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Abstract

In this paper, we present a novel, robust multi-view nor-
mal field integration technique for reconstructing the full
3D shape of mirroring objects. We employ a turntable-
based setup with several cameras and displays. These are
used to display illumination patterns which are reflected by
the object surface. The pattern information observed in
the cameras enables the calculation of individual volumet-
ric normal fields for each combination of camera, display
and turntable angle. As the pattern information might be
blurred depending on the surface curvature or due to non-
perfect mirroring surface characteristics, we locally adapt
the decoding to the finest still resolvable pattern resolution.
In complex real-world scenarios, the normal fields contain
regions without observations due to occlusions and outliers
due to interreflections and noise. Therefore, a robust re-
construction using only normal information is challenging.
Via a non-parametric clustering of normal hypotheses de-
rived for each point in the scene, we obtain both the most
likely local surface normal and a local surface consistency
estimate. This information is utilized in an iterative min-
cut based variational approach to reconstruct the surface
geometry.

1. Introduction

3D reconstruction is one of the fundamental problems in

computer vision. It has remained in the focus of research

since decades with many applications in e.g. industry, en-

tertainment and cultural heritage. While a huge amount of

techniques has been developed in this field, today’s chal-

lenges can be found when considering surfaces which ex-

hibit a complex surface reflectance behavior. In this pa-

per, we focus on reconstructing mirroring objects. For such

objects, most traditional techniques such as laser scanners,

structured light or multi-view stereo are not applicable.

Assuming a perfect mirroring surface, the appearance of

Figure 1: Bunny figurine and reconstructed model.

a surface point only depends on the surrounding environ-

ment, the viewing angle and the local surface normal. By

controlling the environment, it is directly possible to esti-

mate normal information [29, 9, 16]. An alternative is to

rotate the object and to track the optical flow [1, 30].

Several approaches such as the ones in [9, 16] use these

normals to perform a single-view normal field integration

and are thus limited to partial 2.5D reconstructions. Others

derive a normal consistency measure and perform a multi-

view reconstruction (e.g. [6, 27]). However, normal con-

sistency alone is not suitable to reconstruct fine surface de-

tails. Therefore, a final refinement step is performed in [27]

to combine the geometry estimated from the normal con-

sistency with the observed surface normals. However, none

of the mentioned approaches has shown high-quality recon-

structions for complex geometries in the presence of occlu-

sions and interreflections.

To address this problem, we exploit the fact that out-

liers due to occlusions or interreflections are not consis-

tent for different measurements taken under varying con-

figurations of viewpoint and light source position. Inspired

by the multi-view normal field integration approach pre-

sented in [8] but utilizing a numerical scheme for obtain-

ing a globally consistent surface reconstruction similar to

[35], we formulate the problem in terms of an optimization

which combines both a local surface consistency measure
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and the observed normal information. We determine these

quantities in an outlier-robust way via mean-shift cluster-

ing [10] of the individual local normal hypotheses which

result from different configurations of viewpoint and light

position. This makes our approach capable of handling oc-

clusions. To acquire the full shape of the considered object,

the utilized setup comprises a turntable, eleven cameras and

three screens for displaying structured light patterns which

are reflected by the object surface. Our technique produces

high-quality reconstructions of the full 3D shape of an ob-

ject not only on synthetic but also on real-world data (see

e.g. Figure 1).

In summary, the key contributions of our approach in-

clude a system for acquiring the full 3D shape of mirroring

objects based on multi-view normal field integration and a

novel clustering-based scheme for integrating different vol-

umetric normal fields which is robust in the presence of out-

liers and noise and makes accurate 3D reconstruction pos-

sible on real-world data.

2. Related Work
Surface reconstruction has attracted a lot of research in

the last decades. We focus on giving a brief review on

normal-based reconstruction techniques and approaches for

3D reconstruction of highly specular and mirroring objects.

Amongst the early investigations for exploring normal

information for 3D reconstruction are shape-from-shading

techniques [20] and photometric stereo [36] which focused

on reconstructing Lambertian objects from a single view un-

der known light source positions. Since then, many tech-

niques focused on extending photometric stereo towards

general unknown illumination [4, 37] and providing robust-

ness to violations of the underlying assumption of Lamber-

tian reflectance behavior due to specularities or shadows.

