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Abstract

This paper presents an approach to localizing func-
tional objects in surveillance videos without domain knowl-
edge about semantic object classes that may appear in the
scene. Functional objects do not have discriminative ap-
pearance and shape, but they affect behavior of people in
the scene. For example, they “attract” people to approach
them for satisfying certain needs (e.g., vending machines
could quench thirst), or “repel” people to avoid them (e.g.,
grass lawns). Therefore, functional objects can be viewed
as “dark matter”, emanating “dark energy” that affects
people’s trajectories in the video. To detect “dark mat-
ter” and infer their “dark energy” field, we extend the La-
grangian mechanics. People are treated as particle-agents
with latent intents to approach “dark matter” and thus sat-
isfy their needs, where their motions are subject to a com-
posite “dark energy” field of all functional objects in the
scene. We make the assumption that people take glob-
ally optimal paths toward the intended “dark matter” while
avoiding latent obstacles. A Bayesian framework is used to
probabilistically model: people’s trajectories and intents,
constraint map of the scene, and locations of functional ob-
jects. A data-driven Markov Chain Monte Carlo (MCMC)
process is used for inference. Our evaluation on videos of
public squares and courtyards demonstrates our effective-
ness in localizing functional objects and predicting people’s
trajectories in unobserved parts of the video footage.

1. Introduction
This paper considers the problem of localizing functional

objects and scene surfaces in surveillance videos of public

spaces, such as courtyards and squares. The functionality

of objects is defined in terms of force-dynamic effects that

they have on human behavior in the scene. For instance,

people may move toward certain objects (e.g., food truck,

vending machines, and chairs), where they can satisfy their

needs (e.g., satiate hunger, quench thirst, or have rest), as

illustrated in Fig. 1. Also, while moving, people will tend

to avoid non-walkable areas (e.g., grass lawns) and obsta-

cles. In our low-resolution surveillance videos, these func-

tional objects and surfaces cannot be reliably recognized by

their appearance and shape. But their presence noticeably

affects people’s trajectories. Therefore, by analogy to cos-

mology, we regard these unrecognizable functional objects

as sources of “dark energy”, i.e., “dark matter”, which exert

attraction and repulsion forces on people.

Recognizing functional objects is a long standing prob-

lem in vision, with slower progress in the past decade,

in contrast to impressive advances in appearance-based

recognition. One reason is that appearance features gen-

erally provide poor cues about the functionality of objects.

Moreover, for low-resolution, bird’s-eye-view surveillance

videos, considered in this paper, appearance features are not

sufficient to support robust object detection. Instead, we an-

alyze human behavior in the video by predicting people’s

intents and motion trajectories, and thus localize sources of

“dark energy” that drive the scene dynamics.

To approach this problem, we leverage the Lagrangian

mechanics (LM) by treating the scene as a physical system.

In such a system, people can be viewed as charged particles

moving along a mixture of repulsion and attraction energy

fields generated by “dark matter”. The classical LM, how-

ever, provides a poor model of human behavior, because it

wrongly predicts that people always move toward the clos-

est “dark matter”, by the principle of least action.

We extend the classical LM to agent-based LM (ALM),

which accounts for human latent intents. Specifically, we

make the assumption that people intentionally approach

functional objects (to satisfy their needs). This amounts to

enabling the charged particles in ALM to become agents

who can personalize the strengths of “dark energy” fields

by appropriately weighting them. In this way, every agent’s
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Figure 1. An example video where people driven by latent needs (e.g., hunger, thirst) move toward “dark matter”, where these needs can be

satisfied (e.g., food truck, vending machine). We analyze human latent intents and trajectories to localize “dark matter”. For some people

(bottom right person) we observe only an initial part of their trajectory (green). (Right) Our actual results of: (a) inferring a given person’s

latent intent; (b) predicting the person’s full trajectory (red); (c) locating one source of “dark energy” (vending machine); (d) estimating

the constraint map of non-walkable areas; and (e) estimating the force field affecting the person (edge thickness indicates magnitude, and

below is another visualization of the same force field with “holes” corresponding to our estimates of non-walkable areas).

motion will be strongly driven by the intended “dark mat-

ter”, subject to “dark energy” fields of the other sources.

