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Abstract

Detecting and registering nonrigid surfaces are two im-
portant research problems for computer vision. Much work
has been done with the assumption that there exists only
one instance in the image. In this work, we propose an
algorithm that detects and registers multiple nonrigid in-
stances of given objects in a cluttered image. Specifically,
after we use low level feature points to obtain the initial
matches between templates and the input image, a novel
high-order affinity graph is constructed to model the consis-
tency of local topology. A hierarchical clustering approach
is then used to locate the nonrigid surfaces. To remove the
outliers in the cluster, we propose a deterministic anneal-
ing approach based on the Thin Plate Spline (TPS) model.
The proposed method achieves high accuracy even when the
number of outliers is nineteen times larger than the inlier-
s. As the matches may appear sparsely in each instance,
we propose a TPS based match growing approach to prop-
agate the matches. Finally, an approach that fuses feature
and appearance information is proposed to register each
nonrigid surface. Extensive experiments and evaluations
demonstrate that the proposed algorithm achieves promis-
ing results in detecting and registering multiple non-rigid
surfaces in a cluttered scene.

1. Introduction
Detecting and registering deformable surfaces are of

great importance for tasks such as non-rigid structure-from-

motion, medical imaging, and augmented reality. This is a

difficult problem since the appearance of imaged surfaces

varies due to many factors such as camera pose, surface de-

formation and lighting conditions. In addition, the high di-

mensionality of parameters in the deformation model makes

the problem far more complicated than the rigid object de-

tection so that it is difficult to directly employ a robust es-

timator, such as RANSAC [14]. When multiple deformed

instances of an object appear in an image, this makes the

detection and registration task even more challenging.

Much work has been done with the assumption that

there exists only one instance in the image and significan-

t progress has been made in recent years. Pilet et al. [23]

propose a feature based approach that employs an iterative

semi-implicit optimization scheme to refine the matches.

In [29], Zhu et al. propose a method to detect and regis-

ter a surface, which fuses feature and appearance informa-

tion. Both algorithms are based on the triangulated mesh

model and achieve impressive performance when only one

instance is in the image. However, it is not clear how these

approaches can be extended to detect and register multiple

surfaces in a scene.

In this paper, we address the multiple non-rigid surface

detection and registration problem (See Figure 1). Given

the template image representing the surface of interest in a

canonical shape, the goal is to locate the deformed instances

of the surface and estimate the deformation parameters of

each instance. To tackle this challenging problem, we use

local feature detectors (e.g., SIFT [18]) to obtain the feature

points in both template and input image, and then the corre-

spondences between these two sets are constructed based on

the similarity of local appearance around feature points. To

locate all instances, we adopt a hierarchical clustering ap-

proach in which the affinity matrix is constructed on a high-

order graph. After rejecting outliers in each correspondence

cluster, the sparsely distributed matches are propagated by

a Thin Plate Spline (TPS) based match growing algorithm.

The deformation parameters of each nonrigid surface are

estimated by an approach that fuses feature and appearance

information based on the TPS model.

The contributions of this work are as follows: (1) A nov-

el high-order affinity graph is constructed to model the con-

sistency of local topology and then a hierarchical clustering

approach is employed to locate the nonrigid surfaces; (2) A

deterministic annealing algorithm based on the TPS mod-

el is proposed to remove the matching outliers; (3) A TP-

S based match growing scheme is developed to propagate

the matches; (4) An approach that combines feature and ap-

pearance information based on the TPS model is presented

to estimate the deformations.

2. Related Work and Problem Context
Extensive work has been done on the image registration,

which can be divided into two categories: feature-based

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.249

1992

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.249

1992



(a) (b)
Figure 1. (a) Two templates; (b) The detection and registration results overlaid on the input image, where the estimated non-rigid warps are

illustrated in deformable meshes with different colors for different objects. The blue curves indicate the top of the instances in accordance

with the corresponding templates. The input image is cropped for better illustration.

and appearance-based. The feature-based approaches rely

on establishing correspondences between features of a tem-

plate and an input image. For regions lacking texture or

having large deformations, the correspondences may not be

well established so that the performance of such method-

s is likely to degrade significantly. On the other hand, the

appearance-based approaches do not rely on features and di-

rectly minimize the intensity discrepancy between the tem-

plate and an input image warped back onto the coordinate

frame of the template, which could achieve better registra-

tion accuracy. However, it requires good initialization to

avoid local minima and is computationally expensive.

