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Abstract

In cross-view action recognition, “what you saw” in one
view is different from “what you recognize” in another view.
The data distribution even the feature space can change
from one view to another due to the appearance and motion
of actions drastically vary across different views. In this pa-
per, we address the problem of transferring action models
learned in one view (source view) to another different view
(target view), where action instances from these two views
are represented by heterogeneous features. A novel learn-
ing method, called Heterogeneous Transfer Discriminant-
analysis of Canonical Correlations (HTDCC), is proposed
to learn a discriminative common feature space for link-
ing source and target views to transfer knowledge between
them. Two projection matrices that respectively map data
from source and target views into the common space are
optimized via simultaneously minimizing the canonical cor-
relations of inter-class samples and maximizing the intra-
class canonical correlations. Our model is neither restrict-
ed to corresponding action instances in the two views nor
restricted to the same type of feature, and can handle on-
ly a few or even no labeled samples available in the target
view. To reduce the data distribution mismatch between the
source and target views in the common feature space, a non-
parametric criterion is included in the objective function.
We additionally propose a joint weight learning method to
fuse multiple source-view action classifiers for recognition
in the target view. Different combination weights are as-
signed to different source views, with each weight present-
ing how contributive the corresponding source view is to
the target view. The proposed method is evaluated on the
IXMAS multi-view dataset and achieves promising results.

1. Introduction
Cross-view human action recognition has posed substan-

tial challenges for computer vision algorithms due to the

large variations from one view to another. Since the same

action appears quite differently when observed from dif-

ferent views, action models learned from one view may

degrade the performance in another view. One possible

solution [14, 18, 19, 11] is building a view-independent

3D model of human body via the 3D reconstruction from

multiple calibrated cameras or epipolar geometry reasoning

based on point correspondences. Another strategy resort-

s to exploiting action representations that are insensitive to

the changes of views, such as temporal self-similarity de-

scriptors [4] and the view-style independent manifold rep-

resentation [7]. Wu et al. [15] proposed a latent kernelized

structural SVM for view-invariant action recognition where

the view is modeled as a latent variable and inferred during

both training and testing stage. Some other methods [17, 3]

learn a separate model for each action class in each view,

however, it is difficult to collect sufficient labeled samples

for each view to cover all the action classes. Recently, trans-

fer learning based methods [2, 9, 20] have emerged to adapt

the action knowledge learned on one or more views (source

views) to another different view (target view) by exploring

the statistical connections between them.

In this work, we propose a new transfer learning

approach, namely Heterogeneous Transfer Discriminant-

analysis of Canonical Correlations (HTDCC), for cross-

view action recognition over heterogeneous feature spaces.

Our method is not restricted to action features of the same

type between source view and target view, and can handle

the heterogeneous action representations in the two views.

Two projection matrices are learned to respectively map the

source and target views to a common space, by simultane-

ously minimizing the canonical correlations of inter-class

samples, maximizing the canonical correlations of intra-

class samples, and minimizing the canonical correlation be-

tween the means of source-view and target-view samples.

Instead of requiring the corresponding observation of the

same action instance from source and target views, our

method explores how to take advantage of label informa-

tion to learn a common feature space with discrimination.

In order to adapt multiple source views to the target view,
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we additionally present a joint weight learning method to

effectively combine multiple transferred source-view clas-

sifiers to generate the target-view classifiers. Since differ-

ent source views perform different relations with the target

view, for each source view, a specific weight is adopted to

represent its closeness to the target view.

2. Related work
From the perspective of cross-view action recognition,

some work [2, 9, 20] is closely related to our approach.

