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Abstract

In many cases, the predictive power of structured models
for for complex vision tasks is limited by a trade-off between
the expressiveness and the computational tractability of the
model. However, choosing this trade-off statically a priori is
suboptimal, as images and videos in different settings vary
tremendously in complexity. On the other hand, choosing
the trade-off dynamically requires knowledge about the ac-
curacy of different structured models on any given exam-
ple. In this work, we propose a novel two-tier architecture
that provides dynamic speed/accuracy trade-offs through a
simple type of introspection. Our approach, which we call
dynamic structured model selection (DMS), leverages typi-
cally intractable features in structured learning problems in
order to automatically determine’ which of several models
should be used at test-time in order to maximize accuracy
under a fixed budgetary constraint. We demonstrate DMS
on two sequential modeling vision tasks, and we establish a
new state-of-the-art in human pose estimation in video with
an implementation that is roughly 23× faster than the pre-
vious standard implementation.

1. Introduction
Computational budget constraints on inference in struc-

tured models for complex vision tasks force us to trade off

between expressiveness and tractability of models. Choos-

ing this trade-off statically for all images is suboptimal since

images and image parts vary tremendously in complexity;

choosing it dynamically requires meta-level assessment and

prediction of performance of different models on given ex-

amples.

One concrete example of this tradeoff is managing the

cost of low-level vision processing: dense evaluation of in-

put features common in visual processing (e.g., normalized

cut segmentation, optical flow, contour detection, etc.). In

many object detection systems, the cost of computing these

features is several times greater then the time spent on struc-

tured inference given the features. There is a tremendous

variation of cost of low-level processing based on resolution

and other accuracy parameters; choosing one global setting

is often not sufficient for complex images and wasteful on

simple ones. Another example is Markov order of tempo-

ral models for analyzing action in videos: in many parts of

videos, simple zero or first-order models suffice, but com-

plex cases require long-range, higher-order models.

We propose a novel two-tier architecture that provides

dynamic speed/accuracy trade-offs through a simple type of

introspection. The key idea is a division of labor between

a hierarchy of models/inference algorithms (tier one) and

meta-level model selector (tier two), which decides when

to use expensive models adaptively, where they are most

likely to improve the accuracy of predictions. The two

tiers have complementary strengths: Tier one models pro-

vide increasingly accurate and more expensive inference

over structured outputs. Tier two model-selectors use ar-

bitrary sparsely-computed features and long-range depen-

dencies, which would make inference intractable, in order

to evaluate the outputs of the first tier and decide when to

stop. While the first tier optimizes over a combinatorial set

of possibilities using inference over densely computed fea-

tures, the second tier simply evaluates proposals of the first.

The advantage of this division is that both tiers are efficient

and the second tier has more information than the first that

allows it to reason about the success of the first.

We summarize the contributions of this work as follows:

• We propose dynamic structured model selection
(DMS), a novel two-tier framework for creating faster

and more accurate structured prediction systems. In

section 3, we propose a simple greedy algorithm for

maximizing test-time accuracy given a budgetary con-

straint.

• We apply our approach to two sequential modeling

tasks: handwriting recognition (section 4.1) and artic-

ulated pose estimation in videos (section 4.2). On the

handwriting recognition task, we use DMS to achieve

a significant increase in accuracy over baseline while

at the same time being nearly 3× faster.

• On the pose task, we propose a novel sequence model
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based re-ranker that utilizes the recently introduced

model of [18] to achieve state-of-the-art accuracy on

a benchmark dataset while being 23× faster than the

previous best method. We then apply DMS to achieve

even faster times on a new, much larger benchmark

dataset, reducing the re-ranking model runtime by a

factor of 2× with no decrease in accuracy for wrist lo-

calization.

2. Related work
Classifier cascades. A significant source of related work to

the approach proposed here is the study of classifier cas-
cades, in which a pre-determined series of classification

models are sequentially applied to a test example. For bi-

nary classification problems with a highly skewed class dis-

tribution with very few true positives, these works typically

obtain efficiency via an “early-exit” strategy: at test-time,

simpler models may reject an example as negative without

needing to evaluate the more complex models farther along

the cascade. This approach has long been highly success-

ful for object detection, using boosting methods to train the

cascade of classifiers (e.g. [22]). However, feature compu-

tation cost was not incorporated specifically into the learn-

ing procedure until more recently (e.g., [17, 4, 7].) The most

related recent work is [21], who define a reward function for

multi-class classification with a series of increasingly com-

plex models. Nonetheless, while the goals of these works

are similar to ours–explicitly controlling feature computa-

tion at test time–none of the classifier cascade literature ad-

dresses either inference as a batch or the structured predic-

tion setting.

