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Abstract
Current landmark recognition engines are typically

aimed at recognizing building-scale landmarks, but miss in-
teresting details like portals, statues or windows. This is
because they use a flat clustering that summarizes all pho-
tos of a building facade in one cluster. We propose Hier-

archical Iconoid Shift, a novel landmark clustering algo-
rithm capable of discovering such details. Instead of just a
collection of clusters, the output of HIS is a set of dendro-
grams describing the detail hierarchy of a landmark. HIS
is based on the novel Hierarchical Medoid Shift clustering
algorithm that performs a continuous mode search over the
complete scale space. HMS is completely parameter-free,
has the same complexity as Medoid Shift and is easy to par-
allelize. We evaluate HIS on 800k images of 34 landmarks
and show that it can extract an often surprising amount of
detail and structure that can be applied, e.g., to provide a
mobile user with more detailed information on a landmark
or even to extend the landmark’s Wikipedia article.

1. Introduction
Current landmark recognition approaches, such as [1, 5,

9, 12, 16, 25, 27] or Google Goggles typically only return

the name of the photographed building. While this can be

useful for internet image annotation [16, 9], it is actually

of very little use for a mobile user. Imagine a tourist vis-

iting Paris’ major landmarks to see Notre Dame Cathedral

(see Fig. 1). He already knows that he is at Notre Dame

– that was the purpose of his trip, after all. In addition,

his smartphone has a GPS sensor that can tell him similar

information. We believe that an image-based recognition

engine can only bring a benefit in such mobile scenarios if

it can deliver much more fine-grained information, such as

annotations of building details, statues, ornaments, or paint-

ings. However, current landmark discovery approaches are

not up to this task yet, and it is an open question how such a

detailed structure can be automatically discovered in image

collections.

Previous work has considered the task as a clustering

problem, producing either hard [9, 15, 16] or soft [25] clus-

ters. While some methods are able to discover objects at

Figure 1: In contrast to previous landmark clustering approaches,

Hierarchical Iconoid Shift also discovers scene details that are part

of larger structures. These details make up nodes in the tree-

structured scene description returned by the algorithm.

finer scales, they are dependent on parameters that define

the scale of the objects to be discovered in advance [25].

We propose a novel algorithm for clustering internet

photo collections, called Hierarchical Iconoid Shift, that is

able to discover objects of interest at any scale. It is based

on Hierarchical Medoid Shift, a novel variant of Medoid

Shift [19] inspired by scale space theory that tracks local

density maxima while continuously increasing the kernel

bandwidth. Hierarchical variants of Mean Shift have been

proposed before [6, 24], but they proceed in discrete band-

width steps. In contrast, our algorithm increases the band-

width continuously and is thus completely parameter-free.

HMS discovers modes at all scales and constructs a dendro-

gram from their merging behavior. It has the same runtime

and memory complexity as Medoid Shift and is just as easy

to parallelize.

We apply HMS to the task of clustering internet photo

collections using the Iconoid Shift framework [25] and

show that it discovers the structure of a scene starting at

small-scale objects such as individual statues or ornaments

up to the full view of the landmark building. HIS produces

a set of iconoic images, or Iconoids, as well as their cor-

responding clusters at any kernel bandwidth. Iconoids are

organized in a dendrogram structure in which a path from
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leaf to root represents the hierarchy of iconic views for a

particular photo.

We evaluate our approach on 34 historic landmarks with

a rich detail structure. Additionally, we show that by match-

ing the resulting Iconoids against the details depicted in a

landmark’s Wikipedia page, Iconoids can be accurately an-

notated with semantic labels. Simultaneously, this match-

ing provides information on what interesting objects are still

missing from the Wikipedia description and where they are

located with respect to already annotated structures.

Related Work. Many different clustering methods have

been applied to discover landmarks in internet photo col-

lections. Early approaches used algorithms that produce a

non-overlapping clustering like Spectral Clustering [15] or

Single-Link Hierarchical Agglomerative Clustering [9, 16,

27]. Later work has shifted to producing a soft or over-

lapping clustering of landmarks by using LDA [14], PLSA

[20], Kernel Vector Quantization [1] or Medoid Shift [25].