Since our focus is on videos of wide public spaces, we

expect that people know the layout of obstacles, walkable,

and non-walkable areas in the scene, either from previous

experience or simply by observing the scene. This allows

the agents to globally optimize their trajectories in the at-

traction energy field of their choice.

Overview: Given a short video excerpt, providing only

partial observations of people’s trajectories, we predict:

• Locations of functional objects (“dark matter”), S,

• Goals of every person, R,

• People’s full trajectories in unobserved video parts, Γ

To facilitate our prediction of S, R, and Γ, we also infer

latent constraint map of non-walkable areas, C, and latent

“dark energy” fields, �F . Note that providing ground-truth

annotations of C and �F is fundamentally difficult, and thus

we do not evaluate the inferred C and �F .

Our first step is feature extraction, which uses the state-

of-the-art multitarget tracker of [19] for detecting and track-

ing people, as well as the low-level 3D scene reconstruction

of [26]. While the tracker and 3D scene reconstruction per-

form well, they may yield noisy results. These noisy obser-

vations are used as input features to our model. Uncertainty

is handled within the Bayesian framework, which specifies

a joint distribution of observable and latent random vari-

ables, where observables are input features, and latent vari-

ables include locations of “dark matter”, people’s goals and

trajectories, constraint map, and “dark energy” fields. A

data-driven Monte Carlo Markov Chain (MCMC) is used

for inference [23, 13]. In each iteration, MCMC samples

the number and locations of functional objects and people’s

goals. This, in turn, uniquely identifies “dark energy” fields.

Since people are assumed to know the scene layout, every

person’s full trajectory can be predicted as a globally opti-

mal Dijkstra path on the scene lattice. These predictions are

considered in the next MCMC iteration for the probabilistic

sampling of the latent variables.

We present experimental evaluation on surveillance

videos from the VIRAT [16] and UCLA Courtyard [3]

datasets, as well as on our two webcam videos of public

squares. The experiments demonstrate high accuracy in lo-

cating “dark matter” in various scenes. We also compare

our predictions of human trajectories with those of exist-

ing approaches. The results show that we improve upon a

number of baselines, and outperform the state of the art.

In the sequel, Sec. 2 reviews prior work, Sec. 3 presents

our agent-based Lagrangian mechanics, Sec. 4 formulates

our model, Sec. 5 specifies our MCMC inference, and Sec. 6

presents our empirical evaluation.

2. Related Work and Our Contributions

Our work is related to three research streams.

Functionality. Recent work focuses on improving ob-

ject recognition by identifying their functionality. Calcula-

tors or cellphones are recognized in [6, 9], and chairs are

recognized in [8], based on the close-body context. [24] la-

bels functional scene elements, e.g., parking spaces, by ex-

tracting local motion features. We instead predict a person’s

goal and full trajectory to localize functional objects.

Event prediction and simulation. The work on early

prediction of human activities uses dynamic programming
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[20], grammars [17], and max-margin classification [10].

For prediction of human trajectories, [11] uses a determin-

istic vector field of people’s movements, while our “dark

energy” fields are stochastic. A linear dynamic system

of [27, 28] models smooth trajectories of pedestrians in

crowded scenes, and thus cannot handle sudden turns and

detours caused by obstacles, as required in our setting. In

graphics, relatively simplistic models of agents are used to

simulate people’s trajectories in a virtual crowd [14, 15, 18].

Human tracking and planning. The Lagrangian par-

ticle dynamics of crowd flows [1, 2] and the optical-flow

based dynamics of crowd behaviors [22] do not account for

individual human intents. [7] reconstructs an unobserved

trajectory part between two observed parts by finding the

shortest path. [5] constructs a numeric potential field for

robot path planning. Optimal path search of [21], and re-

inforcement learning and inverse reinforcement learning of

[4, 12] explicitly reason about people’s goals for predicting

human trajectories. However, these approaches critically

depend on domain knowledge. For example, [12] estimates

a reward of each semantic object class, detected using an

appearance-based object detector. These approaches are not

suitable for our problem, since instances of the same seman-

tic class (e.g., two grass lawns in Fig. 1) may have different

functionality (e.g., people may walk on one grass lawn, but

are forbidden to step on the other).