Controlling test-time complexity. More directly related to

the work in this paper is the work of [23, 6, 10]. [23] ex-

tend the idea of a classifier cascade to the structured pre-

diction setting, wherein a series of increasingly complex

structured models progressively refine the structured output

space; the cascade is trained sequentially with the objec-

tive of retaining accuracy while maintaining sparsity in the

output space for fast inference. Our approach is orthogonal

to [23] in several significant ways; primarily, where [23]

focus on learning the models efficiently, we focus on intro-

ducing additional meta-features to learn a selector. On the

other hand, [6] also propose explicitly modeling the value of

evaluating a classifier, but their approach requires modeling

the entropy of a predicted class distribution and therefore

does not apply to the structured setting in which there are

exponentially many outputs. Also for multi-class, [11] ap-

ply an MDP approach to feature selection, while [10] apply

imitation learning to speed up inference of a single syntatic

parsing model; in contrast, we consider post-hoc evalua-

tion of multiple structured models, and we learn a valua-

tion function directly through regression instead of adopt-

ing reinforcement learning techniques. Furthermore, each

of the above works analyze average per-example efficiency,

whereas we propose Algorithm 1 for batch inference under

an explicit budget. Finally, [3] propose an approximate dy-

namic program to determine where in video clips to apply

an expensive algorithm for analysis (whereas we learn to

which video clips to apply different models.)

Predicting model accuracy. The basic idea of predict-

ing the accuracy of a model is not new. E.g. [1] attempt

to predict various video analysis algorithm’s performance

(similar in spirit to the selector we propose), but based on

measures of image quality rather than properties of model

output. [9] propose an evaluator for human pose estima-

tors, but only for single-frame images, and propose only

learning “correct or not” coarse-level distinctions, whereas

we attempt to predict a measure of the error of each model

directly. In the speech community, [14] propose a paral-

lel method of “dynamic model selection” in which several

models are continually re-evaluated in an online fashion us-

ing a generative model, which is a very different setting than

that we analyze here.

Pose estimation. There is considerable research into hu-

man pose estimation from 2D images; far more than we

can review here. However, as state-of-the-art pose estima-

tion can take upwards of several minutes per frame (e.g.,

[19, 13]) there is significantly less prior work on pose es-

timation in video clips. [2] use a single pictorial struc-

ture model for upper body in the different setting of ex-

tended signing sequences, where e.g. a static background

over long periods leads to useful models of background.

[16] propose a related approach to our method by stitch-

ing together N hypothesized poses per frame into video

tracks, using N = 300 and evaluating their approach on

4 video sequences. In contrast, we use N = 32 proposals

from [19] (assuming the scale and location of the person

is known), learn additional sequence models using features

computed over proposed tracks, and evaluate on hundreds

of short clips from cinema. [19] tackles video clips from

TV shows and is therefore the most relevant competitor to

our approach, but (as we demonstrate) our method is both

more accurate and an order of magnitude faster.

3. Dynamic Structured Model Selection
In this section, we introduce our approach to dynamic

model selection and provide an overview of the algorithm.

The core idea behind our approach is very simple: we learn

to predict the value of choosing a more expensive model

over a cheaper one, and we use predicted values to allocate

computational resources at test time. In this fashion, we

only apply the computationally expensive models to those

examples where we will receive the most benefit.

Setup. We consider the problem of structured prediction,

in which our goal is to learn a hypothesis mapping inputs

x ∈ X to outputs y ∈ Y(x), where |x| = � and y is a
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Algorithm 1: Dynamic structured model selection.

input : Test set {xj}n1 , hypotheses h1, . . . , hm, costs

c1, . . . , cm, selector ν, and budget B.

output: Predictions y1, . . . ,yn.