Other methods addressed a more general surface reflectance

behavior such as spatially-varying BRDFs [18, 17]. How-

ever, effects such as shadows or interreflections are not

taken into account. Furthermore, multi-view photometric

stereo has been explored in e.g. [14, 5]. Targeting on the

larger range of opaque materials, a reciprocal setup where

camera and light source positions can be exchanged in order

to exploit the Helmholtz reciprocity for calculating surface

normals has been proposed in [42]. This principle has fur-

ther been investigated in [13] in a multi-view setting.

Focusing on the reconstruction of specular objects, we

refer to the surveys in [21, 3] and the theoretical discussion

in [23]. Methods such as specular flow techniques [28, 1]

compute the surface geometry from the movement of the

environment features mirrored on the object surface. Such

methods usually rely on a known motion of the mirroring

object, its environment or the cameras respectively. How-

ever, estimating dense optical flow is non-trivial due to the

possibility of observing a single environment feature sev-

eral times on the specular surface due to interreflections and

usually a distant environment is assumed. For this reason,

sparse reflectance correspondences have been used to lo-

cally approximate specular surfaces using quadrics in [30].

Other reconstruction approaches investigate the use of

specular highlights observed on the object surface due to

specular reflection in controlled environments. For this pur-

pose, it is required to obtain dense observations of such

specularities on the specular surface. This can be performed

by moving the camera [43], using a moving light source [9],

using extended light sources [22] or sequentially switching

on individual elements of a grid of light sources [29]. As

the number of required images increases linearly with the

utilized light source positions, some techniques aim at sig-

nificantly reducing the amount of required images by per-

forming measurements in parallel. This can be achieved

by rotating the object and using a circular light source [41]

or by using printed, static or moving calibrated patterns

[6, 31, 24]. Furthermore, some methods encode multiple

light sources simultaneously. While encoding schemes for

light source arrays have been investigated in [26], several

approaches extend this idea by simulating a dense illumi-

nation arrays using LCD screens and encode the illumina-

tion emitted from the pixels using structured light patterns

[16, 27, 38, 2]. However, in most of the approaches the as-

sumption of far-field illumination or a distant environment

is violated as the LCD display or the printed patterns have

to be placed closely to the object for obtaining a sufficient

sampling of light directions or feature directions.

The resulting normal-depth ambiguity can be solved in a

multi-view setting such as the one presented in [6] where

a calibrated pattern is used to produce reflections on the

specular surface. Based on a volumetric representation, the

law of reflection is used to hypothesize a normal at each

voxel. Subsequently, the surface is assumed to pass through

the voxels with the most consistent normal hypotheses fol-

lowing a normal disparity measure. The idea of hypoth-

esizing surface normals has already been investigated in

e.g. [11, 25] for extending classical single-view photomet-

ric stereo by selecting only hypotheses which agree with

the underlying model assumptions. In [19], several nor-

mal hypotheses are generated for each pixel from different

lighting directions. The solution space is then reduced ac-

cording to an agreement concerning monotonicity, visibil-

ity, and isotropy properties. This makes the approach ap-

plicable for both diffuse and specular surfaces. Instead of

a reduced solution space, the approach presented in [5] de-

termines a maximal set of inliers per voxel on which regu-

lar photometric stereo is applied in a multi-view approach.

While producing good reconstructions on synthetic data,

the estimated surface consistency tends to being localized

non-accurately for real-world data due to the lack of a per-

voxel normalization. Further investigations on matching
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hypothesized normal information in the context of specu-

lar surface reconstruction include the approaches proposed

in [34, 2]. In [2], overlapping deflectometric measurements

from multiple views are used to reconstruct large mirroring

surfaces. However, self-occlusions represent problems for

this approach and the configuration of the individual views

has to be performed manually. Clustering normal obser-

vations per pixel in a single-view setting via the k-means

algorithm has been used in [39] for reconstructing transpar-

ent objects. Similar to [6], specularity consistency between

a set of views in a triangulation-based scheme using a dis-

play with Gray codes for illumination has been investigated

in [27]. After triangulation, normals are refined for the esti-

mated depth values in a similar way to the iterative scheme

proposed in [32].