Our contributions:
• Agent-based Lagrangian Mechanics (ALM) for mod-

eling human behavior in an outdoor scene without ex-

ploiting high-level domain knowledge.

• We are not aware of prior work on modeling and esti-

mating the force-dynamic functional map of a scene.

• We distinguish human activities in the video by the as-

sociated latent human intents, rather than use the com-

mon semantic definitions of activity classes.

3. Background: Lagrangian Mechanics
The Lagrangian mechanics (LM) studies particles with

mass, m, and velocity, ẋ(t), in time t, at positions x(t) =

(x(t), y(t)) in a force field �F (x(t)) affecting the motion

of the particles. The Lagrangian function, L(x, ẋ, t), sum-

marizes the kinetic and potential energy of the entire phys-

ical system, and is defined as L(x, ẋ, t) = 1
2mẋ(t)2 +∫

x
�F (x(t)) �dx(t). Action is a key attribute of the physi-

cal system, and defined as: Γ(x, t1, t2) =
∫ t2
t1
L(x, ẋ, t)dt.

The Lagrangian mechanics postulates that the motion of

a particle is governed by the Principle of Least Action:

Γ̂(x, t1, t2) = argminΓ
∫ t2
t1
L(x, ẋ, t)dt.

The classical LM is not directly applicable to our prob-

lem, because it considers inanimate objects. We extend LM

in two key aspects, deriving the Agent-based Lagrangian

mechanics (ALM). In ALM, the physical system consists

of a set of force sources. Our first extension enables the

particles to become agents with free will to select a partic-

ular force source from the set which can drive their motion.

Our second extension endows the agents with knowledge

about the layout map of the physical system. Consequently,

they can globally plan their trajectories so as to efficiently

navigate toward the selected force source, by the Principle

of Least Action, avoiding known obstacles along the way.

These two extensions can be formalized as follows.

Let ith agent choose jth source from the set of sources.

Then, ith agent’s action, i.e., trajectory is

Γij(x, t1, t2)

= argmin
Γ

∫ t2

t1

[1
2
mẋ(t)2+

∫
x

�Fij(x(t)) �dx(t)
]
dt. (1)

In our setting (people in public areas), it is reasonable to

assume that every agent’s speed is upper bounded by some

maximum speed. Consequently, from (1), we derive:

Γij(x, t1, t2)= argmin
Γ

∫ t2

t1

||�Fij(x(t))|| · || �Δx(t)||dt.
(2)

Given �Fij(x(t)), we use the Dijkstra algorithm for finding

a globally optimal solution of (2), since the agents can glob-

ally plan their trajectories. Note that the end location of the

predicted Γij(x, t1, t2) corresponds to the location of the

selected source j. It follows that estimating the agents’ in-

tents and trajectories can be readily used for estimating the

functional map of the physical system.

4. Problem Formulation
This section specifies our probabilistic formulation of the

problem in a “bottom-up” way. We begin with the defini-

tions of observable and latent variables, and then specify

their joint probability distribution.

The video shows agents, A = {ai : i = 1, ...,M},
and sources of “dark energy”, S = {sj : j = 1, ..., N},
occupying locations on a 2D lattice, Λ = {x = (x, y) :
x, y ∈ Z+}. The locations x ∈ Λ may be walkable or non-

walkable, as indicated by a constraint map, C = {c(x) :
∀x ∈ Λ, c(x) ∈ {−1, 1}}, where c(x) = −1, if x is non-

walkable, and c(x) = 1, otherwise. The allowed locations

of agents in the scene are ΛC = {x : x ∈ Λ, c(x)=1}. Be-

low, we define the priors and likelihoods of these variables

that are suitable for our setting.

