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Abstract

This paper studies the visual tracking problem in video
sequences and presents a novel robust sparse tracker under
the particle filter framework. In particular, we propose an
online robust non-negative dictionary learning algorithm
for updating the object templates so that each learned tem-
plate can capture a distinctive aspect of the tracked object.
Another appealing property of this approach is that it can
automatically detect and reject the occlusion and cluttered
background in a principled way. In addition, we propose
a new particle representation formulation using the Huber
loss function. The advantage is that it can yield robust esti-
mation without using trivial templates adopted by previous
sparse trackers, leading to faster computation. We also re-
veal the equivalence between this new formulation and the
previous one which uses trivial templates. The proposed
tracker is empirically compared with state-of-the-art track-
ers on some challenging video sequences. Both quantita-
tive and qualitative comparisons show that our proposed
tracker is superior and more stable.

1. Introduction
Visual tracking or object tracking in video sequences

is a major topic in computer vision and related fields. It

has a wide range of real-world applications, including secu-

rity and surveillance, autonomous vehicles, automatic traf-

fic control, medical imaging, human-computer interaction,

and many more. A typical setting of the problem is that

an object identified, either manually or automatically, in

the first frame of a video sequence is tracked in the subse-

quent frames by estimating its trajectory as it moves around.

While the problem is easy to state, it is often challenging to

build a robust object tracker due to various factors which

include noise, occlusion, fast and abrupt object motion, il-

lumination changes, and variations in pose and scale. The

focus of this paper is on the widely-studied single object

tracking problem.

Mei and Ling proposed the �1 tracker (L1T) [18] for ro-
bust visual tracking under the particle filter framework [5]

based on the sparse coding technique [22]. L1T and its ex-

tensions [30, 29] showed promising results in various tests.

(a) davidin (b) bolt

Figure 1. Learned templates for two video sequences: davidin and

bolt. For each sequence, the learned templates cover different ap-

pearances of the tracked object in the video while rejecting the

cluttered background.

L1T describes the tracking target using basis vectors which

consist of object templates and trivial templates, and recon-

structs each candidate (particle) by a sparse linear combi-

nation of them. While object templates correspond to the

normal appearance of objects, trivial templates are used to

handle noise or occlusion. Specifically, each trivial template

has only one nonzero element being one for a specific fea-

ture. If it is selected to represent the particle, it means that

the corresponding feature is occluded. It is shown in [18]

that a good target candidate should involve fewer trivial

templates while keeping the reconstruction error low. We

review the L1T in detail in section 3.2.

In this paper, we present an online robust non-negative

dictionary learning algorithm for updating the object tem-

plates. The learned templates for two video sequences are

shown in Fig. 1. We devise a novel online projected gradient

descent method to solve the dictionary learning problem. In

contrast to the ad hoc manner by replacing the least used
template with the current tracking result as in [18, 30], our

algorithm blends the past information and the current track-

ing result in a principled way. It can automatically detect

and reject the occlusion and cluttered background, yielding

robust object templates. Besides, we formulate the particle

representation problem using the Huber loss function [10].

This formulation can yield robust estimation without using

trivial templates and thus lead to significant reduction of the

computational cost. Moreover, we also establish the equiv-

alence between this new formulation and the L1T.

2. Related Work
Object tracking is an extensively studied research topic.

For a comprehensive survey of this topic, we refer readers
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to the survey paper [26] and a recent benchmark [24]. Here

we only review some representative works which are cat-

egorized into two approaches for building object trackers,

namely, generative and discriminative methods.

Generative trackers usually learn an appearance model

to represent the object being tracked and make decision

based on the reconstruction error. Incremental visual track-
ing (IVT) [20] is a recent method which learns the dynamic
appearance of the tracked object via incremental principal

component analysis (PCA). Visual tracking decomposition
(VTD) [15] decomposes the tracking problem into several

basic motion and observation models and extends the con-

ventional particle filter framework to allow different basic

models to interact. The method that is most closely related

to our paper is L1T [18] which, as said above, assumes that

the tracked object can be represented well by a sparse linear

combination of object templates and trivial templates. Its

drawback of having high computational cost has been al-

leviated by subsequent works [19, 4] to improve the track-

ing speed. More recently, Zhang et al. found that consider-
ing the underlying relationships between sampled particles

could greatly improve the tracking performance and pro-

posed themultitask tracker (MTT) [30] and low rank sparse
tracker (LRST) [29]. In [11], Jia et al. proposed using align-
ment pooling in the sparse image representation to alleviate

the drifting problem. For a survey of sparse coding based

trackers, we refer readers to [28].

