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Abstract

Over the past two decades, a number of face recogni-
tion methods have been proposed in the literature. Most of
them use holistic face images to recognize people. However,
human faces are easily occluded by other objects in many
real-world scenarios and we have to recognize the person of
interest from his/her partial faces. In this paper, we propose
a new partial face recognition approach by using feature
set matching, which is able to align partial face patches to
holistic gallery faces automatically and is robust to occlu-
sions and illumination changes. Given each gallery image
and probe face patch, we first detect keypoints and extrac-
t their local features. Then, we propose a Metric Learned
Extended Robust Point Matching (MLERPM) method to dis-
criminatively match local feature sets of a pair of gallery
and probe samples. Lastly, the similarity of two faces is
converted as the distance between two feature sets. Experi-
mental results on three public face databases are presented
to show the effectiveness of the proposed approach.

1. Introduction
A number of face recognition approaches have been

proposed over the past two decades [22, 3, 1, 27, 18].

While these approaches have achieved encouraging results

on some public databases, especially under controlled con-

ditions, most of them use holistic face images to recognize

people, where face images in both gallery and probe set-

s have to be pre-aligned and normalized to the same size

before recognition. However, human faces are easily oc-

cluded by other objects in many real-world scenarios, espe-

cially in unconstrained environments such as smart visual

surveillance systems. Hence, we have to recognize the per-

son of interest from his/her partial faces, such as the exam-

ples shown in Figure 1. Therefore, it is desirable to develop

a practical face recognition system which is able to process

partial faces directly without any alignment and also robust

to occlusions, variations of illumination and pose.

To make face recognition applicable in the real-life sce-
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Figure 1. Several partial face samples. (a) Three partial face

patches in the red ellipse are from the LFW database occluded by

heads. [11]; (b) Partial faces with scarf and sunglasses occlusion

in the AR dataset [19]. The objective of our study is to identify

people from such partially occluded face images.

narios, several works have been presented to align probe fa-

cial images with training images automatically. Active Ap-

pearance Model (AAM) [8] endeavors to localize dozens of

landmarks on facial images through an iterative search. Jia

et al. [13] developed an automatic face alignment method
through minimizing a structured sparsity norm. However,

all these face alignment methods would fail to work if the

probe image is an arbitrary face patch.

To deal with face occlusions, various algorithms based

on sparse representation have been proposed recently [25,

28, 9, 16, 13], and [25] was the pioneer work in this area,

where sparse representation was utilized to reconstruct oc-

cluded or stained facial images as well as to align probe

face images to gallery images. While these approaches

can achieve encouraging recognition performance in case

of occlusions, they would fail if the probe image is an arbi-

trary face patch. In contrast to these methods, our approach

processes partial face directly without manual alignment,

which is more close to practical applications.

Feature set matching [7] has been a hot topic in pat-

tern recognition. [24] was the first work that used graph

matching for face recognition. However, their work relies

heavily on manual landmarks labeling. Chui and Rangara-

jan [6] presented Robust Point set Matching (RPM) to align

two feature sets according to their geometry distribution by

learning a non-affine transformation function through iter-

ative updates. However, it neglects textural information of
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Figure 2. MLERPM-based partial face recognition framework. (a) Feature extraction: Keypoints detected by SIFT keypoint detector are

marked out as green dots on both images. The left image is probe partial face image, and the right one is gallery face image. (b) Keypoint

selection: correctly matched keypoints of these two images are connected by green lines, while two pairs of false matches are connected

by red lines. (c) MLERPM process: point set of probe image marked out as blue diamond is iteratively aligned to the red-marked point set

of gallery image from left top to the right bottom. Note that the two pairs of outliers are left alone after MLERPM while the rest are finely

paired up. (d) Matching result: the left one is the warped image using the transformation parameters learnt from the matching process, the

right one is the gallery image. Through MLERPM, the probe image is successfully aligned to the gallery image.

feature points. Liao et al. [15] utilized SRC to reconstruc-
t probe local feature set with gallery feature sets, and they

used the reconstruction error as distance metric. The main

drawback of their method is that they neglected the geome-

try information of feature sets and their approach is compu-

tationally intensive.