Constraint map. The prior P (C) enforces spa-

tial smoothness using the standard Ising random field:

P (C)∝ exp[β∑x∈Λ,x′∈∂x∩Λ c(x)c(x
′)], β > 0.

Dark Matter. The sources of “dark energy”, sj ∈ S,

and characterized by sj = (μj ,Σj), where μj ∈ Λ is the

location of sj , and Σj is a 2 × 2 spatial covariance matrix

of sj’s force field. The distribution of S is conditioned on
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C, where the total number N = |S| and occurrences of the

sources are modeled with the Poisson and Bernoulli pdf’s:

P (S|C)∝η
N

N !
e−η

N∏
j=1

ρ
c(μj)+1

2 (1− ρ)
1−c(μj)

2 (3)

where parameters η > 0, ρ ∈ (0, 1), and c(μj) ∈ {−1, 1}.
Agent Goals. Each agent ai ∈ A can pursue only one

goal, i.e., move toward one source sj ∈ S, at a time. The

agents cannot change their goals until they reach the se-

lected source. If ai ∈ A wants to reach sj ∈ S, we spec-

ify that their relationship rij = r(ai, sj) = 1; otherwise,

rij = 0. Note that rij is piecewise constant over time. The

end-moments of these intervals can be identified when ai
arrives at or leaves from sj . The set of all relationships is

R = {rij}. The distribution of R is conditioned on S, and

modeled using the multinomial distribution with parameters

θ = [θ1, ..., θj , ..., θN ],

P (R|S) =∏N
j=1 θ

bj
j , (4)

where θj is viewed as a prior of selecting sj ∈ S, and each

sj ∈ S can be selected bj times to serve as a goal destina-

tion, bj =
∑M

i=1 �(rij = 1), j = 1, ..., N .

Repulsion Force. Every non-walkable location

c(x)=−1 generates a repulsion Gaussian vector field, with

large magnitudes in the vicinity of x, but rapidly falls to

zero. The sum of all these Gaussian force fields on Λ forms

the joint repulsion force field, �F−(x).
Attraction Forces. Each sj ∈ S generates an attraction

Gaussian force field, �F+
j (x), where the force magnitude,

|�F+
j (x)| = G(x;μj ,Σj), is the Gaussian. When ai ∈ A

selects a particular sj ∈ S, ai is affected by the correspond-

ing cumulative force field:

�Fij(x) = �F−(x) + �F+
j (x). (5)

Note that by the classical LM, all the agents would be af-

fected by a sum of all force fields: �Fclassic(x) = �F−(x) +∑N
n=1

�F+
j (x), instead of �Fij(x).

Note that an instantiation of latent variables C, S,R
uniquely defines the force field �Fij(x), given by (5).

Trajectories. If rij = 1 then ai moves toward sj along

trajectory Γij = [xi, ...,xj ], where xi is ai’s starting loca-

tion, and xj is sj’s location. Γij represents a contiguous

sequence of locations on ΛC . The set of all trajectories is

Γ = {Γij}. As explained in Sec. 3, the agents can glob-

ally optimize their paths, because they are familiar with the

scene map. Thus trajectory, Γij , can be estimated from (2)

using the Dijkstra algorithm:

Γij = arg min
Γ⊂ΛC

∑
x∈Γ ||�Fij(x(t))|| · || �Δx(t)||. (6)

The likelihood P (Γij |C, S, rij=1) is specified in terms of

the total energy that ai must spend by walking along Γij as

P (Γij |C, S, rij=1) = P (Γij |�Fij(x)),

∝ exp
[
−λ∑x∈Γij

||�Fij(x(t))|| · || �Δx(t)||
] (7)

where λ > 0. Note that the least action, given by (6), will

have the highest likelihood in (7). But other hypothetical

trajectories in the vector field may also get non-zero like-

lihoods. When ai is far away from sj , the total energy

needed to cover that trajectory is bound to be large, and

consequently uncertainty about ai’s trajectory is large. Con-

versely, as ai gets closer to sj , uncertainty about the trajec-

tory reduces. Thus, (7) corresponds with our intuition about

stochasticity of people’s motions. We maintain the proba-

bilities for all possible rij , j ∈ S.