Unlike the generative approach, discriminative trackers

formulate object tracking as a binary classification prob-

lem which considers the tracked object and the background

as belonging to two different classes. One example is

the online AdaBoost (OAB) tracker [7] which uses online
AdaBoost to select features for tracking. The multiple in-
stance learning (MIL) tracker [3] formulates object track-
ing as an online multiple instance learning problem which

assumes that the samples belong to the positive or negative

bags. The P-N tracker [12] utilizes structured unlabeled
data and uses an online semi-supervised learning algorithm.

A subsequent method called Tracking-Learning-Detection
(TLD) [13] augments it by a detection phase, which has the

advantage of recovering from failure even after the tracker

has failed for an extended period of time. The Struck [8]

learns a kernelized structured output support vector ma-

chine online. It ranks top in the recent benchmark [24].

The compressive tracker (CT) [27] utilizes a random sparse
compressive matrix to perform efficient dimensionality re-

duction on the integral image. The resulting features are

like generalized Haar features which are quite effective for

classification.

Generally speaking, when there is less variability in the

tracked object, generative trackers tend to yield more accu-

rate results than discriminative trackers because generative

methods typically use richer features. However, in more

complicated environments, discriminative trackers are often

more robust than generative trackers because discriminative

trackers use negative samples to avoid the drifting problem.

A natural attempt is to combine the two approaches to give

a hybrid approach, as in [31].

Besides object trackers, some other techniques related to

our proposed method are (online) dictionary learning and
(robust) non-negative matrix factorization (NMF). Dictio-
nary learning seeks to learn from data a dictionary which is

an adaptive set of basis vectors or atoms, so that each data

sample is represented by a sparse linear combination of the

basis vectors. It has been found that dictionaries learned this

way are more effective than off-the-shelf ones (e.g., based

on Gabor filters or discrete cosine transform) for many vi-

sion applications such as denoising [1] and image classi-

fication [25]. Most dictionary learning methods are based

on K-SVD [1] or online dictionary learning [17]. As for

NMF [21], it is a common data analysis technique for high-

dimensional data. Due to the non-negativity constraints,

it tends to produce parts-based decomposition of images

which facilitates human interpretation and yields superior

performance. There are also some NMF variants, such as

sparse NMF [9] and robust NMF [14, 6]. Online learning of

basis vectors under the robust setting has also aroused a lot

of interest, e.g., [23, 16].

3. Background
To facilitate the presentation of our model in the next

section, we first briefly review in this section the particle

filter approach for visual tracking and the �1 tracker (L1T).

3.1. Particle Filters for Visual Tracking

The particle filter approach [5], also known as a sequen-

tial Monte Carlo (SMC) method for importance sampling, is

commonly used for visual tracking. Like a Kalman filter, a

particle filter sequentially estimates the latent state variables

of a dynamical system based on a sequence of observations.

The main difference is that, unlike a Kalman filter, the latent

state variables are not restricted to the Gaussian distribution,

not even distribution of any parametric form. Let st and
yt denote the latent state and observation, respectively, at

time t. A particle filter approximates the true posterior state
distribution p(st | y1:t) by a set of samples {sti}n

i=1 (a.k.a.

particles) with corresponding weights {wt
i}n

i=1 which sum

to 1. For the state transition probability q(st+1 | s1:t,y1:t),
it is often assumed to follow a first-order Markov process

so that it can be simplified to q(st+1 | st). In this case,
the weights are updated as wt+1

i = wt
i p(y

t | sti). In case
the sum of weights of the particles before normalization is

less than a prespecified threshold, resampling is needed by

drawing n particles from the current particle set in propor-
tion to their weights and then resetting their weights to 1/n.
In the context of object tracking, the state si is often
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characterized by six affine parameters which correspond to

translation, scale, aspect ratio, rotation and skewness. Each

dimension of q(st+1 | st) is modeled by an independent
Gaussian distribution. The tracking result at each time step

is taken to be the particle with the largest weight. A key

issue in the particle filter approach is to formulate the ob-

servation likelihood p(yt | sti). In general, it should reflect
the similarity of a particle and the object templates while

being robust against occlusion or appearance changes. We

will discuss this issue in greater depth later in section 5.1.