Multi-scale descriptions of internet photo collections

have so far received less attention. [5] apply Mean Shift

to the geotags of photos at different bandwidths represent-

ing city scale and landmark scale. [7] create an accumu-

lated top-down view of the view frustums of all cameras

in a scene called the “geo-relevance image” and cluster it

hierarchically by applying Mean Shift in a top-down fash-

ion. As for our approach, the result of their method is a

tree of clusters describing the scene. However, since their

approach operates on a 2D top-down view of the scene and

uses discrete scale steps for clustering, the detail granularity

it can discover is limited.

There have been different approaches employing meta-

data from the web in order to name the discovered land-

marks and provide additional information on them. [23]

propose a 3D landmark viewer that enables manual annota-

tion of building parts. [17] automate this step by performing

web searches for all noun phrases in the Wikipedia article

of a landmark and matching the retrieved images against

its SfM reconstruction. [20] segment the 3D point cloud

of a scene using PLSA and assign frequent Flickr tags to

parts of the point cloud likely making up a semantic ob-

ject. The large majority of approaches uses user-provided

tags from internet photo collections [5, 9, 16, 21, 27]. [16]

use frequent tags as search queries to find the correspond-

ing Wikipedia article for each landmark. [27] mine online

tourist guides to find additional landmarks.

Several approaches to create a hierarchical clustering

based on Mean Shift have been proposed. A common idea

[6, 24] is to iteratively run Mean Shift, feeding the output of

one iteration into the next one as seeds and increasing the

bandwidth for each run. Our approach is similar to [11] who

also adapt the idea of Scale-Space filtering [26] to cluster-

ing by increasing kernel scale and tracking maxima of the

kernel density of the dataset using a Mean-Shift-like proce-

dure. The maxima trace out branches in a 3D (x, y, scale)

dendrogram. In contrast to their algorithm, HMS is applica-

ble to arbitrary metric spaces and does not use discrete scale

increments, but continuously sweeps over all scales, making

it completely parameter-free. Iconoid Shift (IS) [25] applies

Medoid Shift to image collections, but uses a fixed band-

width. We use the IS framework to apply HMS to the task

of finding details and scene structure in photo collections.

2. Hierarchical Medoid Shift
We now first introduce the Hierarchical Medoid Shift

(HMS) algorithm and then show how we can adapt the

Iconoid Shift framework [25] to apply it to internet photo

collections. We focus on Medoid Shift, but the idea of HMS

is straightforward to adapt to Mean Shift [3] as well.

Medoid Shift. Mean Shift [3] is a mode search algorithm

that, after initialization with a seed point, iteratively shifts

a kernel window to the mean of the points inside it until

convergence at a mode. By weighting points with a kernel

ϕβ with bandwidth β, Mean Shift implicitly searches for

maxima of a kernel density. The kernel

Φβ(d) =

∫ d

0

ϕβ(e)de (1)

defining this kernel density is called the shadow of ϕβ . A

set of points is clustered by seeding the algorithm once with

each point and associating each point with its mode. The

only change Medoid Shift [19] makes to this procedure is

that the kernel window is iteratively shifted to the medoid
of the points inside it, which makes it applicable to arbi-

trary metric spaces. Given a set of points {xi} and a metric

distance function d, and starting at the current medoid yk,

Medoid Shift finds the next medoid yk+1 by minimizing

yk+1 = argmin
y∈{xi}

{∑
i

d(y,xi)ϕβ(d(yk,xi))

}
. (2)

Hierarchical Medoid Shift. A problem with Mean Shift

and Medoid Shift is that the choice of kernel bandwidth

depends on the data and application. Often, the data has

modes of different scales, even making a single fixed band-

width unsuitable. One way to address these issues is to use

a variable bandwidth kernel [4], which however requires

the choice of a suitable density estimator and a function

for choosing the bandwidth based on the estimated density.

Another idea is to run Mean Shift coarse-to-fine at discrete

bandwidth steps β1, . . . , βN , using the modes of the run

at βi as seeds for the run at βi+1 [6, 24]. However, this

approach requires the choice of suitable bandwidth steps.

Too large steps might lead to missed modes while too small

steps will cause unnecessarily high computational effort.

In this work, we take inspiration from Scale Space Fil-

tering [11, 26] that creates a hierarchical description of a
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Algorithm 1 Hierarchical Medoid Shift.