To address the partial face recognition problem, we pro-

pose a new partial face recognition approach by using fea-

ture set matching, and devise a Metric Learned Extended

Robust Point set Matching (MLERPM) approach to regis-

ter the extracted local features according to their geometric

distribution and textural information. Based on the match-

ing result, a point set distance metric is proposed to describe

the similarity of two faces. Our approach doesn’t require

manual face alignment and is robust to occlusions as well

as illumination changes. Experimental results on three pub-

lic face databases are presented to show the effectiveness of

the proposed approach.

2. Proposed Approach
We propose to use local features instead of holistic fea-

tures for partial face representation. Specifically, we apply

the Scale-Invariant Feature Transform (SIFT) [17] feature

detector to detect local feature keypoints, which are then

concatenated with the Speeded Up Robust Features (SUR-

F) [2]. Before matching, keypoints selection is performed

to filter out obvious outliers. These selected keypoints of

probe and gallery images are then matched by our MLERP-

M based on their geometric distribution and textural infor-

mation, through which we obtain a one-to-one point set cor-

respondence matrix to indicate the genuine matching pairs,

as well as a non-affine transformation function to register

geometric distributions of these matched keypoints. With

matched keypoint pairs at hand, we design a point set dis-

tance metric to describe the difference between two faces

based on MLERPM, where the lowest matching distance

achieved would be reckoned as positive match. The face

matching process is illustrated in Figure 2. Throughout the

rest of the paper, matrix transposition is denoted by ′.

2.1. Feature Extraction

Since there exist rotation, translation, scaling and even

occlusions between probe image and gallery images of

same identity, it is very difficult to normalize them to eye

positions. Without proper face alignment, holistic features

would fail to work. Hence, we proposed to use local fea-

tures. Firstly, we detect keypoints with SIFT feature detec-

tor. Normally for a typical 128× 128 face image, SIFT fea-
ture detector could output hundreds of feature points. The

geometric feature of each keypoint, denoted as g, records
its relative position in the image frame.

To describe the texture features of these detected key-

points, we combined the strength of SIFT and SURF key-

point descriptor by simple concatenation. SURF keypoint

descriptor was introduced as a complement to SIFT for

its greater robustness against illumination variations [14].

Hence, this augmented texture feature, denoted as t, is ro-
bust against in-plane rotation, scale as well as illumination

change.

2.2. Keypoint Selection

As we have indicated previously, the number of key-

points of facial image could be up to hundreds. Matching

point sets at this scale is computationally intensive. More-

over, irrelevant keypoints might hamper point set matching

process, such as misleading the matching process to a local

minimum, especially when genuine matching pairs are few

among all matching features. Hence, it’s beneficial to filter

out obvious outliers before point matching.

We applied the idea of Lowe’s matching scheme [17] for

keypoint selection, which is to compare the ratio of distance

of the closest neighbour to the one of the second-closest

neighbour to a predefined threshold. The threshold was set

as 0.5 in our experiments. These coarsely matched keypoint
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pairs are then selected for our MLERPM for finer matching.

2.3. Metric Learned Robust Point Matching

After feature extraction and keypoints selection, for

the probe partial face image, its geometry feature set is

{gP1 , gP2 , ...gPNP }, with its correspondent texture feature set
as {tP1 , tP2 , ...tPNP }, where NP is the number of keypoints

in probe feature set. Similarly, for the gallery image, we

have {gG1 , gG2 , ...gGNG} and {tG1 , tG2 , ...tGNG} corresponding-
ly. To align a probe partial face image to a gallery image

automatically, we need match their correspondent geomet-

ric features and textural features respectively, which should

have three characteristics:

• Subset matching: since the probe image and gallery
images are not identical, some keypoints in the probe

image couldn’t find their correspondences in the

gallery image. Likewise, not all keypoints in gallery

images are ensured to be matched. Hence, this point

set matching is a subset point matching problem.

• One-to-one point correspondence: this trait is obvious
as keypoints of different positions in the probe image

shouldn’t be matched to a single keypoint in the gallery

image.

• Non-affine transformation: the appearance of face

changes when the perspective or facial expression

changes. Such changes, when projected into the 2D

image, are non-affine.