Video Appearance Features. We are also find useful

to model appearance of walkable surfaces as P (I|C) =∏
x∈Λ P (φ(x)|c(x)=1), where φ(x) is a feature vector

consisting of: i) RGB color at x, and ii) Binary indi-

cator if x belongs to the ground surface of the scene.

P (φ(x)|c(x)=1) is specified as a two-component Gaussian

mixture model, with parameters ψ. ψ and estimated on

our given (single) video with latent c(x), not using train-

ing data.

The Probabilistic Model. Given a video, observable

random variables include a set of appearance features, I ,

and a set of partially observed, noisy human trajectories

Γ(0). Our objective is to infer the latent variables W =
{C, S,R,Γ} by maximizing the posterior distribution ofW

P (W |Γ(0), I) ∝ P (C, S,R)P (Γ,Γ(0), I|C, S,R), (8)

P (C, S,R) = P (C)P (S|C)P (R|S),
P (Γ,Γ(0), I|C, S,R) = P (Γ,Γ(0)|C, S,R)P (I|C),
P (Γ,Γ(0)|C, S,R) = ∏M

i=1

∑N
j=1 P (Γij |C, S, rij=1).

(9)

The bottom line of (9) sums all partially observed trajecto-

ries Γ
(0)
ij , and predicted trajectories Γij . We use the same

likelihood (7) for P (Γij |·) and P (Γ
(0)
ij |·).

5. Inference
Given {I,Γ(0)}, we infer W = {C, S,R,Γ} – namely,

we estimate the constraint map, the number and layout of

dark matter, hidden human intents, and predict human full

trajectories until they reach their goal destinations in the un-

observed video parts. To this end, we use the data-driven

MCMC process [13, 23], which provides theoretical guar-

antees of convergence to the optimal solution. In each step,

MCMC probabilistically samples C, S, and R. This iden-

tifies {�Fij(x)} and the Dijkstra trajectories, which are then

used for proposing new C, S, andR. Our MCMC inference

is illustrated in Figures 2–3.
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Figure 2. Top view of the scene from Fig. 1 with the overlaid il-

lustration of the MCMC inference. The rows show in raster scan

the progression of proposals of the constraint map C (the white

regions indicate obstacles), sources S, relationships R, and trajec-

tory estimates (color indicates P (Γij |C, S,R)) of the same person

considered in Fig. 1. In the last iteration (bottom right), MCMC

estimates that the person’s goal is to approach the top-left of the

scene, and finds two equally likely trajectories to this goal.

Figure 3. Top view of the scene from Fig. 1 with the overlaid tra-

jectory predictions of a person who starts at the top-left of the

scene, and wants to reach the dark matter in the middle-right of the

scene (the food truck). A magnitude of difference in parameters

λ = 0.2 (on the left) and λ = 1 (on the right) of the likelihood

P (Γij |C, S,R) gives similar trajectory predictions. The predic-

tions are getting more certain as the person comes closer to the

goal. Warmer colors represent higher probability.

For stochastic proposals, we use Metropolis-Hastings

(MH) reversible jumps. Each jump proposes a new solu-

tion Y ′={C ′, S′, R′}. The decision to discard the current

solution, Y={C, S,R}, and accept Y ′ is made based on

the acceptance rate, α = min
(
1, Q(Y→Y ′)

Q(Y ′→Y )
P (Y ′|Γ(0),I)
P (Y |Γ(0),I)

)
where the proposal distribution is defined as Q(Y→Y ′) =
Q(C→C ′)Q(S→S′)Q(R→R′) and the posterior distribu-

tion P (Y |Γ(0), I) ∝ P (C, S,R)P (Γ,Γ(0), I|C, S,R) is

given by (8) and (9). If α is larger than a number uniformly

sampled from [0, 1], the jump to Y ′ is accepted.