// Input: Point set {x}, seed point y0

// Output: Sequence of modes and bandwidths S = ((βk,yk))
k := 0, β0 := 0, S = ((β0,y0))
while ∃x : d(x,yk) > βk do

βk+1 := minx:d(x,yk)>βk
{d(x,yk)} // Grow kernel

k := k + 1
// Perform Medoid Shift

ŷ := ∅
while ŷ �= yk do

ŷ := yk

yk = argminy∈{x}
{∑

x d(y,x)ϕβk (d(yk,x))
}

Append (βk,yk) to S

signal by filtering it with a continuously growing Gaussian

kernel and constructing a tree of its merging extrema. [11]

define a clustering approach based on Scale Space Filtering

that uses a method similar to Mean Shift to follow modes,

but their approach is only applicable to 2D images. Our pro-

posed algorithm allows the application of Scale Space Fil-

tering to arbitrary metric spaces by using Medoid Shift [19]

to explicitly track density maxima while continuously in-

creasing the kernel bandwidth. This continuous growing is

made possible through the following key observations that

to our knowledge have not been made in the literature. (1)

If the kernel has finite support, as is common in Medoid

Shift, there is only a finite number of bandwidth steps at

which a new data point enters a medoid’s kernel window.

(2) If the kernel also has a monotonously decreasing pro-

file, the weighted distances of the data points to their re-

spective modes change between these steps, but their or-

der remains the same, meaning that the density maxima can

only change when a new data point enters the kernel win-

dow. This allows for continuously growing the kernel by

examining only a finite number of discrete steps.

The Hierarchical Medoid Shift algorithm proceeds as

follows: We start from a seed point at kernel bandwidth 0
and build a priority queue of its nearest neighbors, ordered

by their distances to the seed. These distances define the

discrete steps in which the kernel window grows. In each

step, we pop an element from the priority queue, increase

the kernel bandwidth to its distance from the medoid and

compute its distances to all points inside the kernel window.

We then find the new medoid by minimizing Eq. (2). If the

medoid has shifted, we update the priority queue with the

new neighbor distances. We repeat this procedure until the

queue is empty. The detailed algorithm is given in Alg. 1.

For each bandwidth increment, we compute the dis-

tances of the new data point with all other points. Thus,

in total, the number of distance computations performed is

quadratic in the number of points under the final kernel win-

dow. The computational complexity is therefore the same as

for standard Medoid Shift. However, in contrast to Medoid

Shift, HMS is completely parameter-free.

� � �

Figure 2: Parallel HMS. Two worker threads

(green and orange) are initialized with seeds A

and B. When the green worker collides with B,

it is finished and can start processing seed C.

The algorithm is initialized once with every data point.

Similar to the evolution of local maxima in scale space

[26], medoids corresponding to small maxima will merge to

form larger maxima. The resulting convergence sequences

therefore form a dendrogram of the density structure of the

dataset at all scales. A horizontal slice through this dendro-

gram yields the set of medoids at a particular scale.

Parallelization. HMS can be parallelized by initializing

each thread with one seed. We can imagine each run of the

algorithm as tracing out a branch of the dendrogram from

bottom to top, where we move upwards each time we in-

crease the kernel bandwidth β and we move horizontally

each time we shift (Fig. 2). We keep track of the dendro-

gram branches in a central data structure, using mutexes to

prevent race conditions when accessing them. As soon as

one branch collides with another, we know that it will fol-

low the same path. Therefore, we stop its corresponding

worker thread and re-initialize it with a new seed.

3. Hierarchical Iconoid Shift
We apply HMS to the task of clustering collections of

landmark images using the Iconoid Shift framework [25].

We briefly review the key ideas of Iconoid Shift and then

show how HMS can be used in this framework.

Iconoid Shift defines a metric space over images based

on their overlap and uses Medoid Shift to find modes in

this space. These modes, called Iconoids, are the photos

that have the highest overlap with other photos of the same

building or object. Iconoids are typically frontal, centered

views in which the landmark fills most of the image [25].

In IS, the support set of an image is the set of images

under its kernel window, meaning the images that have a

certain minimum overlap with it. Formally, an Iconoid is an

image that has minimal homography overlap distance to the

images in its support set. This distance is 0 if two images

show exactly identical views and 1 if they have no overlap.