The work of Chui and Rangarajan [6] could meet most re-

quirements listed above. However, its framework only con-

siders feature points’ geometric information. Hence we ex-

tended that framework to directly match textural features

by introducing metric-learned texture distance as a regular-

izing term. Moreover, Chui’s framework utilizes Thin-Plate

Splines (TPS) [4] as non-affine transformation model. TPS

tries to minimize a global bending energy function, which

has a global nature, i.e. in order to match a non-smiling
mouth in the probe face image to a smiling one of gallery

image, it will tilt the whole probe image to make its mouth

part smile, which however, would make the rest part of im-

age highly distorted. Hereby we utilize radial basis function

as the kernel function for the non-affine transformation.

The objective function of our proposed MLERPM algo-

rithm is:

J = min
f,m

∑
i,j

mij

(‖f(gPi )− gGj ‖22 + λ1‖tPi − tGj ‖2M
)

− τ
∑
i,j

mij + C
∑
i,j

mij logmij + λ2Ψ(f)

s.t.

NG∑
j=1

mij ≤ 1,

NP∑
i=1

mij ≤ 1,mij ≥ 0 (1)

wherem is the correspondence matrix andmij denotes the

correspondence from keypoint i of probe image to keypoint
j of gallery image. M is the metric matrix which would be

detailed in section 2.5, f is the geometric non-affine trans-
formation function and Ψ(f) calculates the energy of its
non-affine portion, both of which would be specified later.

In the above cost function, the first summation measures

the total weighted cost of matching probe keypoint set and

gallery keypoint set based on geometric and textural infor-

mation. The second summation penalizes the case where

only few point correspondences are established, and the

third summation makes point correspondence fuzzy, that is

mij could have any value between 0 and 1. Parameter C
controls the fuzziness of correspondence matrix: as the val-

ue of C gradually decreases,mij moves towards to either 0
or 1, such that the correspondence between two point sets
becomes more definite. τ , λ1 and λ2 are parameters which
control tradeoffs between penalties.

Applying Chui’s framework, we update the correspon-

dence matrix and transformation parameters alternatively

embedded in an annealing process:

Step1. Correspondence matrix update:
Correspondence between probe feature point i and

gallery feature point j is updated by

mij = exp

(
−‖f(g

P
i )− gGj ‖22 + λ1‖tPi − tGj ‖2M

2C

)
(2)

after which, rows and columns of correspondence matrix

are iteratively normalized until convergence.

Step 2. Update the transformation parameters:
Our geometric non-affine transformation function is:

f(gPi ) = A× gPi +Q× φ(i) + b; (3)

where A is a 2 × 2 affine transformation matrix and b is
a translation vector, Q is a weight matrix associated with

φ(i), the latter of which is a k × 1 vector recording internal
geometry structure of probe point set, defined as

φ(i) = [exp (−‖gi − f1‖22
σ

), ..., exp (−‖gi − fk‖22
σ

)]′ (4)

in which fi is one of the k randomly selected anchor points
from probe keypoint set, and σ controls the influence of an-
chor points: the larger σ is, the more global the transforma-
tion would be, which means anchor points far away from

point gi could have impact on it as well.
After dropping the terms independent of A, b and Q, the

cost function of Eq. (1) becomes,

min
A,b,Q

∑
i,j

mij

(‖f(gPi )− gGj ‖22
)
+ λ2 tr(QΦΦ

′
Q

′
) (5)

whereΦ is the RBF kernel matrix whose ith column is φ(i),
and tr(QΦΦ

′
Q

′
) calculates the trace of QΦΦ

′
Q

′
, which
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C =  813.7041

�2 = 0.0387

It = 40

C =  291.7015

�2 = 0.0073

It = 60
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Figure 3. MLERPM matching process. In the red rectangle: the upper two images are gallery image and probe image, the lower two are

warped image after MLERPM matching and error image. Error image records the absolute values of pixel-wise difference between gallery

image and warped image. In the blue rectangle: Each column indicates the status of one iteration, the first row shows the matching process

of geometric feature sets of gallery image and probe image, where the blue diamonds denote probe keypoints and red crosses denote gallery

keypoints. The second row displays the warped image derived at each iteration, and the third row lists parameters’ values, note that “It” is

the iteration number.

is the Ψ(f) in Eq. (1). Note that λ2 controls the energy
of non-affine transformation, a large λ2 constrains the non-
affine transformation part, while a small λ2 encourages the
image to transform freely around its anchor points. Hence

it would be prudent to set λ2 to a large value in the begin-
ning, and gradually decrease it during the iteration process,

as it’s beneficial to align the matching images with affine

transformation first before we get into detailed local warp-

ing (non-affine transformation).