Closely related to our approach are the multi-view nor-

mal field integration approaches proposed in [8] and [12]

in the context of photometric stereo. These overcome the

problem of obtaining only 2.5D reconstructions of partial

surfaces in the single-view case. In [8], an initial visual

hull reconstruction is followed by an iterative surface evo-

lution based on level sets in a variational formulation. As

no global optimization is performed, the surface evolution

is sensitive to the initial visual hull. In contrast, the tech-

nique proposed in [12] is based on a Markov Random Field

(MRF) energy function where the surface is computed via

min-cut to find a global minimum. This is followed by a

smoothing step similar to the one applied in [8]. A surface

orientation constraint has been included in the energy func-

tional which enforces the reconstructed geometry to agree

with the observed surface normals. Both techniques em-

ploy additional silhouette information which is very diffi-

cult to determine for mirroring objects. In contrast, our

method only incorporates normal information and brings

the multi-view normal integration to the domain of recon-

structing mirroring objects.

3. Problem Statement
Given a set of κc calibrated cameras Ci with i =

1, . . . , κc which are positioned to observe a mirroring ob-

ject from different viewpoints and a set of j = 1, . . . , κs

screens, our goal is to reconstruct the object surface δV of

a mirroring object with volume V by utilizing only normal

information recovered for the individual views. Apart from

a smoothness prior, we do not incorporate any prior knowl-

edge about the object geometry such as the assumption of

rather flat surfaces [9, 16] or an initial visual hull recon-

struction [8]. Furthermore, our approach should consider

the possibility of self-occlusions of the object geometry.

Due to the complexity of real-world scenarios, we also have

to design our reconstruction technique to be robust to noise.

In addition, violations of the assumption regarding the un-

derlying reflectance model need to be handled to some de-

gree as well as incomplete normal fields which occur when

no normal information can be derived for certain parts of the

object surface. For this reason, we formulate the surface re-

construction as a variational energy minimization problem

similar to [8] according to

min
V

{
−λ1

∫
δV

〈cN,n〉 dA+ λ2

∫
δV

α dA

}
, (1)

where λ1 and λ2 denote weighting coefficients, c represents

a scalar field of surface consistency and the consistency-

scaled vector field cN contains information about both the

local probability of surface presence and the local normal

information for the points in the volume and α represents

a regularization parameter. The first term in the functional

(1) is minimized for high consistency values and a surface

which is perpendicular to the observed normals n. The sec-

ond part represents a regularization term which enforces a

minimal surface area to avoid overfitting by increasing the

cost for oscillating surfaces. Similar to [35], the global op-

timization of this functional can be mapped to the optimiza-

tion of the continuous min-cut functional [40]

min
λ

{∫
Ω

(1− λ)Cs + λCt + C |∇λ| dV
}

(2)

via specifying C = λ2α, Cs = λ1 max {0, div(cN)} and

Ct = λ1 max {0,− div(cN)}. We choose this formulation

as it provides efficiency concerning memory consumption

and alleviates metrification errors.

After describing the utilized setup in the following Sec-

tion, we describe the technique to acquire and integrate the

normal information in Section 5.

4. Acquisition System and Calibration
For the acquisition, we use a turntable-based setup il-

lustrated in Figure 2, where eleven cameras with a resolu-

tion of 2,048×2,048 pixels are positioned on a vertical arc.