In the underlying Medoid Shift algorithm, a hinge function

is used as the shadow kernel Φβ , and thus the kernel ϕβ

is a step function that cuts off at the bandwidth β, i.e. the

overlap distance threshold of a support set:

ϕβ(d) =
1

β
if d < β , 0 otherwise. (3)

Iconoid Shift computes overlaps using a local matching

graph over the images in a support set. While the algorithm

progresses, this graph is built on-the-fly by recursively per-

forming retrieval using a visual word based image retrieval

engine [13, 22]. Image pairs with at least 15 inliers w.r.t.

a homography are connected. The overlap of two images
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(i, j) is determined by computing the areas of the bound-

ing boxes around the inlier features in both images. Their

overlap is then defined as the smaller of these areas. The ho-
mography overlap distance is simply one minus the overlap.

dovl(i, j) = 1−min

{ ||xji||
||Ri|| ,

||xij ||
||Rj ||

}
(4)

Here ||xij || and ||xji|| are the overlap region sizes and ||Ri||
and ||Rj || the image areas of image i and j respectively.

However, because images with low overlap are usu-

ally not directly connected in the graph, missing overlaps

are determined using the homography overlap propagation
(HOP) algorithm [25]. We first build the minimum span-

ning tree (MST) of the matching graph of a support set.

Then, HOP computes the overlap between each pair of im-

ages (i, k) by propagating the overlap region of i along the

unique path to k in the MST. For example, if (i, j) and (j, k)
are edges in the MST, dovl(i, k) is computed by project-

ing i’s overlap region with j into j using the homography

between i and j, intersecting the resulting region with j’s

overlap region with k and finally projecting the region into

k. Using the known overlap regions, the overlap is then

computed using Eq. (4).

Given a seed image, Iconoid Shift explores its support set

and builds the local matching graph, computes the pairwise

overlaps in the support set as described above, and chooses

the images with the highest weighted overlap according to

Eq. (2). This process is then repeated until convergence.

Note that Iconoid Shift defines clusters differently from

Medoid Shift: In Medoid Shift, a cluster is the set of images

converging to the same mode. If this definition were used in

Iconoid Shift, a cluster might contain images having no vi-

sual similarity to the Iconoid. Instead, Iconoid Shift defines

a cluster as the support set of an Iconoid, i.e. the set of all

images having at least an overlap of 1− β with it.

Hierarchical Iconoid Shift. Since naively plugging in the

homography overlap distance into Alg. 1 would be very ex-

pensive, we now derive an efficient algorithm that applies

HMS in the Iconoid Shift framework and that takes advan-

tage of the MST structure and HOP.

We define the corona as the images whose overlap dis-

tance to the medoid is greater than β, but that match at

least one image from the support set (i.e. the blue images

in Fig. 3a). The overlaps of the corona images with the

medoid define the discrete scale steps for growing the ker-

nel. The corona images are inserted into a priority queue

and prioritized by their overlap with the medoid. HIS main-

tains a minimum spanning tree of all images in the corona

and support set. New images are added to this tree incre-

mentally using a linear time algorithm [2].

HIS is initialized with a single seed image in the support

set and β = 0. It then queries the retrieval engine with the

seed and adds its matching images to the corona. The over-

�

(a)

�

(b)

�

(c)

�
�

�

(d) (e)

�

�

(f)

Figure 3: Hierarchical Iconoid Shift. (a,b) The corona image clos-

est to the medoid is added to the support set. The kernel band-

width is expanded to its distance to the medoid. (c) The pairwise

distances between the new image and all other support set images

are computed. (d) Images matching the new image are retrieved,

inserted into the corona and added to the priority queue. (e,f) If

the medoid has shifted, the support set and corona are updated.

laps of the new corona images with the seed are computed

and the images are added to the priority queue.