Farhadi et al. [2] used maximum margin clustering to gen-

erate the splits in the source view and then transferred the

split values to the target view to learn the split-based fea-

tures in the target view. Their work requires feature-to-

feature correspondence at the frame-level to train a classifi-

er. Liu et al. [9] proposed a bipartite graph-based approach

to learn bilingual-words from source-view and target-view

vocabularies, and then transferred action models between t-

wo views via the bag-of-bilingual-words model. Zheng et
al. [20] presented a transferable dictionary pair consisting

of two dictionaries that correspond to the source and target

views respectively, and learned the same sparse representa-

tion of each video in the pair views. These two methods re-

ly on simultaneous observations of the same action instance

from multiple views. In contrast, our method requires nei-

ther the feature-to-feature correspondence nor the video-to-

video correspondence, which significantly relaxes the re-

quirements on the training data. Li et al. [8] proposed “vir-

tual views” to connect action descriptors between source

and target views. Each virtual view is associated with a lin-

ear transformation of the action descriptor, and the sequence

of transformed descriptors can be used to compare actions

from different views. Different from [8], our method can

handle the cross-view action recognition when the action-

s are represented by heterogeneous features in source and

target views.

From the perspective of transfer learning, our work is al-

so related to the methods [10, 12, 13, 6] which find a “good”

common feature space for source and target domains. Tay-

lor and Cristianini [10] learned a common feature space by

maximizing the correlation between the source and target

training data without any label information. Shi et al. [12]

proposed a Heterogeneous Spectral Mapping to discover a

common feature subspace by learning two feature mapping

matrices as well as the optimal projection of the data from

both domains. The label information of training data from

both domains is not used. Different from [10] and [12],

our method does not require the sample correspondence be-

tween source and target domains. Moreover, our method

utilizes the label information to discover a common fea-

ture space with more discrimination. Wang and Mahadevan

[13] proposed a manifold alignment based method to learn

a common feature space for all heterogeneous domains by

simultaneously maximizing the intra-domain similarity and

minimizing the inter-domain similarity. Their method as-

sumes the manifold structure on the dataset. Kulis et al. [6]

proposed to learn an asymmetric kernel transformation to

transfer feature knowledge between source and target do-

mains.

3. Heterogeneous transfer discriminant-
analysis of canonical correlations

3.1. Problem statement

In this work, each action sample is represented by an or-

thogonal linear subspace of sequential image features. De-

note X = [x1, x2, ..., xM ] ∈ R
D×M as the sequential image

features of an action sample, where xi ∈ R
D represents the

i-th image feature. The orthogonal linear subspace of X is

denoted by P ∈ R
D×m s.t. XXT = PΛPT , where Λ is

the m largest eigenvalues and P is the corresponding eigen-

vectors. Given a large number of labeled training samples

from the source view {Xs
i |Ns

i=1} with Xs
i ∈ R

Ds×Mi , a lim-

ited (even no) number of labeled training samples from the

target view {Xt
i|Nt
i=1} with Xt

i ∈ R
Dt×Mi , and some un-

labeled samples from the target view {Xu
i |Nu

i=1} with Xu
i ∈

R
Dt×Mi , where the source and target samples are represent-

ed by heterogeneous image features i.e., Ds �= Dt, we aim

to find a common feature space of the two views as well as

two projection matrices Ts and Tt for respectively mapping

the source and target views to the common space.

3.2. Background

Discriminant-Analysis of Canonical Correlations (DCC)

[5] learns a projection matrix by maximizing canonical cor-

relations of within-class samples and minimizing canonical

correlations of between-class samples. Assume N train-

ing samples are given as {Xi|Ni=1}, where Xi belongs to

one action class denoted by Ci. The discriminative pro-

jection matrix T = [t1, t2, ..., tm] ∈ R
D×m defined by

Y = TTX, where m ≤ D and |ti| = 1, to make the pro-

jected samples more discriminative using canonical corre-

lations. Orthonormal subspaces of the projected data are

given by YYT = (TTX)(TTX)T = (TTP)Λ(TTP)T .

The matrix P is normalized to P′ so that the columns of

TTP′ are orthonormal. The similarity of two projected

samples is defined as the sum of canonical correlations

Fij = maxQij ,Qji
Tr(TTP′jQjiQ

T
ijP

′
i
T
T), where the so-

lution of Qij and Qji is given by the SVD computation

(TTP′i)T (TTP′j) = QijΛQ
T
ij . T is determined to maxi-

mize the similarities of any pair of intra-class samples and

minimize the similarities of any pair of inter-class samples,

defined by

T = argmax
T

Ew(T)

Eb(T)
, (1)
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where Ew(T) =
∑N

i=1

∑
k∈Wi

Fik and Eb(T) =∑N
i=1

∑
l∈Bi

Fil. The two index sets Wi = {j|Cj = Ci}
and Bi = {j|Cj �= Ci}, respectively, denote the intra-class

and inter-class samples for a given sample of class Ci.