The particle filter framework is popularly used for vi-

sual tracking due partly to its simplicity and effectiveness.

First, as said before, this approach is more general than us-

ing Kalman filters because it is not restricted to the Gaussian

distribution. Also, the accuracy of the approximation gener-

ally increases with the number of particles used. Moreover,

instead of using point estimation which may lead to overfit-

ting, the probability distribution of the latent state variables

is approximated by a set of particles, making it possible for

the tracker to recover from failure. An excellent tutorial on

using particle filters for visual tracking can be found in [2].

3.2. The �1 Tracker (L1T)

In each frame, L1T first generates candidate particles

based on the particle filter framework. Let Y ∈ R
m×n

denote the particles with each of the n columns for one par-
ticle. We further letU ∈ R

m×r denote the object templates

and V ∈ R
n×r and VT ∈ R

n×m denote the coefficients

for the object templates and trivial templates, respectively.

For sparse coding of the particles, L1T solves the following

optimization problem:

min
V,VT

1

2

∥∥∥Y − [U Im]
[
V′

V′
T

] ∥∥∥2
F
+ λ‖VT ‖1 + γ‖V‖1

s.t. V ≥ 0,
(1)

where Im denotes the identity matrix of sizem × m which

corresponds to the trivial templates, ‖A‖1 =
∑

ij |aij | for
the �1 norm, and ‖A‖F = (

∑
ij a

2
ij)
1/2 for the Frobenius

norm. Then the weight of each particle is set to be inversely

proportional to the reconstruction error. In each frame, the

particle with the smallest reconstruction error (and hence

largest weight) is chosen as the tracking result.

To reflect the appearance changes of an object, L1T takes

an adaptive approach in updating the object templates. It

first maintains a weight for each template according to its

usage in representing the tracking result. When the current

template set cannot represent the tracking result well, the

template with the smallest weight will be replaced by the

current tracking result.

4. Our Tracker
We present our object tracker in this section. The tracker

consists of two parts. The first part is robust sparse cod-

ing which represents each particle using the dictionary tem-

plates by solving an optimization problem that involves the

Huber loss function. The second part is dictionary learning

which updates the object templates over time.

4.1. Robust Particle Representation

In terms of particle representation, we solve the follow-

ing robust sparse coding problem based on the Huber loss:

min
V

f(V;U) =
∑

i

∑
j

�λ(yij − u′
i·vj·) + γ‖V‖1

s.t. V ≥ 0,
(2)

where yij is an element ofY, ui· and vj· are column vectors
for the ith row of U and jth row of V, respectively, and
�λ(·) denotes the Huber loss function [10] with parameter
λ, which is defined as

�λ(r) =

{
1
2r
2 |r| < λ

λ|r| − 1
2λ
2 otherwise.

(3)

The Huber loss function is favorable here since it grows

more slowly than the l2 norm as the residue increases, mak-
ing it less insensitive to outliers. Moreover, since it is

smooth around zero, it is more stable than the l1 norm when
there exists small but elementwise noise. It encourages each

candidate particle to be approximated by a sparse combina-

tion of the object templates and yet it can still accommodate

outliers and noise caused by occlusion and the like.

Optimization: To minimize f(V;U) w.r.t. V subject to

the non-negativity constraint V ≥ 0, we use the following
update rule:

vp+1
jk = vp

jk

[
(Wp �Y)′U

]
jk[(

Wp � (U(Vp)′)
)′
U
]
jk
+ γ

, (4)

where the superscript p denotes the pth iteration of the opti-
mization procedure forV,� denotes the Hadamard product

(or called elementwise product) of matrices, and each ele-

ment wij ofW, representing the weight for the jth feature
of particle i, is defined as

wp
ij =

{
1 |rp

ij | < λ
λ

|rpij |
otherwise,

(5)

where rpij = yij − u′i·v
p
j· is the residue.