An iteration of HIS is shown in Fig. 3. First, we take the

top image from the priority queue (Fig. 3a) and increase the

kernel bandwidth to the image’s overlap distance from the

medoid (Fig. 3b). Then, we compute the image’s pairwise

distances to all images in the support set by propagating

its overlap through the MST using HOP (Fig. 3c). Next,

we complete the corona by retrieving images matching the

newly added image, computing overlaps with the medoid

using HOP, and inserting them into the corona and priority

queue (Fig. 3d). Finally, we check whether the medoid has

shifted (Eq. (2)). If not, we directly continue with the next

growing step. If yes, we alternately update the support set

and corona (Fig. 3e, 3f) and perform shifting.

The support set update is done in three steps: 1. We

move support set images whose overlap distance from the

new medoid is larger than β to the corona. 2. We remove

corona images with no match in the support set. 3. While

there are images in the corona whose overlap distance to

the medoid is smaller than β, we add them to the support

set, compute their overlaps with all support set images and

retrieve new corona images as above. The algorithm is fin-

ished when the corona is empty, i.e. all images overlapping

with the medoid are in the support set. HIS can easily be

parallelized in the same way as HMS (Fig. 2).

Since adding an image to a support set has linear com-

plexity in the number of images in it, the total complexity of

growing a branch is quadratic in the number of images in its

final support set. Since we can stop processing a branch if a

worker merges into an existing branch, the overall runtime

of HIS depends on the branching factor of the dendrogram,
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Figure 4: Part of a dendrogram from Trinity College before (left)

and after (right) simplification.

and thus on the density distribution in the dataset. We ob-

served that typically, there are a few prominent Iconoids that

grow for a large range of bandwidths and that most other

branches merge into after a few growing steps.

Dendrogram Simplification. The dendrograms produced

by Hierarchical Iconoid Shift often have some redundancy,

e.g. because of drastic illumination changes preventing im-

ages of the same object to match, which causes the forma-

tion of multiple Iconoids (see Fig. 4 (left) for an example).

Since these redundant dendrogram branches usually

show very little change in perspective, we use a simple but

effective scheme to simplify the dendrograms. We descend

each dendrogram from the root in a breadth-first fashion and

estimate the camera motion for each outgoing edge of the

current node. If the camera motion is too small, we collapse

the edge, i.e. we remove the child and attach its children to

the current node. We estimate the camera motion using a

scheme similar to [10]: Since each child is in the support

set of its parent, we use HOP to compute their overlap re-

gion. We then use the change in relative size of the overlap

region as an estimate of the zoom and the relative movement

of the centroid of the overlap region to estimate the amount

of panning or tilt. An example result of this simplification

is shown in Fig. 4 (right). We collapse an edge if the size of

the overlap region changes by less than 50% and its center

shifts by less than 33% of the image size.

4. Experiments
Dataset. To evaluate our algorithm, we selected 34

landmarks that have a large number of details depicted

on their Wikipedia pages and downloaded Flickr images

in a geographic bounding box around them, resulting in

a total of 802,129 images. In two cases (Westminster
Palace/Westminster Abbey and Piazza San Marco/Basilica
San Marco), we combined two close-by landmarks for this.

Image Retrieval and Matching. We extract SIFT descrip-

tors from Hessian-Affine interest regions and quantize them

using a visual vocabulary of 1M visual words. For each

landmark, we build an inverted file index [13, 22]. Images

are ranked by tf ∗ idf score and spatially verified by fitting

a homography using SCRAMSAC [18]. We reject matches

with less than 15 inliers or a tf ∗ idf score below 0.01. Ad-

ditionally, we reject matches whose homography is close

to singular or maps the image borders to a non-convex or

self-intersecting polygon.

Results. We apply HIS on the 34 image sets by seeding

it once with each image. We then perform dendrogram

simplification, which reduces dendrogram size by 55.6%

on average. However, the number of covered images de-

creases by only 0.5%, showing that simplification generally

removes redundant Iconoids. HIS typically produces one

dendrogram for each facade or view of a landmark and sev-

eral smaller ones covering individual details. Fig. 5 shows

some typical examples of dendrograms produced by HIS.

It can be seen that the details discovered at lower band-

width levels merge into more global structures as β in-

creases. Statistics of the resulting dendrograms are given

in Tab. 1. In order to have a unique Iconoid, a support set

needs to contain at least 3 images. We therefore only con-

sider Iconoids with support sets of size 3 or higher.

The 34 image sets contain varying amounts of “junk”

photos, which were either wrongly geotagged as being close

to the landmark, or simply do not depict the landmark.