The initial C is proposed by setting c(x) = 1 at all lo-

cations covered by Γ(0), and randomly setting c(x) = −1
or c(x) = 1 for all other locations. The initial number N
of sources in S is probabilistically sampled from the Pois-

son distribution of (3), while their layout is estimated as N

most frequent stopping locations in Γ(0). Given Γ(0) and S,

we probabilistically sample the initial R using the multino-

mial distribution in (4). In the next iteration, the jump step

sequentially proposes C ′, S′, and R′.
The Proposal of C’ randomly chooses x ∈ Λ, and re-

verses its polarity, c′(x) = −1 ·c(x). The proposal distribu-

tionQ(C→C ′) = Q(c′(x)) is data-driven. Q(c′(x) = 1) is

defined as the normalized average speed of people observed

at x, and Q(c′(x) = −1) = 1−Q(c′(x) = 1).

The Proposal of S’ includes the “death” and “birth”

jumps. The birth jump randomly chooses x ∈ ΛC and

adds a new source sN+1 = (μN+1,ΣN+1) to S, result-

ing in S′ = S ∪ {sN+1}, where μN+1 = x and ΣN+1 =
diag(n2, n2), where n is the scene size (in pixels). The

death jump randomly chooses an existing source sj ∈ S and

removes it from S, resulting in S′ = S \ {sj}. The ratio of

the proposal distributions is specified as
Q(S→S′)
Q(S′→S) = 1, indi-

cating no preference to either ‘death” or “birth” jumps. That

is, the proposal of S′ is exclusively governed by the Poisson

prior of (3), and trajectory likelihoods P (Γij |C ′, S′, R),
given by (7), when computing the acceptance rate α.

The Proposal of R’ randomly chooses one person ai ∈
A with goal sj , and randomly changes ai’s goal to sk ∈
S. This changes the corresponding relationships rij , rik ∈
R, resulting in R′. The ratio of the proposal distributions

is
Q(R→R′)
Q(R′→R) = 1. This means that the proposal of R′ is

exclusively governed by the multinomial prior P (R′|S′),
given by (4), and trajectory likelihoods P (Γij |C ′, S′, R′),
given by (7), when computing the acceptance rate α.

From the accepted jumps C ′, S′ and R′, we can readily

update the force fields {�F ′ij}, given by (5), and then com-

pute the Dijkstra paths of every person {Γ′ij} as in (6).

6. Experiments

Our method is evaluated on toy examples and 4 real out-

door scenes. We present three types of results: (a) localiza-

tion of “dark matter” S, (b) estimation of human intents R,

and (c) trajectory prediction Γ. Annotating ground truth of

constraint map C in a scene is difficult, since human anno-

tators provide inconsistent subjective estimates. Therefore,

we do not estimate our inference of C. Our evaluation ad-

vances that of related work [12], which focuses only on de-

tecting “ exits” and “ vehicles” in the scene, and predicting

human trajectories. Note that a comparison with existing

approaches to object detection would be unfair, since we

only have the video as our input and do not have access

to annotated examples of the objects, as most appearance-

based methods for object recognition.

Metrics. Negative Log-Likelihood (NLL) and Modified

Hausdorff Distance (MHD) are measured to evaluate tra-

jectory prediction. P (x(t+1)|x(t)) is given by (7), NLL of a
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true trajectory X = {x(1), · · · , x(T )} is defined as

NLLP (X) = − 1

T − 1

T−1∑
t=1

log(P (x(t+1)|x(t))) (10)

MHD between true trajectory X and our sampled trajectory

Y = {y(1), · · · , y(T )} is defined as

MHD(X,Y) = max(d(X,Y), d(Y,X))
d(X,Y) = 1

|X|
∑

x∈X miny∈Y ||x− y|| (11)

We present the average MHD between the true trajectory

and our 5000 trajectory prediction samples. For evaluat-

ing detection of S, we use the standard overlap criterion

of our detection and ground-truth bounding box around the

functional object of interest. When the ratio of intersec-

tion over union of our detection and ground-truth bounding

box is larger than 0.5, we deem the detection true positive.