For notational clarity, the probe geometric feature set is

grouped into one matrix as X , where its ith column is gPi .
Similarly, the gallery geometric feature set is grouped into

Y . Furthermore, all transformation parameters are grouped
into one matrix H , where H = [A, b,Q], whose optimal
value could be derived below:

H = Y m′X̄ ′(X̄ diag(m× eNG)X̄
′ + λ2X̂X̂ ′)−1 (6)

where eNG is an all-one vector with dimension as NG.

diag(v) is a diagonal matrix whose (i, i)th element is the
ith element in vector v. X̄ and X̂ have the same size:

X̄ =

⎛
⎝ X

e′NP
Φ

⎞
⎠ , X̂ =

(
O
Φ

)

where O3×NP is an all zero matrix.
We update between step 1 and step 2 alternatively, while

gradually decreasing the values of C and λ2, so that trans-
formation parameters would be gradually refined and corre-

spondences between two point sets would be more definite.

The whole matching process is tabulated as Algorithm 1.

Algorithm 1: The MLERPM Algorithm:

Input: gP , gG, tP , tG,Φ
Output: A, b,Q,m
Parameters: λ1, λ2, C,M, Itmax, ε
Initialize A, b,Q
for It = 1 : Itmax do

Step 1: updatem using (2);

Step 2: update (A, b,Q) using (6);

Calculate JIt using (1);
Decrease C and λ2;

if |JIt − JIt−1| < ε then
break;

end
end
return A,b,Q,m.

An example of our MLERPM matching process is illus-

trated in Figure 3. Note the probe facial image is not only

rotated, scaled and translated from the gallery face image,

it’s occluded by sunglasses as well. During matching, tem-

perature C is gradually decreased, so is λ2. Meanwhile,
transformation of the probe image keypoint set gradually

becomes delicate: from shrinking the whole probe point set

to a contracted single point cluster without knowing where

to expand (in iteration 20) to the final refined perfect match

(in iteration 80). It’s also evident that outliers are automat-

ically detected and left out during the matching process.

This example shows that our MLERPM is robust to occlu-

sions, rotation, translation and scaling.
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BEFORE AFTER

Figure 4. Illustration of one gallery image’s neighborhood (the in-

ner area rounded by dashed lines) variation before metric learning

(left) versus after metric learning (right). After metric learning: (i)

its three nearest gallery images with same labels are drawn nearer;

(ii) similar gallery images with different labels are pulled farther.

2.4. Point Set Distance

Having obtained the transformation parameters between

probe and gallery feature sets, we define point set distance

metric S of two facial images as:

df =

∑
i,j mij

(‖f(gPi )− gGj ‖22 + λ1‖tPi − tGj ‖2M
)

∑
i,j mij

S =
df (1 + dA)∑

i,j mij
(7)

where df calculates the average difference between

matched keypoints, and dA calculates the skewness of trans-
formation matrix A. Defined as:

dA = (
k2

k1 + ε
− 1)×max (

1

k1 + ε
, (k1 − 1)2) (8)

where k1 and k2 are eigenvalues ofA
′A, and k1 ≤ k2, ε is a

very small number, introduced to make the division mean-

ingful in case that k1 is close to zero.
The point set distance defined above is proportional to

the skewness of transformation involved, and to the aver-

age matching difference. It’s inversely proportional to the

number of matched point pairs. This distance metric has

intuitive interpretation: the number of matched point pairs

indicates the area of two faces which are alike, the average

matching difference points out the average resemblance of

two faces share, and the skewness of transformation shows

the facial shape dissimilarity of two faces.