The calibration of the cameras and the turntable axis is per-

formed using a rotating three-dimensional calibration target

with robustly detectable markers. Similar to e.g. [16, 27],

we use a monitor-based shape-from-specularity approach

to simulate a dense illumination area. Two static displays

with resolutions of 2,048× 1,152 and 2,560× 1,600 pixels

are placed close to the objects for displaying patterns. Gray

code patterns and their inverses are used for the unique iden-

tification of the reflection of each screen pixel on the mir-

roring surface with a small number of acquired images. For

illuminating the object surface as completely as possible,

we place the object onto the display of an Asus TF300T-

1E031A tablet with a resolution of 1,280 × 800 pixels,

which is on top of the turntable and also used for displaying

patterns. Both the monitor displays and the tablet display

need to be placed in a way that provides a good coverage
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Figure 2: (left) Sketch of the utilized setup: The screens

successively display the series of patterns for each rotation

of the turntable. The reflected pattern on the object surface

is observed by the cameras. For illustration purposes, only

three of the eleven employed cameras are drawn. (right)

Block diagram of the proposed method.

of the sphere of possible reflection directions. Additionally,

we found it important that the tablet is stable enough to sup-

port the object weight in case of placing the object on it, i.e.

tablets with hard glass surfaces are more suitable. In turn,

this results in interreflections which have to be taken into

account during the reconstruction.

For calibrating the positions of the utilized displays, we

use the decoded pattern information observed in the images

of the involved cameras and perform an estimation of the

display pixel positions xl via triangulation so that the re-

sulting point cloud represents (a part of) the display. From

the decoded bits for each of the m points in the point cloud,

it is possible to uniquely determine its offset ul = [ul, vl]
T

from the origin o of the display frame which we consider

to be at the upper-left. Using this information, we can de-

rive the coordinate frame of the screen consisting of the ori-

gin o and the spanning vectors a (parallel to the display

width) and b (parallel to the display height) via optimizing

Q =
m∑
l=1

(xl−(o+ula+vlb))
2. The resulting linear system

is solved using least squares minimization. Given the screen

calibration, we can directly determine the 3D location of a

pixel on the screen by considering its bit sequence.

For the calibration of the screens, it is not necessarily re-

quired to see the complete screens in the camera images as

several parts of the displays seen in different cameras are

sufficient. While our calibration method requires the moni-

tor to be close to the object, this is eventually desirable for

the measurement to cover a larger part of the mirror surface

with the projected patterns and reduce the influence of light

fall-off.

5. Multi-View Shape-from-Coded-Illumina-
tion

For bringing classical shape-form-specularity techniques

to the multi-view scenario, we first discuss the utilized en-

coding of the illumination patterns as well as the problems

occurring due to surface curvatures which we solve via a

fuzzy decoding of the patterns. Subsequently, we describe

how the decoded information is used to generate normal hy-

potheses from which the normal field required in the opti-

mization (1) and the surface consistency are derived. The

block diagram of our method is shown in Figure 2.

5.1. Coded Illumination

For encoding the illuminations coming from the dis-

plays, we use Gray code patterns which enable a robust de-

coding. Additionally, similar to the approach presented in

[33], we take the inverse patterns for increasing robustness.

For decoding the displayed bit sequences, we compare the

intensity values observed at each pixel u in the pair con-

sisting of image Ii,j,k,q seen while displaying pattern Pq

and image Īi,j,k,q seen while displaying its inverse pattern

P̄q . If the difference is below a certain threshold, we mark

the decoded bit as unreliable. We use
∣∣Ii,j,k,q − Īi,j,k,q∣∣ <

0.1 Ii,j,k,0, where Ii,j,k,0 represents the photo taken under

illumination by the fully lit pattern.

As each pixel on the displays can be uniquely encoded

and its 3D position on the screen is known from the screen

calibration, observed codewords can directly be related to

the corresponding 3D positions on the screen. Hence, we

generate a light map [3, 9] for each individual camera under

each rotation angle k of the turntable and under illumina-

tion from each display j. These light maps Li,j,k assign to

each pixel in the camera image the light source position. In

general, there will not be observations for all the pixels. The

reason for this is that, depending on the shape of the object

and the position of the illuminant, only a part of the surface

will reflect patterns towards the camera.

Interreflections introduce outliers in the light maps. In

addition, depending on the curvature of the mirroring sur-

face and the differing relative distances to the display pixels

or other effects, such as non-ideal or spatially varying re-

flectance properties, it is usually not possible to decode the

complete bit sequence correctly. High-frequency patterns

might appear blurred on the object surface which has al-

ready been observed in e.g. [16, 15, 3] and it is not possible

to decide if pattern Pq or its inverse P̄q has been displayed.