Transfer Discriminant-Analysis of Canonical Correla-

tions (TDCC) [16] is the extension of DCC for handling

the situation when the training and testing samples have d-

ifferent data distribution properties. In order to reduce the

mismatch between data distributions of different domain-

s, an effective nonparametric criterion is integrated into the

discriminative function in Eqn.1, formulated as

T = argmax
T

Ew(T) + αEr(T)

Eb(T)
, (2)

where Er(T) is the canonical correlation of between-view

mean samples from source and target domains and α is the

tradeoff parameter.

3.3. Learning on heterogeneous feature spaces

Our goal is to extend [16] to a more general case when

the training data and testing data are drawn from different

views with heterogeneous features. Two projection matrices

are learned to respectively map the source view and target

view to a common space, where the samples from the same

class are closely-related to each other, the samples from d-

ifferent classes are well-separated from each other, and the

data distributions of source and target views are matched to

each other.

Given the source-view training data {Xs
i}Ns

i=1 with the

corresponding labels {Cs
i }Ns

i=1 where Xs
i denotes the i-th

training sample from the source view and Cs
i is the ac-

tion class label of Xs
i , the source-view projection matrix

Ts = [ts,1, ts,2, ..., ts,d] ∈ R
Ds×d is defined by Ys

i =
TT

s X
s
i . Let Ps

i ∈ R
Ds×m be the orthonormal basis ma-

trix of the m-dimensional linear subspace of Xs
i , the pro-

jected Ps
i is TT

s P
s
i
′ where Ps

i
′ indicates the normalization

of Ps
i . Given the labeled target-view training data {Xt

i}Nt
i=1

with the corresponding labels {Ct
i}Nt

i=1 and the unlabeled

target-view training data {Xu
i }Nu

i=1, the target-view projec-

tion matrix Tt = [tt,1, tt,2, ..., tt,d] ∈ R
Dt×d is defined by

Yt
i = TT

t X
t
i. Let Pt

i be the orthonormal subspace of Xt
i,

and the projected representation of Pt
i is TT

t P
t
i
′

where Pt
i
′

indicates the normalization of Pt
i.

The learning framework of Heterogeneous Transfer

Discriminant-analysis of Canonical Correlations (HTDCC)

is formulated as:

max
Ts,Tt

Ew(Ts,Tt) + αEr(Ts,Tt)

Eb(Ts,Tt)
. (3)

Ew(Ts,Tt) =
∑Ns

i=1

∑
j∈W s

i
Fs
ij +

∑Nl

i=1

∑
j∈W t

i
Ft
ij +∑Ns

i=1

∑
j∈W st

i
Fst
ij +

∑Nl

i=1

∑
j∈W ts

i
Fts
ij represents the

similarities of intra-class training samples from both source

and target views. Eb(Ts,Tt) =
∑Ns

i=1

∑
j∈Bs

i
Fs
ij +∑Nl

i=1

∑
j∈Bt

i
Ft
ij+

∑Ns

i=1

∑
j∈Bst

i
Fst
ij+

∑Nl

i=1

∑
j∈Bts

i
Fts
ij

represents the similarities of inter-class training samples

from both source and target views. Fs
ij represents the

canonical correlation of two projected samples from the

source view and Ft
ij represents the canonical correlation

of two projected samples from the target view. Both Fst
ij

and Fts
ij represent the canonical correlations of two project-

ed samples of which one sample is from the source view

and the other sample is from the target view. They are pa-

rameterized as follows:

Fs
ij = max

Qs
ij ,Q

s
ji

Tr(TT
s P

s
j
′Qs

jiQ
s
ij

TPs
i
′TTs),

Ft
ij = max

Qt
ij ,Q

t
ji

Tr(TT
t P

t
j
′
Qt

jiQ
t
ij

T
Pt
i
′T
Tt),

Fst
ij = max

Qst
ij ,Q

st
ji

Tr(TT
t P

t
j
′
Qst

jiQ
st
ij

T
Ps
i
′TTs),

Fts
ij = max

Qts
ij ,Q

ts
ji

Tr(TT
s P

s
j
′Qts

jiQ
ts
ij

T
Pt
i
′T
Tt),

with the solutions:

(TT
s P

s
i
′)T (TT

s P
s
j
′) = Qs

ijΛQ
s
ji

T ,

(TT
t P

t
i
′
)T (TT

t P
t
j
′
) = Qt

ijΛQ
t
ji

T
,

(TT
s P

s
i
′)T (TT

t P
t
j
′
) = Qst

ijΛQ
st
ji

T
,

(TT
t P

t
i
′
)T (TT

s P
s
j
′) = Qts

ijΛQ
ts
ji

T
.

The index sets W s
i = {j|Cs

j = Cs
i } and Bs

i = {j|Cs
j �=

Cs
i } respectively indicate the intra-class and inter-class da-

ta from the source view for a given source-view sample of

class Cs
i . W t

i = {j|Ct
j = Ct

i} and Bt
i = {j|Ct

j �= Ct
i} re-

spectively indicate the intra-class and inter-class data from

the target view for a given target-view sample of class Ct
i .

W st
i = {j|Ct

j = Cs
i } and Bst

i = {j|Ct
j �= Cs

i } respec-

tively indicate the intra-class and inter-class data from the

target view for a given source-view sample of class Cs
i .

W ts
i = {j|Cs

j = Ct
i} and Bts

i = {j|Cs
j �= Ct

i} respective-

ly indicate the intra-class and inter-class data from source

view for a given target-view sample of class Ct
i .

Er(Ts,Tt) = Fst
r + Fts

r represents the similar-

ity between the projected source-view mean sample

and the projected target-view mean sample, where

Fst
r = maxQst

r ,Qts
r
Tr(TT

t P
t
r
′
Qts

r Qst
r

T
Ps
r
′TTs) and

Fts
r = maxQts

r ,Qst
r
Tr(TT

s P
s
r
′Qst

r Qts
r

T
Pt
r
′T
Tt) by

(TT
s P

s
r
′)T (TT

t P
t
r
′
) = Qst

r ΛQts
r

T
. Ps

r
′ is the normalized

orthonormal subspace of the mean of source-view training

samples Xs
r = 1

Ns

∑Ns

i=1 X
s
i , and Pt

r
′

is the normalized

orthonormal subspace of the mean of target-view training

samples Xt
r = 1

Nt+Nu
(
∑Nt

i=1 X
t
i +

∑Nu

i=1 X
u
i ).
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By the linear algebra transformation ATB = I − (A −
B)T (A − B)/2, we can rewrite the objective function in

Eqn.3 as

max
Ts,Tt

Tr(

[
Ts

Tt

]T [
Ssb Stsb
Sstb Stb

] [
Ts

Tt

]
)

Tr(

[
Ts

Tt

]T [
Ssw Stsw + αStsr

Sstw + αSstr Stw

] [
Ts

Tt

]
)

, (4)