2.5. Metric Learning for Point Set Distance

As mentioned previously, the augmented features we ex-

tracted were from concatenation of two feature descriptors,

which in essence are features of different modalities, simple

concatenation in Euclidean space cannot effectively repre-

sent the information carried by different features. Metric

Learning [26] could exploit potential discriminating infor-

mation of concatenated features through introducing a pos-

itive semi-definite matrix M , with which the new distance

metric is defined as

‖ti − tj‖2M = (ti − tj)
′M(ti − tj) (9)

Inspired by the work of Weinberger et al. [23], we pro-
posed a point set metric learning scheme, so that the learned

point set distance between feature sets from similar faces

of same identity would be as small as possible, while dis-

tance between feature sets from similar faces belonging to

different identities be enlarged. See Figure 4. Specifically,

N gallery images covering all identities in the training da-

ta were selected to the metric learning process. For gallery

point set Gp and Gq , according to Eq. 7 their point set dis-

tance is:

Spq = λ1(1 + dA)

∑
i,j

(
mpq
ij ‖tGpi − t

Gq
j ‖2M

)
∑

i,j m
pq
ij

+ d (10)

where mpq is the correspondence matrix from point set Gp

to Gq , and d is a constant unrelated to M . For each Gp,

according to the derived point set distances, its n nearest

neighbours with the same identity are selected to form its

positive neighbourhood assembly, denoted as N+
p . Similar-

ly, its n nearest neighbours with different labels are chosen
to form its negative neighbourhood assembly, denoted as

N−
p . With these information at hand, the metric learning

cost function is

min
M

∑
pq

ηpqSpq + ζ
∑
pql

ξpql

s.t. Spl − Spq > 1− ξpql,

ξpql > 0, ηpq = 1, ηpl = −1 (11)

where ηpq denotes the relationship between Gp and Gq , if

Gq ⊂ N+
p , ηpq = 1. Similarly, if Gq ⊂ N−

p , ηpq = −1. ζ
is the cost associated with the penalty.

3. Experiments
To verify the effectiveness of our partial face recogni-

tion approach, we conducted partial face recognition for ar-

bitrary face patch on the LFW dataset [11]. To compre-

hensively demonstrate the pros and cons of our approach,

we did experiments of disguised and occluded partial face

recognition on the AR [19] and Extended Yale B [10]

datasets, respectively.

3.1. Data Sets

LFW Dataset: The Labeled Face in the Wild (LFW)
dataset [11] contains 13233 labeled faces of 5749 people,

in which 1680 people have two or more face images. Im-

ages in this dataset exhibit large appearance variations as
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Figure 5. Example face images from the LFW dataset. First row:

gallery images. Second row: probe partial face images randomly

generated from another image of the same subject.

they were taken from uncontrolled settings, including vari-

ations in scale, viewpoint, lighting condition, background,

make-up, dress, expression, color saturation, image resolu-

tion, focus, etc., which pose a great challenge to our recog-
nition task.

AR dataset: The AR dataset [19] contains 126 subject-
s, including 70 male and 56 female, respectively. For each

subject, there are 26 face pictures taken in two different ses-

sions (each session has 13 face images). In each session,

there are 3 images with different illumination conditions, 4

images with different expressions, and 6 images with dif-

ferent facial disguises (3 images wearing sunglasses and 3

images wearing scarf, respectively).

Extended Yale B: There are 2414 frontal face images
of 38 identities photographed under varying controlled il-

luminations in the Extended Yale B database. The public

available cropped Yale database was used directly, whose

image size is 192× 168.

3.2. Experiment Settings

For the subjects in the LFW dataset, we chose the identi-

ties with no less than 10 images, from which we found 158

subjects. For subjects with more than 10 images, their first

10 pictures were selected for the experiment. These chosen

images were then converted to gray-scale. For each subject,

we randomly selected one image of him or her to syntheti-

cally produce a probe partial face image, while the other 9

images formed gallery set. For the gallery set, all images

were normalized to 128 × 128 pixels according to the eye
positions. Figure 5 shows some example normalized gallery

face images (the first row). Note that our method is able to

work on non-aligned gallery images as well.