Feature-based Approaches. The feature-based approaches

first establish correspondences by feature matching, then af-

ter eliminating outliers the transformation is estimated. The

correspondences can be directly established by comparing

the local feature descriptors, such as SIFT [18], which ig-

nores the geometric relationship between features. Many

inaccurate correspondences (outliers) are inevitably includ-

ed and thus a matching refinement step is required. Due

to the high dimensionality of parameters in the deformation

model, it is difficult to directly employ robust estimators,

e.g., RANSAC [14], to estimate the deformation model.

With 25% of outliers and 100 transformation parameters,

which is a common case for nonrigid surface registration,

a RANSAC approach requires 1012 samples to guarantee

that, with high probability, at least one sample is included

without outliers [15]. Recently, for nonrigid surface regis-

tration, Pilet et al. [23] adopt a robust estimator to measure

the outliers and employ an iterative semi-implicit optimiza-

tion scheme to refine the matches. In [29], Zhu et al. use

a similar strategy to reject outliers but with a different ro-

bust estimator, which can be formulated as an unconstrained

quadratic optimization problem. In [10], a robust point

set matching approach, TPS-RPM, is proposed to match

points and remove outlier points iteratively. The TPS-RPM

method solves the joint optimization problem iteratively by

deterministic annealing and soft assignment with one-to-

one correspondence assumption, which is computationally

expensive. In this paper, we adopt the deterministic anneal-

ing approach, but use it only to remove spurious matches.

We also propose a bootstrap method to further increase the

robustness and accuracy. Our method achieves high accura-

cy even when the percentage of inliers is less than 5%.

Recent feature matching methods formulate visual cor-

respondence as a graph matching problem by consider-

ing pairwise geometric distortion of objects between im-

ages [16, 4, 25]. The constant distance constraint is adopted

in [16] which is only invariant to rotation. In [4, 25], both

distance and angle constraints are used for rotation and s-

cale invariance. Zass and Sashua [28] formulate correspon-

dences as a hypergraph matching problem by using higher

order geometric constraints. By comparing the angles of

triangles, a high-order scale invariant matching method is

proposed by Chertok and Keller [7]. In [12], Duchenne et

al. use higher order potentials to increase the geometric in-

variance of image features. The above mentioned methods

commonly require a one-to-one feature mapping constrain-

t and cannot deal with multiple object matching. Cho et

al. [8] propose a hierarchical correspondence clustering ap-

proach by adopting pairwise geometric constraint without

the one-to-one assumption. However, it heavily depends on

the affine-covariant feature detectors and thus not applica-

ble to other features. As shown in [22], affine shape deter-

mination is not accurate and thus shape adaptation can be

noisy. Our method for correspondence clustering aims to

overcome the above drawbacks. It operates on any kind of

feature points and different types of features can be com-

bined. A novel high-order affinity graph is constructed to

model the consistency of local topology, and a hierarchical

clustering approach is used to locate the nonrigid surfaces.

To establish more matches of feature points, Ferrari et

al. [13] propose an approach that gradually explores the sur-

rounding area of each existing match. Cho et al. [9] adopts

this strategy to detect and segment multiple identical object-

s in an unsupervised way. Both approaches depend on the

affine transformation from the affine feature detector [20]

for match growing. In this work, to deal with the case that

the matches are too sparsely distributed, we propose an ap-

proach to propagate matches locally by using the TPS mod-

el. Furthermore, a stability criterion is proposed to select

the best local region to grow matches.
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Appearance-based Approaches. Appearance-based ap-

proaches utilize the texture information of an object to esti-

mate the deformation. Most appearance-based methods can

be viewed as extensions of the original Lucas-Kanade algo-

rithm [19, 1] by directly minimizing the intensity discrepan-

cy between the template image and the input image warped

back onto the coordinate frame of the template. In the ac-

tive appearance model [11], a combination of shape and tex-

ture is used to estimate shape deformation, where a training

process is needed. Matthews and Baker [21] improves the

active appearance model with an inverse composition algo-

rithm [1] in which triangulation meshes are used and piece-

wise affine warps are estimated. Recent work shows that the

TPS warp can also be estimated by direct methods [3, 17].

In addition, the inverse compositional approach [1] is incor-

porated in a direct TPS-based method [6].