Theorem 1. The objective function f(V;U) is non-
increasing under the update rule in Eqn. 4.
Moreover, the correctness of the update rule is guaran-

teed by the following theorem:

Theorem 2. The converged solution V∗ obtained by
applying the update rule in Eqn. 4 satisfies the
Karush–Kuhn–Tucker (KKT) conditions.
Due to space constraints, the proofs for Theorem 1 and

Theorem 2 are provided in the supplemental material.
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Connection to the trivial templates: Our approach based
on the Huber loss function is actually related to the popular

approach using trivial templates as in Eqn. 1. First, Eqn. 1

can be expressed equivalently in the following form:

min
V,E

1

2

∥∥Y −UV′ −E∥∥2
F
+ λ‖E‖1 + γ‖V‖1

s.t. V ≥ 0,
(6)

whereV′T is renamed E with elements denoted by eij . The
key to show their connections is to eliminate E by its op-

timal condition to give an equivalent optimization problem

which only involves V. As is well known from the sparse
learning literature [17], the optimal E∗ can be obtained by
applying an elementwise soft-thresholding operation to the

residue R = Y − UV′: e∗ij = sgn(rij)max(0, |rij | − λ),
where sgn(·) is the sign operator and rij is an element ofR.
Substituting the optimal E∗ into Eqn. 6 yields Eqn. 2.
Due to space constraints, complete derivation is left to

the supplemental material.

4.2. Robust Template Update

After we have processed some frames in the video se-

quence, it is necessary to update the object templates repre-

sented by U to reflect the changes in appearance or view-

point. Suppose frame c is the current frame. We define a
matrix Z = [zij ] ∈ R

m×c in which each column represents

the tracking result of one of the c frames processed so far.1

We formulate it as a robust dictionary learning problem sim-

ilar to Eqn. 2 except thatU is now also a variable:

min
U,V

ψ(U,V) =
∑

i

∑
j

�λ(zij − u′
i·vj·) + γ‖V‖1

s.t. U ≥ 0,V ≥ 0, u′
·ku·k ≤ 1, ∀k.

(7)

Caution should be taken regarding a slight abuse of notation

in exchange for simplicity. The matrixV here is a c×r ma-
trix of sparse codes for c frames while that in the previous
section is an n × r matrix of sparse codes for all n particles
in one frame.

The rationale behind this formulation is that the appear-

ance of the target does not change significantly and is thus

similar from frame to frame. As a result, Z can be approx-
imated well by a low-rank component and a sparse com-

ponent whose nonzero elements correspond to outliers due

to occlusion or other variations. What is more, the sparsity

constraint facilitates each template to specialize in a certain

aspect of the target. Unlike the incremental PCA approach

in [20], a template will not be affected by the update of an

irrelevant appearance and thus each template can capture

better a distinctive aspect of the target. In contrast to the ad
hoc way adopted by other sparse trackers, it can reject oc-
clusion automatically when updating the templates. More-

over, it is advantageous to store the previous states of the

1Z is similar toY above except that it only has c columns.

target for an extended period of time and allow them to de-

cay slowly, since it helps a lot in recovering from occlusion.

As shown in Fig. 1, the learned templates summarize well

different appearances of the target in the previous frames.

Optimization: To solve this optimization problem, as is
often the case for similar problems, we alternate between

updating U and V. To optimize w.r.t. V, the problem is

the same as that in Eqn. 2 and so we use the update rule in

Eqn. 4 as well. For U, although in principle we may take
the same approach by using multiplicative update, it is only

limited to the batch mode. Recomputing it every time when

new data arrive is very time consuming. We solve this prob-

lem by devising a projected gradient descent method, which

simply refers to the gradient descent method followed by

projecting the solution to the constraint set in order to sat-

isfy the constraints. For convenience, we first present the

batch algorithm and then extend it to an online version.

The projected gradient descent method updates up
i· to

up+1
i· as follows:

ũp
i· = u

p
i· − η∇h(up

i·), up+1
·k = Π(ũp

·k), (8)

where∇h(up
i·) denotes the gradient vector and η > 0 is the

step size. The gradient vector of h(ui·;V) for each ui· is
given by:

∇h(ui·) =
∂h(ui·;V)

∂ui·
= V′ΛiVui· −V′Λiyi·, (9)

where Λi is a diagonal matrix with wp
ij as its jth diago-

nal element and Π(x) denotes a projection operation that
projects each column of U onto the convex set C = {x :
x ≥ 0,x′x ≤ 1}. This can be done easily by first threshold-
ing the negative elements of x to zero and then normalizing
it in case the �2 norm of x is greater than one.
Inspired by recent works on online robust matrix factor-

ization and dictionary learning [23, 16], we note that the

update rule in Eqn. 8 can be expressed in terms of two ma-

trices as sufficient statistics, which we use to devise an on-

line algorithm. Up to frame c, the matrices are defined as:

Ac
i = (V

c)′Λc
i (V

c), Bc
i = (V

c)′Λc
iyi· (10)

After obtaining the tracking result for frame c+1, we update
Ai and Bi as:

Ac+1
i = ρAc

i + wi,c+1vc+1,·v
′
c+1,·

Bc+1
i = ρBc

i + wi,c+1vc+1,·yi·,
(11)

where ρ is a forgetting factor which gives exponentially less
weight to past information. Then an update rule similar to

the batch mode can be adopted:

ũc
i· = u

c
i· − η(Ac+1

i uc
i· −Bc+1

i ), uc+1
·k = Π(ũc

·k).
(12)

In practice, we update the dictionary once every q frames.
The speed of template update is affected by the parameters
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ρ and q. Setting them small will give higher influence to

more recent frames on the templates but it can lead to the

potential risk of drifting. How to set the parameters will be

discussed in section 6.1.

5. Implementation Details
In this section, we discuss some implementation details

which further boost the performance of our tracker.

5.1. Sampling Background Templates

In the way it was presented above, our tracker is a purely

generative model. However, when the object to track is

heavily occluded or when it changes rapidly, the tracker

may not be robust enough in avoiding the drifting problem.

To further enhance model robustness, we augment the ob-

ject templates with background templates randomly sam-

pled from the previous frames. The dictionary templatesU
now consist of both the original object templatesUo and the

background templatesUb. Then the weights of the particles

are determined by the difference in contribution of these two

parts, i.e., exp
(
β(‖UoVo‖1−‖UbVb‖1)

)
for some param-

eter β, which favors a result that can be represented well by
the object templates but not by the background templates.

5.2. Feature Selection

There are two reasons why feature selection is needed.

First, we have assumed that raw image patches in the shape

of either rectangles or parallelograms are used to define

features. However, when the tracked object has irregular

shape, the cluttered background may be included in the im-

age patch even when the tracking result is correct. Second,

the tracked object may contain some variant parts which can

incur adverse effects. Such effects should be reduced by se-

lecting the most invariant and informative features. So we

propose using �1-regularized logistic regression for feature
selection:

min
w

∑
i

log
{
1 + exp

[
− li(w

′yi + b)
]}
+ α‖w‖1, (13)

where yi is a sample from some previous frames and li is
its corresponding label which is 1 if yi is a positive sample

and −1 otherwise. We solve this problem using the public-
domain sparse learning package SLEP.2 Then we project the

original object templates and particles using a diagonal pro-

jection matrix P with each diagonal element pii = δ(wi),
where δ(·) is the Dirac delta function. While this gives a
more discriminative feature space for particle representa-

tion, it also reduces the computational cost. In practice, we

always collect negative samples from the previous frames.

As for positive samples, besides those collected, we also use

the identified object from the first frame. We then run the

2http://www.public.asu.edu/˜jye02/Software/

(a) davidin (b) bolt

Figure 2. Comparison of two feature selection methods based on

different loss functions. A white pixel indicates that the corre-

sponding feature is selected, otherwise black. For each of the two

sequences, the original image, the LASSO result and the sparse

regularized logistic regression result are shown from left to right.

feature selection method on these two sets separately and

combine the two feature sets by finding their intersection.

We start with α = 0.002 and then decrease it by a factor of
0.75 if less than half of the pixels are selected.

Although a similar feature selection step is also used

in [31], it uses the Frobenius norm for the loss (as in the

LASSO [22] formulation) instead of the logistic loss. We

believe the logistic loss is a more suitable choice here since

this is a classification problem. Fig. 2 shows the feature

selection results obtained by the two methods on the first

frames of the davidin and bolt sequences. The logistic loss
obviously gives more discriminative features and ignores

the background area. Moreover, since the sample size n
is typically smaller than the data dimensionality (32 × 32
or 48 × 16 in our case), LASSO can never select more than
n features due to its linearity. This restriction may lead to
impaired performance.