Before extracting local features, we generated partial

faces in a random way. Firstly we randomly rotated the

whole image with rotation angle uniformly distributed in

[−10◦, 10◦], after which, the rotated image would undergo
a random scaling between 0.8 to 1.2. Lastly, this scaled im-

age was randomly cropped to h × w, both of which were
distributed within [64, 128] uniformly. Some sample partial
face images are shown in Figure 5 (the bottom row).

For the AR database [19], a subset containing 50 male

Figure 6. Samples from the AR dataset. First row: gallery images.

Second row: probe images occluded by sunglasses and scarf.

Figure 7. Sample probe images in Extended Yale B dataset with

random block occlusion with their correspondent occlusion levels

are listed underneath.

subjects and 50 female subjects were selected from the first

session in the AR dataset as in [25, 28]. For each identity, 14

images (without occlusion) were used for training, while 6

images with sunglasses and 6 images with scarves were se-

lected for testing. For fair comparison with existing holistic

methods, all these probe images and gallery images were

cropped to 128× 128 pixels and properly aligned. Figure 6
shows several cropped face images from the AR dataset.

For extended Yale B dataset, we randomly chose 32 im-

ages of each subject for training, and the remaining 32 for

testing. In our experiments we synthesized contiguous-

block-occluded images with occlusion levels ranging from

10% to 50%, by superimposing a correspondingly sized un-

related image randomly on each probe image, as in Fig. 7.

We used the same parameter setting scheme for all these

three datasets: λ1 = 200, 000/ tr(M), and the initial value
of λ2 = 1, the annealing rate for λ2 is 0.92, which mean-
s, after each alternative update, the value of λ2 would be
decreased to 0.92λ2. For the other parameters related to
matching we used the same setting as Chui’s work [6]. Met-

ric learning process was conducted respectively and we set

n as 3 and penalty parameter ζ to 10.

3.3. Results and Analysis

Experiment 1: Partial Face Recognition on Arbitrary
Patch. We conducted partial face recognition for arbitrary
face patch on the LFW dataset. To demonstrate the effec-

tiveness of our matching approach, we designed two group-

s of methods for comparison. The first group of compar-

ing algorithms were designed to demonstrate the strength

of metric learning and the merits of combining SIFT and

SURF features. Specifically we added a variant of MLERP-

M for comparison, wherein its metric matrix was simply an

identity matrix. Hence we name this metric-learning free
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Table 1. Recognition accuracy (%) of the comparing algorithms at

various ranks on LFW

Method Rank 1 Rank 10 Rank 20
RPM-SIFTSURF 0.63 3.16 6.96

HausDist-SIFTSURF 2.53 8.23 18.99

EMD-SIFTSURF 3.80 23.41 32.28

Lowe-SIFTSURF 24.68 49.37 55.06

ERPM-SURF 36.68 55.92 63.13

ERPM-SIFT 39.68 53.51 60.13

ERPM-SIFTSURF 42.09 58.92 66.74

MLERPM-SIFTSURF 50.72 67.34 72.75
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Figure 8. Recognition rates of the comparing algorithms at various

ranks on LFW

method as Extended Robust Point set Matching (ERPM).

The second group of comparing algorithms work on ei-

ther geometric features or textural features of concatenat-

ed SIFT and SURF feature sets (SIFTSURF). For geom-

etry features, we deployed RPM [6] scheme directly, and

used our point set distance metric as distance measurement

(where we set λ1 as 0). For textural features, we added three
baseline methods. The first one was using Lowe’s match-

ing method to match textural features sets of gallery images

and probe images, the number of matching pairs was set as

similarity criterion. Hausdorff distance (HausDist) [12] was

the second method which calculates the largest distance be-

tween closures of two texture feature sets. The third method

was Earth Mover’s Distance (EMD)[20], which measures

the minimum cost of transforming one distribution of tex-

tural feature set into the other, where we set number of K-

means clusters to 10 as it was the setting achieving the best
recognition result. Table 1 and Figure 8 show the experi-

mental results. Note that we put methods’ names to the left

of ‘-’ and their correspondent features to the right of ‘-’.