where

Ssb =

Ns∑
i=1

∑
j∈Bs

i

(Ps
j
′Qs

ji − Ps
i
′Qs

ij)(P
s
j
′Qs

ji − Ps
i
′Qs

ij)
T ,

Stb =

Nt∑
i=1

∑
j∈Bt

i

(Pt
j
′
Qt

ji − Pt
i
′
Qt

ij)(P
t
j
′
Qt

ji − Pt
i
′
Qt

ij)
T ,

Stsb =

Nt∑
i=1

∑
j∈Bts

i

(Ps
j
′Qts

ji − Pt
i
′
Qts

ij)(P
s
j
′Qts

ji − Pt
i
′
Qts

ij)
T ,

Sstb =

Ns∑
i=1

∑
j∈Bst

i

(Pt
j
′
Qst

ji − Ps
i
′Qst

ij)(P
t
j
′
Qst

ji − Ps
i
′Qst

ij)
T ,

Ssw =

Ns∑
i=1

∑
j∈W s

i

(Ps
j
′Qs

ji − Ps
i
′Qs

ij)(P
s
j
′Qs

ji − Ps
i
′Qs

ij)
T ,

Stw =

Nt∑
i=1

∑
j∈W t

i

(Pt
j
′
Qt

ji − Pt
i
′
Qt

ij)(P
t
j
′
Qt

ji − Pt
i
′
Qt

ij)
T ,

Stsw =

Nt∑
i=1

∑
j∈W ts

i

(Ps
j
′Qts

ji − Pt
i
′
Qts

ij)(P
s
j
′Qts

ji − Pt
i
′
Qts

ij)
T ,

Sst
w =

Ns∑
i=1

∑
j∈W st

i

(P t
j
′
Qst

ji − P s
i
′Qst

ij)(P
t
j
′
Qst

ji − P s
i
′Qst

ij)
T ,

Sts
r = (P s

r
′Qts

r − P t
r
′
Qts

r )(P s
r
′Qts

r − P t
r
′
Qts

r )T ,

Sst
r = (P t

r
′
Qst

r − P s
r
′Qst

r )(P t
r
′
Qst

r − P s
r
′Qst

r )T .

Finally, by the eigen-decomposition

[
Ssb Stsb
Sstb Stb

]
t = λ

[
Ssw Stsw + αStsr

Sstw + αSstr Stw

]
t, (5)

the optimal Ts and Tt are respectively constructed by the

first-Ds rows and the last-Dt rows of the top-d eigenvectors

[t1, t2, ..., td].
We use an iterative optimization algorithm to find the

optimized projection matrices Ts and Tt. With the identi-

ty matrix I as the initial values of Ts and Tt, the detailed

algorithm of HTDCC is listed in Algorithm 1. Once the

optimal Ts and Tt are found, the similarity of any two ac-

tion samples is measured by first mapping them to the com-

mon space and then computing the canonical correlations

between them in the common space. We apply SVM to

train a classifier for each action class by using the projected

labeled training data from both source and target views. For

SVM, we introduce a kernel based on the similarity between

any pairwise samples in the learned common space.

4. Multiple source views combination
Since single source view may provide partial action

knowledge, it is beneficial to combine multiple source-view

classifiers for improving the recognition performance in the

target view. Different source views perform different cor-

relations to the target view, and action classifiers from d-

ifferent source views will make different contributions to

the target classifiers. Therefore, we aim to increase the

chance of selecting more related source views (i.e., posi-

tive source views) and simultaneously decrease the risk of

transferring less related source views (i.e., negative source

views). In this paper, a joint weight learning framework is

proposed to assign different combination weights to differ-

ent source views based on their relevances to the target view.

The target classifier is actually a combination of transferred

multiple source classifiers according to the corresponding

weights. Considering the limited number of labeled sam-

ples in the target view, we also utilize the unlabeled target

data to learn the target-view classifier. Consequently, the

weights of multiple source-view classifiers are learned by

minimizing the loss function of the target-view classifier on

the labeled target-view samples and the loss function based

on the smoothness assumption of the unlabeled target-view

samples.

Suppose we have G source views and one target view,

the target-view classifier for an input test sample Xt from

the target view is defined by

ft(X
t) =

G∑
g=1

βgfs,g(X
t), (6)

where βg > 0 is the weight for the g-th source view, con-

strained by
∑G

g=1 βg = 1. The proposed learning frame-

work is given by

min
ft

Ω(ft) + λlΩl(ft) + λuΩu(ft), (7)

where λl > 0 and λu > 0 are tradeoff parameters. The

details of each term in Eqn.7 are described as follows.

Ω(ft) = 1
2‖β‖2 controls the complexity of the target

classifier ft, where β = [β1, β2, ..., βG]
T.

Ωl(ft) is a loss function of the target-view classifier ft
on the labeled target-view training samples, defined as

Ωl(ft) =

Nt∑
i=1

‖ft(Xt
i)− Ct

i‖2, (8)
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Algorithm 1 Heterogeneous Transfer Discriminant-analysis of Canonical Correlations (HTDCC)

Input: Ns labeled training samples {Xs
i}Ns

i=1 from the source view

Nt labeled training samples {Xt
i}Nt

i=1 from the target view

Nu unlabeled training samples {Xu
i }Nu

i=1 from the target view

Output: Projection matrices Ts ∈ R
Ds×d and Tt ∈ R

Dt×d

Initialize: Ts = Tt = I.
1. Compute the mean of source-view samples by Xs

r = 1
Ns

∑Ns

i=1 X
s
i .