6. Experiments
In this section, we compare the object tracking perfor-

mance of the proposed tracker with several state-of-the-art

trackers on some challenging video sequences. The trackers

compared are MTT [30], CT [27], VTD [15], MIL [3], a lat-

est variant of L1T [4], TLD [13], and IVT [20]. We down-

loaded the implementations of these methods from the web-

sites of their authors. Except for VTD, all other methods

cannot utilize the color information in the video directly. So

we used the rgb2gray function in the MATLAB Image
Processing Toolbox to convert the color video to grayscale

before performing object tracking. The code implement-

ing our method is available on the project page: http:
//winsty.net/onndl.html.

6.1. Parameter Setting

We set λ = γ = 0.01 and η = 0.2. The parameter β
in Sec. 5.1 is set to 5. For template update in Sec. 4.2, ρ is
set to 0.99 and q to 3 or 5 depending on whether the change
in appearance of the tracked object is fast. The numbers

of object templates and background templates are set to 20

and 100, respectively. We set the template size to 32×32 or
48×16 according to the shape of the object. The particle fil-
ter uses 600 particles. For the affine parameters in the parti-

cle filter, we only select the best candidate among four pos-
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sible ones instead of performing an exhaustive grid search.

Although performing grid search may lead to better results,

we believe such tuning is not feasible in real environments.

Compared to other methods, our method is relatively insen-

sitive to the values of the affine parameters. More specif-

ically, our method can achieve satisfactory results in 7 out

of 10 video sequences when using the default parameters.

The current implementation of our tracker runs at 0.7–1.5

frames per second (fps). This speed is much faster than

the original L1T [18] and is comparable to the “realtime”

L1T [4] if the same template size and same number of par-

ticles are used.

6.2. Quantitative Comparison

We use two common performance metrics for quantita-

tive comparison: success rate and central-pixel error. For

each frame, a tracker is said to be successful if the overlap

percentage exceeds 50%. The overlap percentage is defined

as
area(BBT∩BBG)
area(BBT∪BBG)

, where BBT denotes the bounding box

produced by a tracker and BBG denotes the ground-truth

bounding box. As for the central-pixel error, it is the Eu-

clidean distance (in pixels) between the centers of BBT and

BBG. The results are summarized in Table 1 and Table 2,

respectively. For each video sequence (i.e., each row), we

show the best result in red and second best in blue. We

also report the central-pixel errors frame-by-frame for each

video sequence in Fig. 3. Since TLD can report that the

tracked object is missing in some frames, we exclude it from

the central-pixel error comparison. In terms of the success

rate, our method is always among the best two. With respect

to the central-pixel error, our method is among the best two

in 8 of the 10 sequences. For the other two sequences, the

gaps are quite small. We believe they can be negligible in

practical applications.

Ours MTT CT VTD MIL L1T TLD IVT

car4 100 100 24.7 35.2 24.7 30.8 0.2 100

car11 100 100 70.7 65.6 68.4 100 29.8 100

davidin 75.5 68.6 25.3 49.4 17.7 27.3 44.4 92.0

trellis 99.0 66.3 23.0 30.1 25.9 62.1 48.9 44.3

woman 91.5 19.8 16.0 17.1 12.2 21.1 5.8 21.5

bolt 74.7 19.5 46.2 28.3 72.7 7.5 6.8 85.7

shaking 98.9 12.3 92.3 99.2 26.0 0.5 15.6 1.1

skating1 92.5 9.5 3.8 93.3 6.8 5.3 47.0 6.5

football 82.9 70.7 69.6 80.4 76.2 30.7 74.9 56.3

basketball 97.2 14.8 24.6 98.6 32.3 7.4 2.3 17.1

average 91.2 48.2 39.6 59.7 36.3 35.8 29.3 52.5

Table 1. Comparison of 8 trackers on 10 video sequences in terms

of success rate (in percentage).

6.3. Qualitative Comparison

Complete video sequences with the bounding boxes re-

ported by different trackers are provided in the supplemen-

Ours MTT CT VTD MIL L1T IVT

car4 5.3 3.4 95.4 41.5 81.8 16.8 4.2

car11 2.3 1.3 6.0 23.9 19.3 1.3 3.2

davidin 6.2 7.8 15.3 27.1 13.1 17.5 3.9

trellis 2.4 33.7 80.4 81.3 71.7 37.6 44.7

woman 7.3 257.8 109.6 133.6 123.7 138.2 111.2

bolt 7.4 35.6 12.1 22.3 9.6 237.6 7.4

shaking 6.7 28.1 10.9 5.2 28.6 90.8 138.4

skating1 7.2 184.0 98.2 7.4 104.4 140.4 146.9

football 6.5 15.9 12.0 6.5 14.7 27.6 17.7

basketball 9.9 161.7 106.3 6.8 63.2 159.2 31.6

average 6.1 72.9 54.6 35.6 53.0 87.6 50.9

Table 2. Comparison of 7 trackers on 10 video sequences in terms

of central-pixel error (in pixels).

tal material. With limited space available, we try our best

to give a qualitative comparison by showing in Fig. 4 some

key frames of each sequence.