In [29], a fusion approach based on the triangulation

mesh is proposed which takes advantage of both appearance

information and local features. The piecewise affine warp

is used to map points, where the mapping of one point on-

ly considers three surrounding control points. In this paper,

we propose a fusion approach using the TPS warp which

maps the points in a holistic way. The fusion approach can

deal with large distortions in which correct feature corre-

spondences are difficult to obtain.

3. Surface Detection
In this work, local feature points are detected by the dif-

ference of Gaussian operator and their SIFT descriptors [18]

are extracted. The initial feature correspondences between

a template and an input image are obtained by compar-

ing the SIFT descriptors based on Euclidean distance using

the k nearest-neighbor algorithm. Note that each feature

point in the template may be matched to multiple points

in the input image. We then obtain N feature correspon-

dences, {Mn = (pn, qn)}n=1,...,N , where Mn denotes a

match that consists of a feature point pair (pn, qn) detect-

ed from a template and an input image, respectively. Given

these initial feature correspondences, our goal is to partition

{Mn}n=1,...,N to several clusters.

The critical part of clustering is to measure the similar-

ity or distance between matches. We note that it is inef-

fective to model the affine geometric constraint based on-

ly on one pair of feature correspondence. As it requires at

least three correspondences to determine one affine trans-

formation, we construct a high order graph, G = (V,E), of

triple correspondences. Each node in the graph is a triple-

correspondence, namely a corresponding triangle pair (CT-

P), which determines an affine transformation. We can also

consider G as a graph of affine transformations and each

node is an affine matrix.

Given N pairs of corresponding points, the number of

CTPs could be in the order of N3. After we use the De-

launay triangulation method to construct neighborhood tri-

angles in the model, the number of CTPs is still large as

one-to-many correspondence is allowed. However, most of

these CTPs contain false correspondences and we propose

a filter based on local topology to reject most outlier CTPs

before constructing the high order graph.

The proposed filter is based on the insight that when a

CTP contains an outlier correspondence, it is seldom topo-

logically consistent with other correspondences. Formal-

ly, the j-th CTP is denoted by Pj = (T m
j , T t

j ), which

contains feature correspondences Mj1 ,Mj2 ,Mj3 , where

T m
j = (pj1

, pj2
, pj3

) denotes the triangle in the model and

T t
j = (qj1

, qj2
, qj3

) is the corresponding triangle in the test

image. Based on this triangle correspondence, we obtain

the affine transformation Rj that maps T m
j to T t

j . Then

we use Rj to map the feature points {pn}n�=j1,j2,j3 , which

are not collinear with points pj1
, pj2

and pj3
in the model

image, to the test image and compute the distance between

the mapped points with their matched points in the test im-

age. If all the distances are large, the CTP is classified as

an outlier. With this filtering, more than 90% CTPs are re-

jected and thus the constructed graph is small. The number

of CTPs can be reduced from tens of thousands order to

hundreds order and then the final clustering process is very

efficient. This filter can also be used to facilitate other hy-

pergraph matching methods [12, 7, 28].

We define the similarity between CTPs, namely, the at-

tribute of edge, E, to construct the graph, G. As each CT-

P defines one affine transformation, the distance between

nodes is defined as the distance between the affine matri-

ces. However, it is not easy to compute the distance in the

affine group/manifold. We compute the attribute by using

the affine matrix to transform each triangle in the template

to the input image plane and compute the Euclidean dis-

tances between the transformed points and the correspond-

ing points in the input image. For each CTP, we obtain three

values and use the maximal one as the distance between the

nodes. The distance between Pj and Pk is defined as

dj,k = max
k=k1,k2,k3

‖Rj(pk)− qk‖.

To get a symmetric metric, we set d(j, k) = 1
2 (dj,k + dk,j).

If two triplets have similar affine transformations, the dis-

tance is small. Note that the transformed points have al-

ready been computed and stored during the filtering process,

so the edge attribute can be obtained efficiently.

From the affinity matrix, we use a hierarchical clustering

algorithm [8] and obtain the correspondence clusters: θ =
{C1, C2, . . . , CK}. Each match cluster Ci is composed of

feature matches M i
n, Ci = {M i

n = (pi
n, qi

n)}n=1,...,Ni . A

few trivial clusters that contain small number of matches are

classified as outliers, and others correspond to instances of

the template object.
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4. Surface Registration
After obtaining object correspondences, we register the

detected instance to the object model (template). As the

correspondences in a cluster may still contain some outliers,

we propose a fast determinative annealing method based on

the TPS deformation model to further refine the matches.