Groups of such photos typically form singletons, i.e., sin-

gle Iconoids that are not part of a dendrogram. Another

cause of singletons are details with no superordinate struc-

tures, e.g., paintings in a museum, which explains the high

number of singletons in the Louvre.

How many details does HIS find? To answer this ques-

tion, we rely on Wikipedia authors to provide a list of the

relevant details. For each landmark, we downloaded the

Wikipedia article in the language version having most de-

tails. For the two joint image sets Westminster Palace and
Westminster Abbey and Piazza San Marco and Basilica San
Marco we downloaded both Wikipedia articles. We used

HTML alt-tags and image captions to obtain labels. We

then manually removed unsuitable photos like floor plans

or portraits of people associated with the landmark.

We perform the matching by querying the existing in-

verted file indices for each landmark with the detail images

from Wikipedia. A Wikipedia image matches an Iconoid if

they are related by a homography with at least 15 inliers and

their homography overlap distance is less than 0.9. To en-

sure high recall for this matching, we additionally consider

matches between Wikipedia details and images directly ad-

jacent to the Iconoid in its matching graph. For these

matches, we compute the overlap between the Wikipedia

image and the Iconoid via HOP. For each Iconoid, the

Wikipedia match with the lowest overlap distance is kept.

There are however two caveats to consider: Firstly, we

cannot expect an exhaustive list of details from Wikipedia,

and secondly, SIFT-based matching and spatial verification
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Singletons 283 95 408 96 224 162 242 268 228 221 130 106 70 75 372 293 49
Iconoids 2,485 1,677 4,009 546 1,866 2,173 3,245 2,735 3,361 1,805 2,324 972 739 373 3,313 3,200 726
Images Covered 19,399 13,960 22,780 2,522 11,013 12,554 25,606 20,367 26,509 8,894 16,569 8,112 10,773 1,621 17,762 22,732 3,814
Wikipedia Details 9 12 36 7 11 37 41 10 52 46 15 37 8 11 13 36 17
WP → Iconoid 7 9 21 3 4 22 14 5 31 19 10 8 6 5 6 16 8

Iconoid Shift [25]
Iconoids 411 645 387 606 279 161 218
Images Covered 16,468 10,569 21,038 7,307 6,869 1,286 3,143
WP → Iconoid 13 8 2 14 4 3 6

Table 1: Results of HIS on 34 landmarks. Images Covered is the number of images covered by Iconoid support sets.

(a) Aachen Cathedral (b) Church on Spilt Blood (c) Old Town Square Prague (d) Alhambra

Figure 5: Example dendrograms showing detail structures automatically discovered by Hierarchical Iconoid Shift.

using homographies is not suitable for all details. For ex-

ample, many of the details of Milan Cathedral and Notre
Dame are statues, which were discovered by HIS, but that

could not successfully be matched, because they are weakly

textured and highly non-planar. Therefore, the numbers we

provide should be considered a pessimistic measure of the

recall of detail discovery.

The results of this experiment are shown in Tab. 1.

Wikipedia Details is the number of details depicted in each

article and WP → Iconoid is the number of Wikipedia im-

ages with at least one matching Iconoid. Generally, the

number of details discovered depends on the number of im-

ages available for the landmark, since a dense enough sam-

pling of the detail space is needed to identify local maxima.

HIS therefore finds a large fraction of the details of Piazza
& Basilica San Marco and Notre Dame, but almost none for

Nidaros Cathedral, which has only 581 images.

Some examples of Iconoids with matching Wikipedia

details are shown in Fig. 6. The Wikipedia image cap-

tions can serve as very accurate labels for the Iconoids.

Such high-quality labels cannot be found by simply exam-

ining frequently occurring terms in photo titles and tags

[16, 21, 27], since photographers often do not make an

effort to correctly label each landmark detail. Overall,

about half of the Wikipedia details have a matching Iconoid.

Fig. 7 illustrates main causes of missed Wikipedia details.