The car4 sequence was captured on an open road. The
illumination changes greatly due to the shades of trees and

entrance of a tunnel. All trackers except TLD do a fine job

before the car enters the tunnel at about frame 200. How-

ever, after that, only IVT, MTT and our tracker can track

the car accurately. L1T can also track it but with incorrect

scale. Other methods totally fail.

In the car11 sequence, the tracked object is also a car but
the road environment is very dark with background light.

All methods can merely track the car in the first 200 frames.

However, when the car makes a turn at about frame 260,

VTD, MIL, TLD and CT drift from the car although CT

can recover later to a certain degree. Other methods can

track the car accurately.

The davidin sequence was recorded in an indoor envi-
ronment. We need to track a moving face with illumination

and scale changes. Most trackers drift from frame 160 due

to the out-of-plane rotation. Different trackers can recover

from it by various degrees.

In the trellis sequence, we need to track the same face as
in davidin but in an outdoor environment with more severe
illumination and pose changes. All trackers except MTT,

L1T and our tracker fail at about frame 160 when the person

walks out of the trellis. Furthermore, L1T and MTT lose

the target at frames 310 and 350 due to the out-of-plane

rotation. TLD is unstable in getting and losing the target

several times. On the other hand, our tracker can track the

face accurately along the whole sequence.

In the woman sequence, we track a walking woman in
the street. The difficulty lies in that the woman is greatly

occluded by the parked cars. TLD fails at frame 63 because

the pose of the woman changes. All other trackers com-

pared fail when the woman walks close to the car at about

frame 130. Our tracker can follow the target accurately.

In the bolt sequence, the target is a running athlete with
rapid changes in appearance. L1T and MTT fail at some in-
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Figure 3. Frame-by-frame comparison of 7 trackers on 10 video sequences in terms of central-pixel error (in pixels).

termediate frames, but all other trackers can track the target

successfully till the end. Among all methods, ours and IVT

get the most accurate result.

In the shaking sequence, the tracked head is subject to
drastic pose and illumination changes. L1T, IVT and TLD

totally fail before frame 10, while MTT and MIL show

some drifting effects then. VTD gives the best result, which

is followed by our tracker and CT.

The skating1 sequence contains abrupt motion, occlu-
sion and significant illumination changes, which make most

trackers fail. Our tracker gives comparable result with VTD.

The football sequence aims to track a helmet in a football
match. The difficulty lies in that many helmets are similar

in background. Moreover, collision with another player of-

ten confuses most trackers. Only our tracker and VTD can

successfully locate the correct object.

In the basketball sequence, the appearance of the tracked
player changes rapidly in the intense match. Moreover, the

players in the same team have similar appearance. Only

VTD and our tracker can survive to the end.

We note that the football and basketball sequences
demonstrate the effectiveness of sampling background tem-

plates as described in Sec. 5.1. It helps a lot in distinguish-

ing the true target from distractors in the background.

7. Conclusion and Future Work
In this paper, we have proposed a novel visual tracking

method based on robust non-negative dictionary learning.

Instead of taking an ad hoc approach to update object tem-
plates, we formulate this procedure as a robust non-negative

dictionary learning problem and propose a novel online pro-

jected gradient descent method to solve it. The most ap-

pealing advantage is that it can detect and reject the occlu-

sion and cluttered background automatically. Besides, we

have proposed to get rid of the trivial templates by using

the Huber loss function in particle representation. To solve

the resulted optimization problem, we devise a simple and

efficient multiplicative update rule. It can be further shown

that our new formulation is equivalent to the approach of us-

ing trivial templates by other sparse trackers. We have con-

ducted extensive comparative studies on some challenging

benchmark video sequences and shown that our proposed

tracker generally outperforms existing methods.
One possible extension of our current method is to ex-

ploit the underlying structures and relationships between
particles, as in MTT [30]. We expect it to lead to further
performance gain.
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