For evaluation of predicting human intents R, we allow our

inference access to an initial part of the video footage, in

which R is not observable, and then compare our results

with ground-truth outcomes of R in the remaining (unob-

served) video parts.

Baselines. Our baseline for estimating S is an ini-

tial guess of “dark matter” based on partial observations

{Γ(0), I}, before our DDMCMC inference. This baseline

declares every location in the scene as “dark matter” at

which the observed people trajectories in Γ(0) ended, and

people stayed still at that location longer than 5sec be-

fore changing their trajectory. The baseline of estimating

R is a greedy move (GM) algorithm P (rij |{Γ(0,··· ,t)i }) ∝
exp{τ(||xj − Γ

(t)
i || − ||xj − Γ

(0)
i ||)}. We also use the fol-

lowing three naive methods as baselines. (1) Shortest path

(SP) estimates the trajectory as a straight line, disregarding

obstacles in the scene. (2) Random Walk (RW). (3) La-

grangian Physical Move (PM) under the sum of all forces

from multiple fields, �Fclassic(x), as defined in Sec. 4, as by

the classical LM.

Comparison with Related Approaches. We are not

aware of prior work on estimating S and R in the scene

without access to training labels of objects. So we compare

only with the state-of-the-art method for trajectory predic-

tion [12].

Parameters. In our setting, the first 50% of a video is

observed, and human trajectories in the entire video is to be

predicted. We use the following model parameters: β =
.05, λ = .5, ρ = .95. From our experiments, varying these

parameters in intervals β ∈ [.01, .1], λ ∈ [.1, 1], and ρ ∈
[.85, .98] does not change our results, suggesting that we

are relatively insensitive to the specific choices of β, λ, ρ
over certain intervals. η is known. θ and ψ are fitted from

observed data.

Figure 4. Two samples of toy examples.

|S| S, R NLL

10 20 50 100 10 20 50 100

2 0.95 0.97 0.96 0.96 1.35 1.28 1.17 1.18

3 0.87 0.90 0.94 0.94 1.51 1.47 1.35 1.29

5 0.63 0.78 0.89 0.86 1.74 1.59 1.36 1.37

8 0.43 0.55 0.73 0.76 1.97 1.92 1.67 1.54

Table 1. Results of toy example. Left is accuracy of S&R, it’s

counted correct only if both S and R are correct. Right is NLL.

Second row is number of agents |A|, first column is number of

sources |S|.

Dataset |S| Source Name

1© Courtyard 19
bench/chair,food truck, bldg,

vending machine, trash can, exit

2© SQ1 15 bench/chair, trash can, bldg, exit

3© SQ2 22 bench/chair, trash can, bldg, exit

4© VIRAT 17 vehicle, exit

Table 2. Summary for datasets

6.1. Toy example

The toy example allows us to methodologically test our

approach with respect to each dimension of the scene com-

plexity, while fixing the other dimensions. The scene com-

plexity is defined in terms of the number of agents in the

scene and the number of sources. These parameters are var-

ied to synthesize the toy artificial scenes. The toy example

is in a rectangle random layout, the ratio of obstacle pix-

els over all pixels is about 15%, the ratio of observed part

of trajectories is about 50%. We vary |S| and |A|, and we

have 3 repetitions for each setting. Tab. 1 shows that our

approach can handle large variations in each dimension of

the scene complexity.

6.2. Real scenes

Datasets. We use 4 different real scenes for evaluation:
1© Courtyard dataset [3]; and our new video sequences of

two squares 2© SQ1 and 3© SQ2 annotated by VATIC [25];
4© VIRAT ground dataset [16]. SQ1 is 20min, 800 × 450,

15 fps. SQ2 is 20min, 2016 × 1532, 12 fps. We use the

same scene A of VIRAT as in [12]. We allow initial (partial)

observation of 50% of the video footage, which for example

gives about 300 trajectories in 1©.
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Figure 5. Qualitative experiment results for 4 scenes. Each row is one scene. The 1st column is the reconstructed 3D surfaces of each scene.