How does HIS compare to Iconoid Shift? We compare

HIS to Iconoid Shift [25] on a subset of 7 landmarks (lower

block of Tab. 1). The Iconoid Shift clustering covers almost

the same number of images, but has a much coarser gran-

ularity, resulting in significantly less Iconoids. The reason

for this is that IS performs mode search only on a single

fixed scale (β = 0.9 in our experiment), while HIS finds

modes on all scales. Comparing the number of discovered
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Figure 6: Example Iconoids (left) with matched Wikipedia images

and labels (right).

Figure 7: Objects from Wikipedia not discovered by HIS. Left:

Objects are historically relevant, but not visually striking. Middle:

Objects are hard to photograph in isolation without a telephoto

lens or cropping them out. For such objects, only the superordinate

structure will form a cluster. Right: Objects are hard to access or

not always open to the public.

Figure 8: Objects discovered by both HIS and IS [25] (left) vs.

objects discovered only by HIS (right). While both algorithms

find larger-scale structures, only HIS finds also finds small details.

Wikipedia details, it can be seen that especially for land-

marks like Sagrada Familia or the Sistine Chapel that have

many close-by details, IS finds significantly less details. On

the other hand, for landmarks like Zwinger where the ob-

jects on Wikipedia are mostly non-hierarchical, e.g. several

distinct buildings, the advantage of HIS is smaller. Fig. 8

compares objects discovered by both algorithms (left) to ob-

jects only discovered by HIS.

Applications. In our impression, many of the details that

do not have a match in Wikipedia would likely be worth

Figure 9: Finding new details to add to Wikipedia. The right child

of the node showing the gate is not present on Wikipedia, but we

can propose a place to insert it into the article based on its parent

and sibling in the dendrogram and the estimated camera motion

between them.

Figure 10: Discovered details of the Arc de Triomphe and the Sis-

tine Chapel ceiling.

mentioning in the article. A potential application of HIS

would therefore be to suggest new details to be added to

Wikipedia. We use the structure of the HTML heading tags

to build a tree of each article and insert each image as a leaf

under its respective heading. We then match the Wikipedia

images against the discovered Iconoids to create links be-

tween the Wikipedia graphs and the Hierarchical Iconoid

Shift dendrograms. By exploiting links between the HIS

dendrograms and the Wikipedia article tree, it is possible to

guess the article section a new detail should be added to. As

an example, Fig. 9 shows a part of a dendrogram where a

figure group in the left part of a gate is present in Wikipedia

while the figure group in the right part of the gate is miss-

ing. From the adjacent nodes in the dendrogram and the

camera motion estimation described above, we know the

scene parts that the figure group is related to and where it is

located relative to them. In this case, we know that the right

figure group is a part of the gate since the gate is its parent

in the dendrogram and the camera move associated with the

edge is “zoom out”. We can therefore propose to add this

node to the article section describing the main gate.
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Another application is depicted in Fig. 1 and Fig. 10. Us-

ing the discovered dendrograms describing the scene struc-

ture, as well as the image clusters associated with each

node, we can build visualizations of landmark building fa-

cades that are far more useful to the user of a mobile vi-

sual search application than the name of the main landmark

alone. The images in the Iconoid clusters can serve two

purposes here. Firstly, using HOP, we can precisely local-

ize even very small details on a large facade since the im-

ages in the clusters can help bridge larger scale changes than

normal local feature matching can handle. Secondly, as in

[8], the clusters provide additional images for each detail

showing it under different lighting conditions and viewing

angles and can thus be used as an “offline query expansion”

to make recognition of these details more robust compared

to matching against the Wikipedia images alone.

5. Conclusion
In this work, we have proposed Hierarchical Medoid

Shift, a new variant of Medoid Shift [19] that, instead of

a flat clustering at a single scale, produces a dendrogram of

clusters by continuously sweeping over all scales. HMS has

the same complexity as regular Medoid Shift, is completely

parameter-free and easy to parallelize. Based on HMS, we

have proposed Hierarchical Iconoid Shift, a new algorithm

for clustering internet photo collections that produces a hi-

erarchy of clusters that includes both small details as well

as full views of a landmark’s facade. We have demonstrated

our algorithm on a set of 34 landmarks with a rich detail

structure and shown that it discovers many of the details de-

picted on Wikipedia and significantly outperforms Iconoid

Shift [25] in terms of the number of discovered details. The

scene hierarchies produced by HIS could be useful for a

large range of applications including landmark description

and visual recognition of detail structures.
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