4.1. Deformation Model

We adopt the parametrization of TPS [5] proposed

in [17], which is further formulated in [2]. Given m con-

trol points ci ∈ R
2 and their function values αi ∈ R, i =

1, . . . ,m, the TPS mapping function f(p) is formulated by

minimizing the bending energy,

Eb =

∫
R2

∥∥∥∥∂2f(p)
∂p2

∥∥∥∥
2

F

dp. (1)

The function f(p) is parameterized by an m+3 coefficient

vector η� = (w�, a�),

f(p) =
m∑
i=1

wiρ(‖p− ci‖) + a�p̂ = ��p η, (2)

where the element of b is bi = ‖p − ci‖2 log(‖p − ci‖2),
��p = (b�, p̂�), and p̂� = (p�, 1). The coefficients in w
must satisfy C�w = 0, where the i-th row of C is (c�i , 1).
Therefore, we have the following equation:(

Kλ C
C� 0

)
η =

(
α
0

)
. (3)

where Kλ = K + λIm, λ (λ = 1 in this paper) is the reg-

ularization parameter to control the amount of smoothness,

and Im is an m × m identity matrix to handle noise. The

solution of (3) is

η = ελα =

(
K−1

λ (Im − D)
D

)
α =

(
ε̂λ
D

)
α, (4)

and D = C(C�K−1
λ C)−1C�K−1

λ . Thus, the TPS mapping

function can be written as:

f(p) = ��p ελα, (5)

and the TPS bending energy Eb can be written as

Eb = 8πw�Kλw = 8πα�ε̂λα. (6)

By stacking two functions for two coordinates, we have the

TPS warp,

W(p; h) =
(

��p ελ 0
0 ��p ελ

)(
αx

αy

)
= Mh. (7)

By extending (6) from TPS mapping to TPS warp, we ob-

tain the smoothness energy which is used as the smoothness

regularization for estimating the deformation:

Es = ‖Zh‖2, (8)

where Z�Z = 8π

(
ε̂λ 0
0 ε̂λ

)
. Note that in our

parametrization, h is a vector while a matrix is used to de-

note the deformation parameters in [2]. The adopted vector

parameterization facilitates solving the fusion optimization

problem which will be discussed later.

4.2. Outlier Rejection

To remove matching outliers, both [23] and [29] adop-

t a condition function as the robust estimator to assess the

penalties for matching residuals of different levels. In this

work, we propose a deterministic annealing-based approach

and show that, even directly adopting �2 norm in the cost

function, we can easily solve it with least squares minimiza-

tion and successfully remove outliers.

In the correspondence cluster i, the sum of squared resid-

uals of Ni correspondences based on the TPS model is:

Ef =
1

Ni

Ni∑
n=1

‖W(pn; h)− qn‖2,

where pn = (xn, yn) and qn = (un, vn). The correspond-

ing matrix form is

Ef =
1

Ni
‖Ah− u‖2, (9)

where

A =

(
ε�λ �p1

· · · ε�λ �pNi
0 · · · 0

0 · · · 0 ε�λ �p1
· · · ε�λ �pNi

)�
,

and u = (u1, · · · , uNi
, v1, · · · , vNi

)�.

By assembling two terms in (9) and (8), we have follow-

ing regularized cost function:

E =
1

Ni
‖Ah− u‖2 + λs‖Zh‖2. (10)

The optimal warp parameters h are given in closed form as:

h = (A�A +NiλsZ�Z)−1A�u. (11)

The correspondence set, Ci, may contain some outliers,

which likely degrades the solution got from (11). Also, in

(10) it is difficult to determine the weight, λs, for the s-

moothness constraint. We propose an approach based on the

deterministic annealing algorithm [27] to gradually reduce

λs. At the beginning of the annealing process, λs is large,

which greatly limits the range of deformation and avoids

overfitting due to the outliers. On the other hand, when λs

is small, more local non-rigid deformation is allowed. Fur-

thermore, during the annealing process, the threshold, d, to

determine the outliers is also gradually decreased. When d
is larger, it tolerates more outliers. The whole process ends

when d is below a small value, dfinal.
Specifically, λs is set to be T ·λ0, where λ0 is a constant

and the temperature T is gradually reduced. Thus, the cost

function (10) is written as

E =
1

Ni
‖Ah− u‖2 + T · λ0‖Zh‖2. (12)