Initialize B′ ← 0, τj ← 1, yj ← h1(x
j), priority1

queue Q with priority-value pairs
〈
ν(h2,x

j), j
〉
;

while B′ < B and Q is not empty do2

Pop value j from Q with max priority;3

if cτj+1 ≤ (B −B′) then4

τj ← τj + 1;5

B′ ← B′ + cτj ;6

yj ← hτj (x);7

Insert
〈
ν(hτj+1,x

j), j
〉

into Q;8

end9

end10

�-vector of K-valued variables, i.e. Y(x) = Y1 × · · · × Y�
and each Yi = {1, . . . ,K}. We consider linear hypotheses

of the form

h(x;w) = argmax
y∈Y(x)

ψw(x,y), (1)

where ψw = f(x,y) · w is a linear scoring function of a

weight vector w and feature vector f(x,y). Note that be-

cause there are exponentially many y ∈ Y(x), in order for

the inference problem (1) to be computationally feasible, f
is typically decomposed into a piece-wise sum over subsets

of y (e.g. section 4 in this paper) so that (1) can be com-

puted or approximated efficiently.

For the dynamic model selection problem we con-

sider here, we assume that we are given a set of models,

h1, . . . , hm, that require some amortized cost c1, . . . , cm to

evaluate on any given example x. Given a fixed ordering of

the models, we define the value of evaluating model hi on

example x,

V (hi,x,y) = L(hi−1(x),y)− L(hi(x),y), (2)

where L(y,y′) is a non-negative loss function. Note that a

positive value signifies a decrease in loss, while a negative

value signifies an increase is loss. (While more expensive

models usually increase accuracy on average, in practice we

find that there are many examples where the more expensive

features hurt performance.) Our proposed goal for meta-

learning is to learn a selector ν(hi,x) to approximate the

value function.

Batch inference. Given a set of models h1, . . . , hm, a se-

lector ν, and a test set {x1, . . . ,xn}, we perform inference

using Algorithm 1. The algorithm is very simple: we greed-

ily optimize the total predicted value,

J(τ1, . . . , τn, η) =

n∑

j=1

τj∑

i=1

ν(hi,x
j), (3)

where τj is the stopping point on the j’th example. Note

that even if all predicted ν(hi,x
j) are negative, Algorithm

1 continues to greedily choose more expensive models as

long as budget is available.

Learning the selector. In order for Algorithm 1 to succeed,

the selector ν must provide a useful estimate of the value

V . We formulate the selector as a linear function of meta-
features computed on the output of the models. The key

idea is that, while the feature generating function f for a

structured prediction model decomposes over subsets of y
in order to maintain feasible inference, the meta-features φ
need only be computed efficiently for the specific outputs

h1(x) through hi−1(x). We provide detail on the specific

meta-features used in each application in section 4.

We learn the selector by learning a weight vector β to

approximate the value function. On the training set, we first

compute the value for every model on every training exam-

ple. We then minimize the following �2-regularized squared

loss over a training set,

λ

2
||β||22+

m∑

i=1

n∑

j=1

(
V (hi,x

j ,yj)− β�φ(xj , h1:i−1)
)2

(4)

where the function φ is a function generating meta-features
that takes all predictions h1, . . . , hi−1 as input and λ is a

regularization parameter chosen via cross validation.

Preventing overfitting. Some care is needed when learn-

ing the selector in order to avoid re-using the same training

set for learning both the models and the selector; i.e. if hi
was trained on example (xj ,yj), we expect L(hi(xj),yj)
to be unrealistically low and thus the value may be unrepre-

sentative of the test distribution. However, a simple N -fold

cross-validation scheme suffices to prevent this. We train

N different models h1i , . . . , h
N
i in the standard way and use

the model not trained on example j when evaluating (4).

4. Application to Sequential Prediction

In this section, we discuss two applications of our dy-

namic structured model selection framework to computer

vision problems: handwriting recognition and human pose

estimation from 2D video. In both settings, DMS provides

for a far more efficient structured prediction model.

Sequence model. In both settings, we use the following

standard linear-chain structured prediction model. Given an

input x of length �, we wish to predict a sequence of discrete

K-valued outputs y1, . . . , y�, where yi ∈ {1, . . . ,K}. For

the handwriting recognition problem, each yi corresponds

to one letter of the written word; for human pose estimation,

each yi corresponds to one of K possible predicted poses.