From the results we could make several observations:

1. Our method MLERPM-SIFTSURF obtained the best

recognition rates. Note that it performed consistent-

ly better than ERPM-SIFTSURF at all ranks, showing

the benefits of using metric learning for boosting the

discriminating power of local features.

2. Within the ERPM-based category, ERPM-SIFTSURF

performed the best, which proved that by combin-

ing SIFT and SURF descriptors, the invariance of lo-

cal features to illumination, viewpoint, pose variations

could be enhanced.

3. MLERPM-based and ERPM-based methods received

better results than RPM, HausDist, EMD and Lowe’s

matching approaches. This is because matching only

on geometry features or on texture features merely ex-

ploits partial information of face image, whereas both

the geometry information and texture information of

feature sets were considered by ERPM and MLERPM,

resulting in a much more robust feature set matching.

4. RPM-SIFTSURF performed the poorest among all.

This might be related to the fact that human faces

generally share similar geometric structure. Based on

these highly correlated geometric features alone, RP-

M approach could barely discriminate faces of dif-

ferent identities. Likewise, texture features alone are

not robust enough for discrimination, which explain-

s the poor performance of Lowe-SIFTSURF, EMD-

SIFTSURF, and HausDist-SIFTSURF.

Experiment 2: Partial Face Recognition under Dis-
guise: The AR dataset was selected for our partial face

recognition under disguise. Table 2 records the recogni-

tion accuracy on the AR dataset with sunglasses, scarf and

both, respectively. Our proposed method shows superior

performance over the other state-of-the art methods on the

AR dataset, which could be credited to our subset matching

scheme: the correspondence values of keypoints located a-

mong occlusion parts, such as sunglasses and scarf, were

gradually set to zero during the matching process, hence

outliers’ impacts on final distance metric were minimized.

Only those matched keypoints in facial area were selected

to point set distance calculation.

Experiment 3: Partial Face Recognition with Ran-
dom Block Occlusion: The Extended Yale B dataset was
selected for our partial face recognition under random block

occlusion. We compared our algorithm with SRC [25],

where we obtained some interesting results, as in Table 3.

Before occlusion level arrived at 40%, our method per-

formed comparably with SRC, but it degraded drastically

when the occlusion percent is larger than 40%, while in the

dataset of AR, our method did nearly perfectly where the

percent of disguise for scarf is 40%. This is because in the

experiment of AR dataset, disguise is either laid on the up-

per half or lower half of the face, discriminative features are
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Table 2. Recognition accuracy (%) of the comparing algorithms at

various ranks on AR.

Method Sunglass Scarf Sunglass + Scarf
SRC [25] 87.00 59.50 73.25

CRC [28] 68.50 90.50 79.50

RoBM [21] 84.50 80.70 82.60

Stringfaces [5] 88.00 96.00 92.00

NNCW [16] 88.44 62.19 75.32

�1 �struct [13] 92.50 69.00 80.80

MLERPM 98 97.00 97.50

Table 3. Recognition accuracy (%) between SRC and MLERPM

on Extended Yale B.

Occlusion 0% 10% 20% 30% 40% 50%

SRC [25] 100 100 99.8 98.5 90.3 65.3
MLERPM 100 100 100 98.3 80.2 30.2

almost half retained, while in this experiment, occlusion oc-

curred randomly, i.e. in Figure 7, when occlusion percent is
50%, most part of face area is occluded, making face match

extremely difficult. Hence our method is suitable for scenar-

ios where sufficient discriminative facial areas are available.

4. Conclusion
In this paper, we have proposed a partial face recogni-

tion method by using robust feature set matching. We pro-

posed to use local features instead of holistic features, and

these local feature point sets were matched by our MLERP-

M approach, the outcome of which were a point set cor-

respondence matrix indicating matching keypoint pairs and

a non-affine transformation function. This transformation

function could align the probe partial face to gallery face

automatically. Moreover, a point set distance metric was de-

signed, based on which, a simple nearest neighbor classifier

could recognize input probe faces robustly even at presence

of occlusions. Experimental results on three widely used

face datasets were presented to show the efficacy and limi-

tations of our proposed method, the latter of which pointed

out the direction for our future work.
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