After obtaining the estimated h by (11), we map each pn

to the input image,W(pn; h), and compute the distance be-

tweenW(pn; h) and qn by dn = ‖W(pn; h)−qn‖. If dn is

larger than the threshold d, it is classified as an outlier where

d is also gradually reduced via the annealing procedure by

setting d = T · d0.
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Figure 2. In (a) a template is shown in the bottom right of the input image. One instance is taken as an example and the matched feature

points are marked as red. The non-rigid warps estimated by feature-based approach and fusion-based approach based on the feature matches

shown in (a) are shown in (b) and (c), respectively. In (d) the matched feature points after match growing are marked as red points. The

warps estimated by feature-based and fusion-based approaches based on the feature matches are shown in (e) and (f), respectively.

In the beginning, Tinit = T0, and then the temperature

parameter T is gradually reduced Tnew = Told · rT , where

rT ∈ (0, 1) is the annealing rate. Furthermore, determining

T0 is not straightforward. If T0 is small and the correspon-

dence set contains too many outliers, the initially estimated

deformation parameters are far from the ground truth and

the threshold d is also small. Thus a large amount of points

will be classified to be outliers which would include many

inliers. Therefore, in the beginning we set the maximum

percentage of points that are allowed to be classified to out-

liers so that few inliers are falsely classified. If the num-

ber exceeds the threshold, T0 is replaced by T0/rT . In the

experiments, we show that with this bootstrap process, the

recall of inliers is highly improved. On the other hand, T
cannot be reduced to a too small value so we set a threshold

Tfinal. When T reaches Tfinal, it remains a constant. After

all the outliers are removed, we obtain good estimates of the

deformation parameters h via (11).

4.3. Fusion Optimization

For regions lacking texture or having large deformations,

the correspondences may not be well established and thus

deformation parameters may not be well estimated by (11).

In this paper, we propose a fusion approach based on the

TPS warp by exploiting both appearance and local features.

The energy for the appearance, Ea, is formulated as min-

imizing the intensity discrepancy between the template, T,

and the input image, I, warped back onto the coordinate

frame of the template:

Ea = ‖I(W(p; h))− T‖2. (13)

By using all the energy terms in (13), (10) and (8), we have

the fusion energy function:

E(h) = Ea + λfEf + λsEs

= ‖I(W(p; h))− T‖2+ λf

Ni
‖Ah− u‖2+λs‖Zh‖2.

(14)
The minimization of (14) is a non-convex optimization

problem in that the first term is nonlinear. Inspired by the

Lucas-Kanade algorithm [19], (14) can be linearized by us-

ing the first order Taylor expansion w.r.t. the deformation

parameters h, and thus the solution can be iteratively im-

proved. Thus, the fusion energy is linearized to

E(Δh) = ‖I(W(p; h)) + JΔh− T‖2
+

λf

Ni
‖A(h +Δh)− u‖2 + λs‖Z(h +Δh)‖2,

where J = ∇I∂W
∂h is the Jacobian of I w.r.t. h. Minimizing

(15) w.r.t Δh is a regularized least squares problem and the

closed-form solution is available:

Δh = (
λf

Ni
A�A + λsZ�Z + J�J)−1

·(J�G− λf

Ni
A�(Ah− u)− λsZ�Zh),

(15)

where G = T − I(W(p; h)) is intensity discrepancy be-

tween the template, T, and the input image, I, warped back

onto the coordinate frame of the template. The warp param-

eters are then iteratively updated by

h ← h +Δh. (16)

4.4. Match Growing

As shown in the blue bounding box of Figure 2(a), the

feature matches marked as red are concentrated in small re-

gions which significantly degrades the registration accura-

cy as illustrated in Figure 2(b)-(c). Therefore, it is crucial

to improve the matching quality to enhance the registration

performance. We propose a match growing approach based

on the TPS model, which propagates the matches locally to

establish more correspondences.

In this work, the template is partitioned to several non-

overlapped rectangular cells. Each feature point in the tem-

plate belongs to one cell, and four adjacent cells form one

group, G. Each time we pick one group for matching prop-

agation and two scores are defined for selection: (1) Sa: the

number of cells that contain matches in G; (2) Sb: the total

number of matches contained in G. We choose the group

that is with the maximum of Sb among the groups that are

with the maximum of Sa. In the selected group, we use the

matches to estimate the local TPS warp (9 control points

are used) based on the feature-based approach. Then, the

fusion approach is used to refine the warp, W . The cells

that have not been processed by the match growing process

before are selected for propagation. Four matches estimated

byW in each cell are added to the correspondence set. Note

that after each time of propagation, the scores for the groups

that contain the cells with added matches should be updated.