2. Compute the mean of target-view samples by Xt
r = 1

Nt+Nu
(
∑Nt

i=1 X
t
i +

∑Nu

i=1 X
u
i ).

3. Compute the orthonormal basis matrices Ps
i , Pt

i, P
s
r, Pt

r of Xs
i , Xt

i, X
s
r, Xt

r, respectively, by XXT = PΛPT .

4. Do iterate the following:

5. Normalize Ps
i , Pt

i, P
s
r and Pt

r to Ps
i
′, Pt

i
′
, Ps

r
′ and Pt

r
′

by QR-decomposition: TTP = ΦΔ, P′ = PΔ−1.

6. For pairs (Ps
i
′,Ps

j
′), (Pt

i
′
,Pt

j
′
), (Ps

i
′,Pt

j
′
) and (Pt

i
′
,Ps

j
′), respectively, do SVDs:

(TT
s P

s
i
′)T (TT

s P
s
j
′) = Qs

ijΛQ
s
ji

T , (TT
t P

t
i
′
)T (TT

t P
t
j
′
) = Qt

ijΛQ
t
ji

T
,

(TT
s P

s
i
′)T (TT

t P
t
j
′
) = Qst

ijΛQ
st
ji

T
, (TT

t P
t
i
′
)T (TT

s P
s
j
′) = Qts

ijΛQ
ts
ji

T
.

7. For Ps
r
′, Pt

r
′
, do SVD: (TT

s P
s
r
′)T (TT

t P
t
r
′
) = Qst

r ΛQts
r

T
.

8. Compute Ssb , Stb, Sstb , Stsb , Ssw, Stw, Sstw , Stsw , Sstr , and Stsr according to Eqn.4.

9. Compute the top-d eigenvectors {ti}di=1 according to Eqn.5.

Ts is the first-Ds rows of [t1, t2, ..., td] and Tt is the last-Dt rows of [t1, t2, ..., td].
10. End

where Xt
i is the i-th labeled training sample from the target

view, Ct
i is the action class label of Xt

i, and Nt is the number

of labeled target-view training samples.

Ωu(ft) is a group loss function based on the smooth-

ness assumption of the unlabeled target-view data, parame-

terized as

Ωu(ft) =

G∑
g=1

βg

G∑
k=1,k �=g

Nu∑
i=1

‖fg
s (X

u
i )− fk

s (X
u
i )‖2, (9)

where Xu
i represents the i-th unlabeled target-view train-

ing sample and fk
s indicates the k-th source-view classifier.

This loss function guarantees that for each unlabeled tar-

get sample Xu
i , its decision values of different source view

classifiers should be similar to each other.

Putting all the terms together, we have the following op-

timization problem:

min
β

1

2
‖β‖2 +

Nt∑
i=1

‖ft(Xt
i)− Ct

i‖2

+

G∑
g=1

βg

G∑
k=1,k �=g

Nu∑
i=1

‖fg
s (X

u
i )− fk

s (X
u
i )‖2,

s.t.
G∑

g=1

βg = 1, βg > 0, ∀g.

(10)

The optimization problem of Eqn.10 can be solved by a s-

tandard Quadratic Programming.

5. Experiments

5.1. Dataset

We evaluate the performance of our method on the IX-

MAS multi-view dataset [14] which consists of 11 complete

action classes. Each action is executed three times by 12
subjects and recorded by 5 cameras observing the subjects

from very different perspectives with the frame rate of 23fps

and the frame size of 390 × 291 pixels. The body position

and orientation are freely decided by different subjects.

An action video is represented by sequential im-

ages/descriptors. We extract two heterogeneous represen-

tations: sequential optical flows and sequential silhouettes,

to respectively describe source-view actions and target-view

actions. A silhouette descriptor is extracted from the body

region and fixed to the size of 40 × 80 = 3200. An optical

flow descriptor is constructed by the concatenation of four

flow components with the size of 40×80×4 = 12800. The

dimension of the linear subspace for either silhouette image

set or optical flow descriptor set is around 10.