For any given sequence y1, . . . , y�, the combined score of
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the sequence is the sum of unary and pairwise potentials,

ψw(x,y) =

n∑

i=1

f(x, yi)·w+

n∑

i=2

f(x, yi−1, yi)·w, (5)

where w is a (learned) weight vector and f is a feature

generating function. At test time, we can efficiently make

predictions using the Viterbi algorithm to find the state se-

quence that maximizes (5).

Learning. Given a set of n training pairs {(xj ,yj)}nj=1, we

learn w by minimizing the following structured max margin

objective,

min
w

λ

2
||w||22 +

1

n

n∑

j=1

Hj
w, (6)

where Hj
w is the structured hinge loss on the j’th example,

Hj
w = max

y
ψw(xj ,y) + Δ(yj ,y)− ψw(xj ,yj), (7)

and where we set Δ(y,y′) to be the Hamming loss to mea-

sure distance between state sequences. For the handwriting

recognition task, we approximately optimize (6) using the

structured perceptron algorithm, which has been shown to

work well for this task [23]. For the video pose estima-

tion task, we optimize (6) directly using the recent stochas-

tic Frank-Wolfe block-coordinate descent method of [12],

which we found to be more robust. In both cases, we choose

λ and a stochastic stopping time through cross-validation

using a development set.

4.1. Handwriting Recognition

We first apply our method to the handwriting recognition

dataset of [20]. For our purposes, this dataset represents

a “best case” type of scenario: while there are thousands

of examples of handwritten words in the dataset, examples

were generated by enlisting many different people to rewrite

the same list of less than a hundred unique words. There-

fore we expect high-order features (e.g., 5-grams) to be very

informative, but these features are computationally infeasi-

ble to include in the linear-chain model directly. Instead,

they are ideally suited as informative meta-features for the

selector. In this way, we the selector is ideally suited to di-

rect computation at test time, and a very fast and effective

method is the result.

Models. We use three different models for the hand-

writing recognition problem, differing only in the unary

term features of the sequence model. In each model,

we have K2 binary pairwise features fk,k′(yi−1, yi) =
1 [yi−1 = k, yi = k′] as well as a unary feature for every

binary pixel activation in the 16 × 8 image. The second

model h2 computes a coarse Histogram of Gradients (HoG)

in 3× 3 bins and the third model h3 additionally computes

HoG in smaller 2 × 2 bins. Since the pixels are given as in

Figure 1. Trade-off on handwriting recognition task, displayed as a

function of the efficiency speedup w.r.t the final model (Speedup)

vs. the change in error rate w.r.t the final model (ΔError). To draw

each curve, we sweep the budget B or tradeoff parameter η until

we find a point with at least the target speedup and record the er-

ror rate. Our approach (DMS) significantly outpeforms imitation

learning, yielding an error rate below that of the final model. The

Uniform method consists of picking which element to expand uni-

formly at random until all examples use the same model, and the

Baseline method consists of picking a single entire fixed stage of

models a priori.

the input, and HoG takes constant time for fixed input size,

we have c1 = 0, c2 = 1, c3 = 1.

Selector Meta-features. We use two sets of meta-features

for the selector. The first are computed from the output of

hi(x), consisting of the relative difference in the scores of

the top two outputs and the average of the mean, min, and

max entropies of the marginal distributions predicted by hi
at each position in the sequence. The second set of meta-

features count the number of times an n-gram was predicted

in hi(x) that occured zero times in the training set, com-

puted for n = 3, 4, 5. Both of these features take neglible

time to compute compared to the HoG computation.