In case that the propagated matches contain some outliers,
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after obtaining the propagated matches, the proposed outli-

er rejection algorithm is used again to refine the matches.

Finally, we use the feature-based approach to estimate the

TPS warp (100 control points are used) for the deformed

instance, which is further refined by the fusion approach.

As shown in Figure 2(d) the matched feature points after

match growing are uniformly distributed. Thus, the esti-

mated warp based on feature-based approach (Figure 2(e))

is better than that without growing (Figure 2(b)). When the

initial warp is far from the ground truth (Figure 2(b)), the

refined warp obtained by the fusion approach is still not ac-

curate (Figure 2(c)). On the other hand, if the initial warp is

close to the ground truth (Figure 2(e)), the fusion approach

facilitates obtaining a more accurate warp (Figure 2(f)).

5. Experiments
We present the detection and registration results on both

synthetic and real images. Our method is implemented in

MATLAB and the source code will be released. All the

experiments are carried out on an Intel i7 3770 (3.4 GHz)

machine with the following settings. In the initial match-

ing step, the SIFT detector from the VLFeat package [26]

with the default parameters is used to obtain initial feature

points and descriptors (the matching threshold is set to 200

to obtain more correspondences). The outlier rejection is

performed with T0= 10, Tfinal=2, rT=0.5, λ0=1, d0=30,

and dfinal = 3.

For the quantitative evaluation of non-rigid surface de-

tection and outlier rejection, the synthetic deformed sur-

faces are generated by TPS warp with 900 control points

and these correspondences are considered as the ground

truth. For the inlier matches, small noises are added to the

points in the synthetic image. For each outlier ratio, the

random test is carried out 10 times.

Non-Rigid Surface Detection. We evaluate the detection

performance of our approach using synthetic images. Four

images with different levels of deformation are generat-

ed and stitched together to form one image (i.e., four de-

formed instances in the synthetic image as shown in Fig-

ure 3(e)). We randomly sample 100 points in the template

from the ground truth as the feature points denoted by Ft.

We further sample Nm points from Ft to construct the in-

lier matches for each instance. Denote the number of in-

stances by Ns and thus the total number of inlier matches

is Nt = Ns ×Nm. Let the ratio of outliers to inliers be ro
and thus the number of outliers is No = ro × Nt. To gen-

erate these outlier matches, we randomly sample Ft for No

times, and the corresponding points in the input image are

randomly sampled to construct spurious correspondences.

We compute the precision Pd and recall Rd of the surfaces

to measure the detection performance. Moreover, we also

measure the precision Pm and recall Rm of the matches in

the detected truth surfaces, which is critical for the registra-

tion task. To evaluate the robustness to outliers, ro is varied

from 0.1 to 2 with interval of 0.1. To measure the perfor-

mance with different number of inliers, Nm is varied from

40 to 80 with interval of 10.

As shown in Figure 3, our approach is robust to outlier-

s. With the increase of outliers, the precision and recall

of both detection and matching do not vary much. On the

other hand, our method is affected by the number of inlier-

s. When Nm is larger than 40, our approach performs well.

However, the recall of matches decreases significantly when

the number inliers is decreased (Figure 3(d)), which can be

addressed by the proposed match growing algorithm.

Outlier Rejection. In this experiment, we perform a com-

parative evaluation on the outlier rejection algorithms. In

the following, we refer the proposed approach as AOR

(Annealing-based Outlier Rejection). Four images with d-

ifferent TPS deformation energies are generated. Some in-

liers are randomly selected from the ground truth. To eval-

uate the performance dependence on inliers, the number of

inliers is varied from 20 to 110 with interval of 10. The

number of control points is set to be the same as the inliers

but the locations are different. In order to assess the robust-

ness to the noise levels, the outlier correspondences are in-

crementally added. The points in the template are randomly

generated and the corresponding points in the synthetic im-

ages are also randomly generated. The ratio of outliers is

varied from 0.1 to 19.9 with interval of 0.2, and thus we

have 100 outlier ratios.

