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Abstract

This paper proposes motion atom and phrase as a mid-
level temporal “part” for representing and classifying com-
plex action. Motion atom is defined as an atomic part of
action, and captures the motion information of action video
in a short temporal scale. Motion phrase is a temporal
composite of multiple motion atoms with an AND/OR struc-
ture, which further enhances the discriminative ability of
motion atoms by incorporating temporal constraints in a
longer scale. Specifically, given a set of weakly labeled
action videos, we firstly design a discriminative clustering
method to automatically discover a set of representative mo-
tion atoms. Then, based on these motion atoms, we mine ef-
fective motion phrases with high discriminative and repre-
sentative power. We introduce a bottom-up phrase construc-
tion algorithm and a greedy selection method for this min-
ing task. We examine the classification performance of the
motion atom and phrase based representation on two com-
plex action datasets: Olympic Sports and UCF50. Experi-
mental results show that our method achieves superior per-
formance over recent published methods on both datasets.

1. Introduction
Human action recognition is an important problem in

computer vision and has gained extensive research inter-

ests recently [1] due to its wide applications in surveillance,

human-computer interface, sports video analysis, and con-

tent based video retrieval. State-of-the-art methods [24, 17]

have performed well on simple actions recorded in con-

strained environment such as walking, running (e.g. KTH

datast [21], Weizmann dataset [9]) . However, classifica-

tion of complex actions (e.g. Olympic Sports dataset [15],

UCF50 dataset [18]) in unconstrained environment is still
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Figure 1. Complex actions usually can be decomposed into sev-

eral motion atoms. For example of high jump, it contains atoms:

running, jumping, and landing. For each atom, it describes a short

temporal scale motion information, which can be shared by differ-

ent complex action classes. For each complex action, there exist

temporal structures of multiple atoms in a long temporal scale.

challenging. Firstly, due to background clutter, viewpoint

changes, and motion speed variation, there exist always

large intra-class appearance and motion variations within

the same class of action. Secondly, different from simple

actions, a complex action always exhibits richer temporal

structures and is composed of a sequence of atomic actions.

Recently, researches show that the temporal structures of

complex action yield effective cues for action classification

[8, 15, 23, 26]. As shown in Figure 1, from a long temporal

scale, a complex action can be decomposed into a sequence

of atomic motions. For instance, the sport action of high-

jump can be decomposed into running, jumping, and land-

ing. There exist different temporal configurations among

these atomic motions for different action classes. From a

short temporal scale, each atomic motion corresponds to a

simple pattern and these atomic motions may be shared by

different complex action classes. For example, both actions

of long-jump and triple-jump include running. These obser-

vations offer us insights to complex action recognition:

• Unsupervised discovery of motion atoms. Motion

atoms describe simple motion patterns, and can be

seen as mid-level units to bridge the gap between low-

level features and high-level complex actions. How-

ever, it is not straightforward to define and obtain mo-
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tion atoms from current public action datasets. In most

action datasets, we only have class labels and do not

have detailed annotations for the type and duration of

each motion atom. Furthermore, it is heavily time-

consuming to manually label atomic actions in each

video. We need to design an unsupervised method

to discover a set of motion atoms automatically from

video dataset.

• Mining temporal composite of motion atoms. A single

motion atom describes motion information in a short

temporal scale. The discriminative power of motion

atom is limited by its temporal duration. We note

that the temporal structure (i.e. sequential composi-

tion of motion atoms), captures motion information in

a longer scale and provides important cue to discrimi-

nate different action classes. However, the number of

candidate combinations is exponential with the num-

ber of atomic actions and much of the combinations are

not discriminative for classification. We need to mine

an effective subset of temporal composites of motion

atoms.

Based on the above insights, this paper proposes mo-
tion atom and phrase, a mid-level representation of action

video, which jointly encodes the motion, appearance, and

temporal structure of multiple atomic actions. Firstly, we

discover a set of motion atoms from training samples in

an unsupervised manner. These training action videos are

only equipped with class labels. We transform this task

into a discriminative clustering problem. Specifically, we

develop an iterative algorithm, which alternates between

clustering segments and training classifier for each cluster.