5.2. Pairwise cross-view recognition

In this experiment, we take one view as the source view

and take another different view as the target view. The

optical flow feature is adopted in the source view and the

silhouette feature is used in the target view. To verify

the effectiveness of Heterogeneous Transfer Discriminant-

analysis of Canonical Correlations (HTDCC) across pair-

wise views, we look into the recognition performances of

all possible pairwise combinations. The leave-one-subject-
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out cross validation strategy (i.e., 12-fold cross validation)

is employed. Specifically, for each time, we use videos of

one subject from the target view for testing, and use the re-

maining videos (i.e., videos of the rest 11 subjects) from the

target view as well as all the videos from the source view as

training data. For the training data, only a small number of

samples from the target view and all the samples from the

source view are labeled.

We compare HTDCC with the baseline method, called

Heterogeneous Discriminant-analysis of Canonical Corre-

lations (HDCC), which excludes the minimization of data

distribution mismatch between source and target views in

the objective function, i.e. α = 0 in Eqn.3. For these t-

wo methods, SVM is employed for classification and the

regularization parameter is set to C = 1 by choosing from

{1, 10, 100, 1000} on the best performance. The canonical

correlations based kernel is used in SVM.

Table 1 demonstrates the recognition results of HTDCC

and HDCC with the fraction of labeled samples from the

target view of 3/11. From Table 1, we observe that HTDC-

C is generally better than HDCC in terms of mean recogni-

tion accuracy for all the target views, which clearly demon-

strates that HTDCC can successfully deal with the cross-

view recognition over heterogeneous feature spaces by min-

imizing the data distribution mismatch difference between

source view and target view.

Our method is also compared with other state-of-the-art

methods [6, 12, 10, 13, 1] of transfer learning on hetero-

geneous feature spaces. For KCCA[10], HeMap[12] and

DAMA[13], after learning the projection matrices, we ap-

ply SVM to train their final classifiers by using the projected

training data from both views. For ARC-t[6], we construct

the kernel matrix based on the learned asymmetric trans-

formation metric, and then SVM is also applied to train its

final classifier. For HFA[1], the two projection matrices for

the source and target data are found by using the standard

SVM with the hingeloss. For all methods, the regularization

parameter C in SVM is chosen from {1, 10, 100, 1000} ac-

cording to the best performance and the linear kernel is em-

ployed.

As shown in Table 2, it is interesting to notice that HTD-

CC outperforms other methods, which clearly demonstrates

the effectiveness of our method on cross-view action recog-

nition on heterogeneous features. Compared with KCCA

and HeMap, HTDCC is able to learn a common feature

space with discriminative ability by using the label infor-

mation of the target training data. HTDCC outperform-

s DAMA, possibly due to the lack of the strong manifold

strcuture on this dataset. The explanation for the better

performance of HTDCC than ARC-t may be that HTDC-

C utilizes unlabeled target-view training data and incorpo-

rates the minimization of the distribution mismatch between

source and target views in the objective function.

5.3. Multiple source views fusion

We select one view as the target view and use the other

four views as source views to exploit the benefits of com-

bining multiple source views for target recognition. The

parameters λl and λu are empirically set to λl = λu = 0.1
by choosing from {0.1, 1, 10} according to the testing per-

formances. To verify the effectiveness of the combina-

tion weights of classifiers from multiple source views, we

try a fusion method that uses equal combination weights

βg = 1/G, i.e., λl = λu = 0 for comparison. To evaluate

the contribution of the unlabeled target-view samples for

learning the target classifier, we also report the results when

excluding the loss function term defined on the unlabeled

target-view training data in Eqn.7, i.e., λl = 0.1, λu = 0.

To investigate the effect of the labeled target-view data,

we also report the results when excluding the loss func-

tion of the labeled target-view training data in Eqn.7, i.e.,

λl = 0, λu = 0.1.