We use the precision and recall of matches to measure

the performance. Figure 4(a) shows the performance of

AOR with different numbers of inliers. The precision and

recall rates are monotonously increased with the increase

of inliers, and the recall is always less than the precision.

The increases of precision and recall are similar when the

number of inliers is small (less than 50). However, when

the number of inliers is further increased, the increase rate

of recall is a little higher than precision. Figure 4(b) shows

the performance of AOR with different outlier ratios. The

precision and recall rates are decreased with the increase of

outliers. The proposed algorithm is more robust to outliers

when more inliers are obtained.

We compare our approach with the outlier re-

jection algorithm proposed in [24], LPOR (Local

Topology based Outlier Rejection) for short, with

the provided MATLAB implementation (http://isit.u-

clermont1.fr/˜ab/Research/index.html). This method

assumes that the surface is locally smooth and that its local

topology must be preserved. In contrast, our approach

adopts a global model with an annealing process to handle

outliers. As shown in Figure 4(c), the LPOR method can

only deal with small amount of outliers. Its performance

decreases significantly with increase of outliers and its

precision is always lower than recall. This can be attributed
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(a) (b) (c) (d) (e)
Figure 3. (a) Precision of detection. (b) Recall of detection. (c) Precision of matches. (d) Recall of matches. (e) Synthetic image.

outlier ratio 0.1 0.3 0.5 0.7 0.9 1.1

precision 0.97 0.91 0.54 0.12 0.18 0.06

recall 0.99 0.97 0.59 0.13 0.20 0.06

Table 1. Precision and recall of TPS-RPM with different levels of

outliers.

to the fact that more outliers in the template will degrade

the effect of the local topology structure assumed by the

LPOR method. On the contrary, the performance of our

approach is only slightly decreased with increase of outlier

level. Even when the number of outliers is 19 times more

than inlier, the precision is still above 0.95 and the recall

is around 0.9. Furthermore, our approach is also much

faster than the LPOR method. With 110 inliers and 2200

outliers, the average speed of the LPOR method is 148

seconds per frame while our approach takes only 0.25

seconds. The average iteration number of our approach for

this challenging case is 33. One example of matches before

and after outlier rejection is shown in the Figure 4(e-f).

We quantitatively evaluate the effect of proposed boot-

strap process for deterministic annealing. The approach

without bootstrap only takes 0.05 seconds to process the

correspondence set with 110 inliers and 2200 outliers, and

we refer it as fast AOR (FAOR for short). The experimental

setup is the same as that with the LPOR method. As shown

in Figure 4(d), when the outlier ratio is low (e.g., 3), the per-

formance of the FAOR method is similar to that of the AOR

approach. However, with increase of outliers, the recall of

the FAOR method decreases more significantly than that of

the AOR approach. On the other hand, the precision of the

FAOR method is slightly lower than that of AOR approach

after the ratio is larger (e.g., 17).

The TPS-RPM method [10] also uses the annealing for

point matching. For comparison, we use it for the outlier

rejection problem by initializing its assignment matrix in

accordance with the correspondences. As shown Table 1,

when the outlier ratio is low (< 0.5), the performance of

the TPS-RPM method is similar to our algorithm. However,

when the ratio is larger (≥ 0.5), both the precision and recall

rates are very low.

Non-Rigid Surface Detection and Registration. Figure 1

shows the detection and registration results on the image,

T-shirt. Our approach successfully detects all the deformed

surfaces of the given templates and we also get good reg-

istration results. Figure 5 and 6 illustrate some results on

images of home and ID magazines, respectively. The re-

sults show that our approach obtains good estimates of the

non-rigid warps even with large deformations. More results

are available in the supplemental material.

6. Conclusions
In this paper, we present an algorithm to detect and regis-

ter all the nonrigid instances of given templates from noisy

observations. After obtaining the initial matches between

the template and the input image, a novel high-order affini-

ty graph is constructed to model the local topology consis-

tency and then a hierarchical clustering approach is used to

detect the nonrigid instances. We propose a deterministic

annealing approach based on the TPS model to remove the

spurious matches in each cluster. The proposed fusion ap-

proach exploits both appearance information and local fea-

tures to register each nonrigid instance to the corresponding

template. To improve the registration performance, a TPS

based match growing scheme is developed to propagate the

matches. Extensive experiments demonstrate the effective-

ness and efficiency of the proposed algorithm for multiple

non-rigid surface detection and registration.
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