Imitation learning baseline. We compare to an alternative

method for dynamic model selection inspired by imitation

learning methods for feature selection [8]. For this baseline,

we first pick a trade-off parameter η, and then for each ex-

ample (xj ,yj) in the training set independently decide the

optimal stopping point,

τ�j = argmin
τ
L(hτ (xj),yj) + η · cτ . (8)

These stopping points define an optimal policy π�(i,xj) =
1
[
τ�j < i

]
, where the policy π�(i,xj) is 1 if computation

should continue on example xj after model i and 0 other-

wise. We then learn an approximate policy π(i,xj) using
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Figure 2. Exceeding state-of-the-art on VideoPose2 [19] and CLIC datasets. The MODEC+S model matches the much slower ensemble

approach of [19] (Ensemble) in elbow accuracy and exceeds it in wrist accuracy (at high precisions), and provides a significant boost in

performance over MODEC. However, MODEC is still competitive and more accurate than previous state-of-the-art [24] (Yang & Ramanan)

on both datasets.

a linear SVM classifier trained with the same meta-features

as the selector uses; we generated training data points by

sampling all trajectories generated by the optimal policy on

the training set. Note that for each η, we obtain one er-

ror/cost trade-off point. For all experiments, we swept η
across many values to generate all possible unique optimal

policies for each fold of cross validation.

Results. We visualize the trade-off between error rate and

computation time on the handwriting recognition task is

given in Figure 1. All results are plotted in terms relative

to the third, most expensive model. Our approach signif-

icantly outperforms imitation learning, and both imitation

learning and our approach provide a significant increase in

efficiency over choosing one of the models a priori or uni-

formly at random. Most significantly, the model/selector

approach leads to a predictor that is more accurate than the

final model (due to choosing the most accurate models first)

while yielding a roughly 2.5× speedup compared to the

most expensive model. Note that we also computed a differ-

ent uniform baseline where examples were advanced to the

next model uniformly at random without ensuring that all

examples reached the same stage; we found this performed

equivalent or worse than the baseline shown.

Imitation learning vs. DMS. Besides the improvement

in accuracy and speedup, there are several practical advan-

tages of DMS over the imitation learning baseline. Unlike

DMS, each choice of η yields a different policy; in order

to sweep a curve, we must re-run learning for every point

we wish to generate on the curve. Furthermore, imitation

learning as defined using equation 8 does not guarantee that

computation over a batch of test examples will run within a

fixed budget; each choice of η yields a fixed trade-off that

will approximately run at some budget that is a function of

the interaction between computation and accuracy on the

given training set.

4.2. Human Pose Estimation in Video

Our approach to video pose estimation can be summa-

rized as follows. We propose a simple bigram linear-chain

model, one per arm. The model consists of 32 states per

frame. We adapt the efficient and current state-of-the-art

MODEC pose model [18] to generate the states: each state

corresponds to the highest scoring prediction of one of the

32 MODEC sub-models. Next, given the set of states for

each clip in our training database, we learn to predict a path

through the states using high level features such as color and

flow consistency. The resulting model is both more accurate

than previous state-of-the-art and is roughly 23× faster. We

then apply dynamic model selection to choose the features

in the sequence models on-the-fly for even greater efficiency

gains on a new, large dataset.

MODEC Proposals. A key relevant modeling innnovation

in the MODEC method is the joint learning of a mixture of

32 articulated part-based models. Each mixture component,

or mode, represents a different canonical pose. To gener-

ate our 32 states, we find the argmax arm configuration for

each of the 32 modes in MODEC. Note that MODEC mod-

els each arm as a separate pose model, but chooses a sin-

gle mode for each arm based on a combined compatiblity

score between the two poses; for our purposes, we ignore

the compatibility score and take the 32 separate predictions

for each arm independently. Experimentally, we find that

with 32 states per arm, at least one state is typically very

close to the true arm pose for a given image (i.e. on the

VideoPose2 [19] dataset, greater than 80% of elbows and

wrists are within 20 pixels of the ground truth, on average.)

MODEC+S sequence model. Given a video sequence, we

generate 32 states for each arm for each frame indepen-

dently using the MODEC model. The problem then be-

comes selecting which of the 32 poses for each arm and

frame to choose. We apply a standard linear-chain bi-

gram model for this task. Let yi be state at frame i; for

each assignment to yi we have a corresponding MODEC

argmax pose on the i’th frame, which we denote pi(yi). For
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Figure 3. Dynamic model selection on the CLIC dataset. See caption of Figure 1 for explanation of axes/baselines. DMS provides a

significant increase in speedup with very little accuracy cost compared to picking elements uniformly at random; e.g. for elbows, a 2×
speedup can be obtained for hardly any accuracy cost, while a 5× speedup with DMS can be obtained for the same accuracy of a 3×
speedup when picking uniformly at random.

each state yi in the i’th frame we allow transitions from

the 5 closest states y′i−1 in the previous frame, as mea-

sured by the distance in joint configuration space ||pi(yi)−
pi−1(y

′
i−1)||2. This yields a total of 160 possible transitions

for each frame. At test time, we can efficiently make predic-

tions using the Viterbi algorithm to find the state sequence

that maximizes (5) with practically neglible runtime due to

the tiny size of the state and transition space. We call our

approach MODEC+S.