The 2nd column is the estimated layout of obstacles (the white masks) and dark matter (the Gaussians). The 3rd column is an example of

trajectory prediction by sampling, we predict the future trajectory for a particular agent at some position (A, B, C, D) in the scene toward

each potential source in S, the warm and cold color represent high and low probability of visiting that position respectively.

Dataset
S R NLL MHD

Our Initial Our GM Our [12] RW Our RW SP PM

1© 0.89 0.23 0.52 0.31 1.635 - 2.197 17.4 243.1 43.2 207.5

2© 0.87 0.37 0.65 0.53 1.459 - 2.197 11.6 262.1 39.4 237.9

3© 0.93 0.26 0.49 0.42 1.621 - 2.197 21.5 193.8 27.9 154.2

4© 0.95 0.25 0.57 0.46 1.476 1.594 2.197 16.7 165.4 21.6 122.3

1©Courtyard 45% 40%

S 0.85 0.79

R 0.47 0.41

NLL 1.682 1.753

MHD 21.7 28.1

Table 3. Left: Results of 4 real scenes. The results show that our approach outperform the baselines. The accuracy of S verifies that these

dark matter can be recognized through human activities. Intent prediction R by our method is better than GM, and the accuracy is higher

when S is smaller. The trajectory prediction (NLL and MHD) is more accurate is constrained scene ( 1© 2©) than free scenes ( 3© 4©). Right:

Results of scene 1©Courtyard with different observed ratio. The performance downgrades gracefully with smaller observed ratio.

Results. The qualitative results for real scenes are shown

in Fig. 5 and the quantitative evaluation is presented in Tab.

3. As can be seen: (1) We are relatively insensitive to the

specific choice of model parameters. (2) We handle chal-

lenging scenes with arbitrary layouts of dark matter, both

in the middle of the scene and at its boundaries. From Tab.

3, the comparison with the baselines demonstrates that the

initial guess of sources based on partial observations gives

very noisy results. These noisy results are significantly im-

proved in our DD-MCMC inference. Also, our method is a

slightly better than the baseline GM if there are a few ob-

stacles in the middle of the scene. But we get a huge perfor-

mance improvement over GM if there are complicated ob-

stacles in the scene. This shows that our global plan based

relation prediction is better than GM. We are also superior

to the random walk. The baselines RW and PM produce

bad trajectory prediction. While SP yields good results for

scenes with a few obstacles, it is brittle for more complex
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scenes which we successfully handle. When the size of S
is large (e.g., many exists from the scene), our estimation

of human goals may not be exactly correct. However, in

all these error cases, the goal that we estimate is not spa-

tially far away from the true goal. Also, in these cases, the

predicted trajectories are also not far away from the true

trajectories measured by MHD and NLL. Our performance

downgrades gracefully with the reduced observation time.

We outperform the state of the art [12]. Note that the

MHD absolute values produced by our approach and [12]

are not comparable, because this metric is pixel based and

depends on the resolution of reconstructed 3D surface.

Our results show that our method successfully addresses

surveillance scenes of various complexities.

7. Conclusion
We have addressed a new problem, that of localiz-

ing functional objects in surveillance videos without using

training examples of objects. Instead of appearance fea-

tures, human behavior is analyzed for identifying the func-

tional map of the scene. We have extended the classical

Lagrangian mechanics to model the scene as a physical sys-

tem wherein: i) functional objects exert attraction forces on

people’s motions, and ii) people are not inanimate particles

but agents who can have intents to approach particular func-

tional objects. Given a small excerpt from the video, our

approach estimates the constraint map of non-walkable lo-

cations in the scene, the number and layout of functional

objects, and human intents, as well as predicts human tra-

jectories in the unobserved parts of the video footage. For

evaluation we have used the benchmark VIRAT and UCLA

Courtyard datasets, as well as our two 20min videos of pub-

lic squares.
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