As a consequence, we introduce a fuzzy decoding. The ba-

sic idea is to only use the reliably decoded bits per pixel to

identify the corresponding display area which illuminated

this pixel. If less bits can be reliably decoded, the ambigu-

ity in the region of the display which illuminated the pixel
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increases. The corresponding light source position is deter-

mined as the center of this reliably decoded region.

To address noisy decodings in the light maps which

could represent problems for the calculation of normals and,

hence, also for the normal field integration algorithm, we

additionally perform a subsequent filtering step. In this step,

all decoded labels with less than tbits reliably decoded bits

for both horizontal and vertical stripe patterns are discarded.

For calibrating the screens, we use tbits = 9 as a very ac-

curate decoding is possible. During the reconstruction, we

use tbits = 5. Furthermore, we also consider for each image

pixel per series of patterns the average of the individual con-

trasts observed for the individual patterns and their inverses

to filter out unreliable decodings. In principle, the quality

of the decodings can be used as weights for the quality of

the normals derived from them. However, in the scope of

this paper, we did not investigate this.

5.2. Generation of Normal Hypotheses

The light maps described in the previous subsection are

used to derive information about surface normals. As our

setup violates the assumtion of distant illumination and the

object surface is unknown a priori, the ambiguity concern-

ing the depth of the surface along the view directions for the

individual cameras cannot be discarded as in the case of far-

field illumination. In our variational formulation, we there-

fore consider a volumetric representation to resolve this

problem. In particular, the normal hypotheses are calculated

separately for all the points along the view direction per

pixel in each camera similar to [6] by utilizing the informa-

tion stored in the light maps. For each point x in the volume

and each combination of camera index i = 1, . . . , κc screen

index j = 1, . . . , κs and rotation index k = 1, . . . , κr, we

compute a normal estimate ni,j,k(x). Assuming that the ob-

ject remains fixed and cameras and displays are rotated, we

consider the coordinate x relative to the turntable. There-

fore, we obtain light directions lj,k(x) and view directions

vi,k(x) which depend on the position in the volume x and

both on the rotation index k and the screen index j or cam-

era index i respectively. Following the law of reflection, we

obtain the normal estimate ni,j,k(x) as the bisector between

lj,k(x) and vi,k(x). At points close to the surface, nor-

mal hypotheses derived for different camera/screen/rotation

configurations, for which the corresponding points are vis-

ible, have only a small variance and almost coincide with

the true surface normal. In contrast, hypotheses contradict

each other at points distant to the true surface.

However, as the cameras might directly observe certain

parts of the displays as well, the light maps do not only

contain information about the object to be reconstructed.

For the reconstruction of the object geometry, these regions

in the light maps should not be propagated into the volume

in the process of generating normal hypotheses. For this

reason, our method also analyzes the 3D distance between

the intersection of the view rays with the plane of the active

display and the light source position stored in the light map.

If this distance is small (we use a threshold of 3mm), it is a

hint that the information stored in the light map belongs to

the screen geometry and can be masked out.

5.3. Multi-View Normal Field Integration and Sur-
face Consistency Estimation

The result of the normal calculation step is a set of nor-

mal fields assigned to the involved capture configurations

(i, j, k). These individual fields need to be combined to one

common normal field which contains information about the

best local normal and the surface consistency.

After combining the information in the volume of inter-

est, we have several normal votes for the different points in

this volume. For finding the true surface, we assume that,

at a certain location x on the object surface, the normal hy-

potheses from the different cameras agree with each other

and with the true surface normal. In contrast, normal es-

timates from the different configurations (i, j, k) will con-

tradict each other further away from the surface. However,

due to effects such as outliers, noise, non-ideal calibration

or the discretization of the volume, perfectly matching nor-

mals will hardly occur in real-world scenarios. Therefore,

we can consider the observed normals as samples from an

underlying probability distribution. Since the non-occluded

normals should agree up to a small variance in the vicin-

ity of the true surface, the underlying distribution should

have a global maximum centered around the surface nor-

mal. Furthermore, its variance can be regarded as a mea-

sure for surface consistency. Similar measures have been

used in [6, 27] for reconstructing highly specular and mir-

roring objects. As the information about visibility of points

w.r.t. the involved cameras is unknown, we have to also take

into account that several of the normals actually come from

an occluded view in additition to the noise and outliers.