Learning. We learn the scoring functions ψ from a set of n
training examples as follows. Given a video clip xj and

a labeled pose pji for each frame i in xj , we define the

ground truth state yji to be the state with the closest pose

yji = argmin ||pi(yi)−pji ||2. This results in the training set

{(xj ,yj)}nj=1 which we use as the basis for the rest of our

analysis.

Features. As in the handwriting recognition task, we use a

fixed hiearchy of features to create a series of four increas-

ingly complex base models. The first model uses unary fea-

tures consisting of a prior term and the normalized MODEC

score for each mode, and binary features consisting of a

(mode,mode) transition prior and several kinematic terms

(angular joint and limb velocities and x, y joint location ve-

locities). The second model adds an image-dependent pair-

wise term, the χ2-distance between color histograms of the

predicted arm locations from one frame to the next. The

third model adds an image-dependent unary term; each im-

age is quickly segmented into superpixels using [5], and we

compute the intersection-over-union (IoU) score between

the predicted arm rectangles and superpixels selected by the

rectangles. Finally, the fourth model computes a very fast

and coarse optical flow using [15]; we obtain an estimate of

the foreground flow by subtracting the median flow outside

the target bounding box. We then compute a flow-based

pairwise feature as follows: for each predicted arm location

in the first frame, we shift each arm pixel by its estimated

flow to produce a predicted arm location in the next frame,

and compute the IoU between the flow-shifted arm and each

possible predicted arm location in the next frame. Although

the computational cost depends on the size of the input im-

ages, for the CLIC dataset (described below), we compute

the per-frame amortized costs of each model (in seconds)1

to be c1 = 0, c2 = 0.41, c3 = 1, and c4 = 5.2 (optical flow

is by far the most expensive feature of MODEC+S).

Meta-features. We use similar meta-fetures as in the hand-

writing recognition setting (n-gram occurences and distri-

bution and entropy of the sequence model marginals) with

one set of additional image-dependent features. For ev-

ery n-gram in the image, where n = 2k, we compute the

mean and max χ2 distance between a center frame pre-

dicted arm location and the k frames before and after. The

feature is then the average number of times these distances

exceed 0.5, indicating a significant difference between the

predicted arm color of the center frame and the surround

frames. For k = 1, 2, 3, these features yield a total of 40

features for the selector. Finally, for computing metafea-

tures at model level i, we also compute the features of level

i − 1 and the change in these features from i − 1 to i. The

per-frame amortized cost of evaluation is 0.014 seconds.

A new dataset. We introduce a new publicly available

dataset, Clips Labeled in Cinema (CLIC). This dataset con-

sists of 362 annotated clips from the same movies as the

Frames Labeled in Cinema (FLIC) dataset from [18], for a

total of roughly 15,000 individual frames. The annotations

1All computation was carried out on a AMD Opteron 4284 CPU @

3.00 GHz with 16 cores.
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were obtained from a Amazon Mechanical Turk crowd-

sourcing annotation tool. Due to the difficulty of labeling

an entire video sequence, we labeled a significantly larger

pool of video clips, but kept only those frames where inter-

annotator agreement was within the 90th percentile of the

distribution of agreement across all frames in all video clips.

Each clip is between 10 and 61 frames in length, with a me-

dian clip length of 46 frames. Although all of the data will

be publicly available, for our experiments in the following,

we selected half of the clips that contained the most arm

motion to provide for a more challenging dataset.