From the results shown in Table 3, it is interesting that:

(1) the fusion of multiple source views achieves better re-

sults than each single source view because one single view

has limited discriminative ability compared with multiple

views; (2) assigning different combination weights to differ-

ent source views can improve the recognition performance

due to the selection of more related source-view classifiers

transferred to the target-view classifier. Fig.1 shows some

examples of learned weights of multiple source views. We

can notice that the more related the source view is to the

target view, the higher the learned combination weight be-

comes. For example, the “Target view 2” is more related

to the third source view, and the weight of the third source

view is higher than that of other source views.

We also report the recognition accuracy of each action

class in Fig.2 which shows that the task of source-view

classifier transfer is very hard for some actions and some

views. For example, the recognition accuracies of “get up”

and “pick up” are very low in Target view 5. One of the

reasons might be that the majority of the body motions is

occluded by the head in this view.

6. Conclusions
We have proposed a novel Heterogeneous Transfer

Discriminant-analysis of Canonical Correlations (HTDCC)

method for cross-view action recognition. Our method nei-

ther requires the same type of feature shared by different

views nor limits to any corresponding action instances in

different views. Two projection matrices are learned to re-

spectively map the data from source and target views to a

common space, by simultaneously minimizing the canon-

ical correlations of inter-class samples, maximizing the

intra-class canonical correlations, and reducing the data dis-

tribution mismatch between source and target views. More-

over, a joint weight learning method is presented to flexi-
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Table 1. Pairwise cross-view recognition accuracies using HDCC and HTDCC. Each row is a source view and each column is a target view.

The two numbers in a tuple are the recognition accuracies of HDCC and HTDCC, respectively.

Target view1 Target view2 Target view3 Target view4 Target view5

Source view1 (43.1%, 47.2%) (42.4%, 41.0%) (50.7%, 61.8%) (26.4%, 32.6%)

Source view2 (42.4%, 44.4%) (43.8%, 44.4%) (58.3%, 57.6%) (36.1%, 35.4%)

Source view3 (39.6%, 45.8%) (45.8%, 48.6%) (55.6%, 54.2%) (29.2%, 37.5%)

Source view4 (45.1%, 43.8%) (43.1%, 41.7%) (43.8%, 43.1%) (34.0%, 31.3%)

Source view5 (40.3%, 41.0%) (40.3%, 45.1%) (37.5%, 41.0%) (53.5%, 53.5%)

Average (41.8%, 43.8%) (43.1%, 45.7%) (41.9%, 42.4%) (54.1%, 56.8%) (31.4%, 34.2%)

Table 2. Comparison of different heterogeneous transfer learning methods on the mean recognition accuracy for each target view.

Methods Target view1 Target view2 Target view3 Target view4 Target view5 Average

KCCA [10] 32.6% 42.9% 26.9% 37.0% 23.6% 32.6%

HeMap [12] 33.7% 39.9% 29.2% 34.7% 22.9% 32.1%

DAMA [13] 33.2% 34.4% 28.1% 31.6% 13.4% 28.1%

ARC-t [6] 29.7% 33.2% 32.8% 33.5% 15.6% 28.9%

HFA [1] 26.6% 33.0% 30.7% 31.8% 13.4% 27.1%

HTDCC 43.8% 45.7% 42.4% 56.8% 34.2% 44.6%

bly combine multiple action classifiers from multiple source

views for generating the target-view classifier. Experiments

have shown the effectiveness of our method.
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Table 3. Comparison of different multiple source views fusion methods on the recognition accuracy for each target view.

Methods Target view1 Target view2 Target view3 Target view4 Target view5 Average

λl = λu = 0 49.3% 50.7% 46.5% 60.4% 32.6% 47.9%

λu = 0 50.0% 50.0% 46.5% 63.2% 33.3% 48.6%

λl = 0 56.9% 56.2% 56.2% 68.0% 40.3% 55.5%

Our method 57.6% 57.6% 56.9% 68.8% 40.3% 56.3%
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Figure 1. Examples of the learned combination weights of multiple source views. For each target view, its classifiers are constructed by the

combination of transferred four source views based on the weights shown by vertical axis of histograms.

Figure 2. Recognition performance of multiple source views fusion on each action class.
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