Modeling the probability density of normals under oc-

clusions is challenging as it depends on the geometry

of the considered object as well as on the placement of

the involved cameras and screens. Therefore, we do not

model the probability density function (pdf) via a paramet-

ric model but instead only make the simplifying assumption

that the density is highest for the actual surface normal. This

assumption is warranted as the actual surface normal is con-

sistent over all views where the respective surface point has

been observed, whereas the outliers should not be consistent

over several views. Under this assumption, finding the nor-

mal direction corresponds to finding the largest mode of the

pdf. For this reason, we decided to use mean-shift cluster-

ing [10] as a non-parametric technique as it neither requires

assuming a model nor creates discretization artifacts. We
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therefore define the pdf as

px(n) =
1

κcκsκrh3

∑
i,j,k

K

(‖n− ni,j,k(x)‖
h

)
, (3)

and set the local normal estimate N(x) = argmaxn px(n)
to the centroid of the highest mode of the pdf. Furthermore,

we use the density at the centroid as a surface consistency

measure which we denote with c(x) = px(N(x)).
In eq. (3), K represents the kernel function with band-

width h. We experimented with both the Epanechnikov ker-

nel and the Gaussian kernel and found the latter to result in a

more accurate reconstruction. We heuristically determined

h = 0.03 which worked for all our datasets, but did not per-

form a complete evaluation on the sensitivity to this param-

eter. As an alternative, it is also possible to consider normal

histograms. Then, the highest mode of the pdf corresponds

to the bin with the maximum count. Though this would be

faster, in our experiments, we did not reach the quality of

the reconstructions when using mean-shift clustering.

5.4. Surface Reconstruction

After calculating the estimates for the common volumet-

ric normal field and the surface consistency as described

before, we adapt the iterative optimization procedure pre-

sented in [35] to our setting. After an initialization of the

utilized octree at a coarse level, the grid is successively re-

fined according to the local surface consistency estimates

in the volume. In a subsequent iterative process, the mem-

ory efficient continuous min-cut [40] is applied for a global

optimization per iteration. In a final step, the resulting bi-

nary indicator function is smoothed inspired by the tech-

nique presented in [7].

6. Experimental Results
We evaluate our technique in two steps. To demonstrate

the robustness of our reconstruction framework, we first

consider the classical multi-view normal field integration

case. Here, we use per-camera normal images as input. In

the next step, we show results on mirroring objects. For

the experiments mentioned in the paper, we use 264 views

(κc = 11 cameras are mounted on an arc and the turntable

is rotated in steps of 15◦, i.e. κr = 360◦
15◦ = 24).

In a first experiment, we consider 3D reconstruction

from several per-view normal fields. For this purpose, we

have acquired a painted mask made of clay and estimate

for each view an independent normal map using classical

single-view photometric stereo [36]. Subsequently, the inte-

gration is performed using our variational formulation. We

use the assumption of far-field illumination but with our

technique it would also be possible to relax this assumption

by computing an individual normal at each point in the vol-

ume. As the assumption of Lambertian surface reflectance

(a) Camera image. (b) Reconstruction.

Figure 3: Results on a photometric stereo dataset: In partic-

ular, the painted regions of the clay mask exhibit speculari-

ties which leads to a violation of the assumption regarding

Lambertian reflectance behaviour. Nevertheless, the recon-

struction preserves the shape in these regions.

