measure in eq. (15)

on the training set Xk across all b blocks, we are already

aware of the importance of each block, which is reflected in-

to the squared fitting error ε2k =
∥∥YY� − Ŷα∗

(Ŷα∗
)�

∥∥2
F

.

The smaller ε2k, the more reliable the supervised measure

SAHR
k (, ). Consequently, we introduce the importance

weights exp(−λε2k/n
2) (λ > 0) to achieve the holistic face

similarity measure as

F̃ (Q1, Q2) =

∑b
k=1 exp

(− λε2k
n2

)
SAHR
k (qk1, qk2)∑b

k=1 exp
(− λε2k

n2

) .

(18)

6. Experiments
We conduct experiments on three widely used bench-

mark face databases Multi-PIE [7], Pubfig83 [20], and LFW

[9]. The face recognition experiments on Multi-PIE and

Pubfig83 are conducted under a gallery-query recognition

mode. For the face verification experiments on LFW, we

follow the unsupervised protocol of the LFW benchmark

for evaluations. For all datasets, each face image is divided

into 8 × 10 blocks, and a 59-dimensional uniform LBP [1]

is extracted from each block as facial features. We apply the

two proposed supervised approaches (called as “supervised

basic AHR” and “supervised AHR”) for face recognition,

and the two proposed unsupervised approaches (called as

“unsupervised basic AHR” and “unsupervised AHR”) for

face verification, respectively. Note that “supervised AHR”

learns the optimal α on the training set, while “unsupervised

AHR” uses the fixed α = 0.16.

Archetype Type. We first study the influences of differ-

ent types of archetypes on the face recognition accuracy

achieved by our proposed “supervised basic AHR” and “su-

pervised AHR”. The comparison results are listed in Table

1, where “Random Exemplars” refers to randomly select-

ing data exemplars as archetypes, “K-Medoids” refers to

using the output of K-Medoids clustering as archetypes, and

“Archetype Seeking” refers to using the output of archetype

seeking Algorithm 1 as archetypes. This group of exper-

imental results demonstrate that the archetype seeking al-

gorithm always produces the archetypes of the best quality,

which lead to the highest recognition accuracy for both “su-

pervised basic AHR” and “supervised AHR”.

Archetype Number. The number of archetypes m is also

an important factor to affecting the recognition/verification

performance. To shed light on the effect of varying m, we

conduct recognition and verification experiments with vary-

ing m and show the corresponding results in Figs. 4 and 5.

The experimental results clearly indicate that the recogni-

tion/verification accuracy increases as m grows.
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Table 1. Comparison of different types of archetypes on the Multi-

PIE dataset. The number of archetypes is fixed to �n/10�.

Archetype Type
Approach

supervised basic supervised

AHR AHR

Random Exemplars 79.4% 84.6%

K-Medoids 82.3% 86.9%

Archetype Seeking 86.4% 92.1%

Table 2. The recognition accuracy on the Multi-PIE and Pubfig83

datasets. The number of archetypes is fixed to �n/10�.

Approach Accuracy (%)

Multi-PIE Pubfig83

LBP 57.7 56.3

Eigenfaces [25] 61.9 56.3

Fisherfaces [3] 67.4 60.2

SRC [30] 81.5 75.2

supervised basic AHR 86.4 80.2

supervised AHR 92.1 85.5
supervised AHR (cross-dataset) 88.6 83.3

Table 3. The verification accuracy on the LFW dataset under the

unsupervised setting. The number of archetypes is fixed to 3, 000.

Approach Accuracy (%)

LBP 68.50

unsupervised basic AHR 73.68

unsupervised AHR 83.18
MRF-MLBP [2] 80.08

I-LPQ [10] 86.20

PAF [32] 87.77

Face Recognition. We conduct face recognition experi-

ments on the Multi-PIE and Pubfig83 datasets. All face

images are uniformly aligned according to an affine trans-

form. On Multi-PIE, the training set includes 20, 000 im-

ages from 37 persons, the gallery set contains 6, 000 im-

ages from 300 persons, and the query set contains 2, 000
images. On Pubfig83, the training set consists of 4, 000 im-

ages from 83 persons, the gallery set has 30 images from

each of 83 persons, and the query set has 1, 000 images. We

compare the proposed supervised approaches against sev-

eral representative recognition methods. The experimental

results are listed in Table 2 which shows that “supervised

AHR” is the best and “supervised basic AHR” is the second

best in terms of recognition accuracy. In Table 2, “LBP”

refers to directly using concatenated LBP features; “Eigen-

faces” and “Fisherfaces” learn subspaces over concatenated

LBP features; “LBP”, “Eigenfaces”, and “Fisherfaces” all

use the cosine similarity for the final recognition. To verify

the generalization power of our approaches, we also con-

duct cross-dataset experiments shown as “cross-dataset” in

Table 2. For the Multi-PIE test data, we use the Pubfig83

training set for cross-training; for the Pubfig83 test data,
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Figure 4. The recognition accuracy achieved by our approaches

with varying archetype proportions m/n on the Multi-PIE and

Pubfig83 datasets.
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Figure 5. The verification accuracy achieved by our approaches

with a varying number m of archetypes on the LFW dataset.

we use the Multi-PIE training set for cross-training. The

cross-dataset recognition results illustrate that our approach

“supervised AHR” is robust to the training source, and can

still achieve higher accuracy than the other methods even if

the training set is changed to a different data source.

Face Verification. We follow the standard unsupervised

protocol of the LFW benchmark. The roughly aligned im-

ages of LFW are from the LFW-a dataset [29]. Without

using labels, faces images outside LFW are permitted for

training. Specifically, our unsupervised approaches com-

bine the two training sets of the Multi-PIE and Pubfig83

datasets for training. The verification accuracy averaged
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Figure 6. The ROC curves of face verification approaches with the

standard unsupervised LFW protocol.

over ten test folds is reported for all compared methods

in Table 3 which shows that our “unsupervised AHR” is

ranked third among the recently reported highest unsuper-

vised results. We also plot the ROC curves in Fig. 6, where

the curve of “unsupervised AHR” is the second highest.

7. Conclusions
In this paper, the geometric archetype hull model is

leveraged into face modeling. Based on a scalable graph

characterized by a compact set of archetypes, we propose

an archetype-driven ranking framework that can scale up to

massive datasets. This framework generates a rank vector

over the archetype hull, which well captures the relevance

between any query and the archetypes. The archetype hull

ranking is then carried out on each block of face images,

leading to a blockwise face similarity measure. By integrat-

ing blockwise similarity measurements with learned impor-

tance weights, a sensible face similarity measure is even-

tually yielded. The performance of the face similarity mea-

sure is corroborated through recognition and verification ex-

periments performed on three benchmark face databases.
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