4.2.1 Evaluation of MODEC+S

Experimental setup. Before applying DMS, we evaluated

the utility of the final, most complex MODEC+S model for

articulated pose estimation in video. We first compared to

the approach of [19] on the VideoPose2 (VP2) dataset [19],

which represents state-of-the-art in human pose estimation

in challenging videos. (We also compare to state-of-the-

art single frame inference, as represented by [24]). For the

VP2 dataset we used the same train/test partitioning of the

VP2 dataset as [19]. We next compared our approach on the

new CLIC dataset. Due to excessive runtime, it was infea-

sible to apply [19] to this much larger dataset, so we com-

pared to single-frame methods [18] and [24]. To evaluate

on CLIC, we divided the dataset into two halves so that dif-

ferent movies were contained in different halves. Since our

new dataset CLIC uses the same movies as the FLIC dataset

in [18], we re-trained MODEC on the corresponding movies

from FLIC contained in each half and tested MODEC on the

other half. To train and test MODEC+S, we used these test

evaluations of MODEC as input, again training on one half

of the data and testing on the other. Note that for all experi-

ments, we ignored the human detection problem and fed all

algorithms pre-localized and scaled images using the anno-

tations in the data, although only MODEC and to choose

[19] explicitly take advantage of this fact.

Results. The results are summarized in Figure 2, and

qualitative results are presented in Figure 5. On VP2,

MODEC+S achieves similar or better accuracies to [19], but

whereas the downloadable code package for [19] took 367

seconds/frame of computation time, MODEC+S takes only

16 seconds/frame, a 22.9× speedup. In particular, the new

model is significantly more accurate on the wrist than ei-

ther the previous best or the single-frame MODEC model.

However, even the single-frame MODEC is close to state-

of-the-art (after smoothing), which is even faster than our

approach, and [24] is faster still, though not as competitive.

On CLIC, MODEC+S dominates the other methods by an

even more significant margin, and all accuracies are gener-

ally higher than VP2 for all methods.

Figure 4. Expansion distribution of DMS on the CLIC dataset. For

each % of budget used, the distribution of stopping points for the

batch examples between the four possible models is shown. As

can be seen, our approach quickly begins using the most expensive

model in order to obtain higher accuracy for less overall computa-

tional cost.

4.2.2 Evaluation of Dynamic Model Selection

Experimental setup. We evaluated our dynamic model se-

lection framework on the CLIC dataset with 200 random

partitions of the dataset. For each partition, we used 70%

of the data for training, 10% as development, and 20% as

test. Within the training set, we ran 3-fold cross-validation

to generate model predictions for learning the selector as

described in section 3. When learning the selector, we fo-

cused on minimizing wrist test error, counting as an error

any frame that the wrist was not localized to within 20 pix-

els. We also smoothed the predictions of each model before

passing them to the selector since we found this improved

the overall accuracy of the system.

Results. The results are shown in Figure 3. For wrist local-

ization, our approach was able to obtain a 2× speedup for

little to no accuracy cost, and maintain a significant speedup

compared to the uninformed model selection baseline. For

elbow localization, our approach yields a speedup of 5×
at the same accuracy cost as an uninformed 2× speedup, a

significant improvement. Note that these improvements in-

clude the slight additional cost of evaluating the DMS meta-

features. We also investigated whether or not Algorithm 1

was choosing models to use by simply choosing the cheap-

est first (Figure 4), which we found not to be the case.

5. Conclusion
We presented dynamic structured model selection

(DMS), a simple but powerful meta-learning algorithm that

leverages typically intractable features in structured learn-

ing problems in order to automatically determine which of

several models should be used at test-time in order to max-

imize accuracy under a fixed budgetary constraint. In two

domains, we found significant improvements in accuracy

and efficiency compared to alternative or uninformed ap-
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Figure 5. Qualitative results on the CLIC dataset. Shown are the predictions of the 4 base models (blue, cyan, yellow, red, respectively).

The optical flow based features (red) are often times significantly more accurate than the other features.

proaches. We also established a new state-of-the-art in hu-

man pose estimation in video with an implementation that

is 23× faster than the previous standard implementation.

Future work. Our results suggest that two-tier re-ranking

style approaches are indeed a powerful technique to in-

crease the efficiency and discriminative power of structured

prediction systems. Nonetheless, the DMS approach out-

lined here could be improved in several key ways: in future

work, we intend to explore optimal strategies for construct-

ing a model set, unordered model sets, and better greedy

batch inference strategies.
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