Figure 4: Stanford Bunny model, reconstructed model and

visualization of the reconstruction error. Except for the bot-

tom region, where almost no observations have been avail-

able, the reconstruction on an adaptive grid of level nine (at

which the voxel edge length is approx. 250μm) fits to the

original model.

is violated due to the presence of effects such as specular

reflection, shadows and inter-reflections on the mask sur-

face, normal estimation based on linear least-squares fitting

is prone to errors. Therefore, we use a simple outlier re-

jection to remove the influence of too bright or too dark re-

gions in the least-squares fitting. The reconstructed model

is shown in Figure 3. Applying a more sophisticated photo-

metric stereo technique would probably improve the recon-

struction quality. We also show results for a synthetic test

case in the supplementary material where normal fields are

directly generated from the object geometry using a normal

shader in OpenGL. The results demonstrate that fine surface

details are well-preserved in the reconstruction.

For mirroring objects, we first consider a synthetic test

case where we represent each display via a plane textured

according to the patterns of the Gray code sequence. The

scene is rendered using conventional ray tracing using 64

samples per pixel to accurately simulate the blurring in

curved regions due to limited camera resolution. We use

a camera resolution of 2,048 × 2,048 pixels and simulate

κs = 2 screens which results in κs · κc · κr = 528 light

maps. Figure 4 shows a comparison of the original model

and the reconstruction. For evaluating the robustness of our
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Figure 5: Block model with pits of increasing depth, recon-

structed model and visualization of the reconstruction error

(level nine reconstruction, i.e. the voxel edge length is ap-

prox. 250μm at level nine).

Figure 6: Reconstruction of a mirroring sphere (object and

visualization of the Hausdorff distance between the recon-

structed model and a sphere according to the sphere speci-

fications).

approach w.r.t. interreflections, we also considered a syn-

thetic, mirroring block with pits of increasing depth, where

the proportion of multiple-bounce observations gradually

increases. The reconstruction results are shown in Figure 5.

Finally, we evaluate our technique on two mirroring, real-

world objects. For obtaining information about the accuracy

of our approach, we have measured a precisely manufac-

tured sphere with a radius of 25 mm (using κs = 2 screens)

and compare the reconstructed model to an ideal sphere of

fixed radius whose center is determined via a least squares

fit. The error is measured via the Hausdorff distance and

shown in Figure 6. The root mean square error of the recon-

struction is 20μm which is considerably lower than the edge

length of a voxel (approx. 200μm) on the utilized maximum

octree level. In comparison, one image pixel corresponds to

approx. 150μm at the distance of the object.

Furthermore, we test the robustness of our approach on

objects with a more complex surface geometry such as self-

occluded parts and concavities which lead to interreflec-

tions. For this purpose, we have acquired a mirroring bunny

figurine. The reconstruction in Figure 1 clearly indicates the

possible reconstruction accuracy. Using additional octree

levels could further improve the reconstruction at the cost

of higher computation effort and memory requirements.

During our experiments, we mainly start with an initial

subdivision on level seven and perform each times three sur-

face adaptions before going to the next higher octree level.

On a Intel Xeon E5654 CPU with 2.4 GHz, our level nine

reconstruction for κr = 24, κc = 11 and κs = 3, as used

for the real-world bunny figurine, which leads to 792 ob-

served individual normal fields, requires approximately 12
hours, while the acquisition took approx. 2 hours.

The results shown in this section indicate the potential of

normal-based surface reconstruction. In contrast to the pre-

viously presented multi-view normal field integration ap-

proaches in [8, 12], our method is robust enough to deal

with real-world data in the presence of noise and outliers.

However, regions such as concavities with a certain orien-

tation to the displays, under which no information can be

observed, cannot be accurately reconstructed.

7. Conclusions

In this paper, we have presented a novel, robust multi-

view normal field integration technique for reconstructing

the full 3D shape of mirroring objects. Based on coded il-

lumination, our technique derives several normal hypothe-

ses for each point of the considered volume. From these

hypotheses, both the most likely local surface normal and

a local surface consistency estimate are computed. In our

experiments, we have demonstrated that our method yields

accurate 3D reconstructions of highly-specular objects even

in the presence of occlusions.

Current limitations can be found when considering deep
concavities or other parts of the surface, where no informa-
tion has been observed. Resolving these problems is chal-
lenging as it would require considering multiple scattering.
Since the underlying optimization technique is independent
of the source of the estimated normals, we would like to
extend our method to objects which are only partially mir-
roring and also exhibit other surface reflectance behavior.
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