Each cluster corresponds to a motion atom. These atoms

act as building units for video representation. Then, we

construct motion phrase as a temporal composite of mul-

tiple atoms. It not only captures short-scale motion infor-

mation of each atom, but also models the temporal structure

of multiple atoms in a longer temporal scale. We resort to

an AND/OR structure to define motion phrase, which al-

lows us to deal with temporal displacement effectively. We

propose a bottom-up mining algorithm and greedy selection

method to obtain a set of motion phrases with high discrim-

inative and representative power. Finally, we represent each

video by the activation vector of motion atoms and phrases

by max pooling the response score of each atom and phrase.

We conduct experiments on two complex action datasets:

Olympic Sports dataset [15] and UCF50 dataset [18]. The

experimental results show that the proposed methods out-

perform recent published methods.

2. Related Work
Action recognition has been studied extensively in recent

years and readers can refer to [1] for good surveys. Here, we

only cover the works related to complex action recognition.

Complex actions refer to those that contain several

atomic actions such as Olymipc Sports actions [15],

and Cooking Composite actions [19]. Many researches

use state-observation sequential models, such as Hidden

Markov Models (HMMs) [16], Hidden Conditional Ran-

dom Fields (HCRFs) [27], and Dynamic Bayesian Net-

works (DBNs) [13], to model the temporal structure of ac-

tion. Niebles et al. [15], Tang et al. [23], and Wang

et al. [26] propose to use latent variables to model the

temporal decomposition of complex actions and resort to

Latent SVM [6] to learn the model parameters in an iter-

ative approach. Gaidon et al. [8] annotate each atomic

action for each video data and propose Actom Sequence

Model (ASM) for action detection. Different from these

approaches, we focus on learning a set of feature units, i.e.

motion atoms and phrase, to represent video of complex

action, and our representation is flexible with the classifier

used for recognition. Besides, previous studies usually train

a single model for each action class, but our method can

discover a set of motion atoms and phrases. Thus, they are

more effective to handle large intra-class variations than a

single model.

Attribute and part based representations originated from

object recognition [4, 22] and have been introduced to ac-

tion recognition [14, 19, 25]. Liu et al. [14] define a set of

action attributes and map the video data into attribute space.

To deal with intra-class variation, they propose to use la-

tent variables to indicate the presence of attributes given a

video. Rohrbach et al. [19] propose to use simple cooking

actions as attributes to recognize composite cooking activ-

ities. They use a script data approach to obtain the tempo-

ral information for cooking composite actions. Wang et al.
[25] discover a set of mid-level cuboids called motionlet to

represent video. Their cuboids are limited in temporal du-

ration and not suitable for complex action recognition Our

motion atom has the similar role as these motion attributes

and parts in essence. However, our motion atoms are ob-

tained through an unsupervised manner from training data,

and we model temporal structure of multiple motion atoms

to enhance their descriptive power.

AND/OR structure have been successfully used in ob-

ject and action classification tasks [29, 3]. Amer et al. [3]

propose an AND/OR model to unify multi-scale action de-

tection and recognition in a principle framework. However

our goal is different from theirs and we aim to mine a set

of mid-level units to represent video, partially inspired by

grouplet [29].

3. Unsupervised Discovery of Motion Atoms
To construct effective representations for complex ac-

tions, we first discover a set of motion atoms that capture the

motion patterns in a short temporal scale. These atoms act
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Figure 2. Some examples of clustering result, left: motion atom corresponds to running in complex action high-jump; middle: motion atom

corresponds to running and opening arms for complex action gym-vault; right: motion atom corresponds to rolling in circles for complex

action hammer throw.

as basic units for constructing more discriminative motion

phrase in a longer scale. Given a set of training videos, our

objective is to automatically discover a set of common mo-

tion patterns as motion atoms. The challenge comes from

the facts that the number of possible segments extracted

from videos is huge and the variation is large.

Motivated by a recent work on finding discriminative

patches in images [22], we propose a discriminative clus-

tering method for obtaining motion atoms. The whole pro-

cess is shown in Algorithm 1. Note that our goal is different

from [22]. They try to identify discriminative patches that

are against the patches of the rest visual world. Thus, they

need to use a set of natural world images to extract discrim-

inative patches. Our main goal is to determine a large set of

simple motion patterns, which are shared by many complex

actions and can be used as basic units to represent complex

actions. We need to make sure that the obtained atom set

can cover different motion patterns occurring in various ac-

tions.

Initialization: The input to Algorithm 1 is a set of train-

ing videos V = {Vi}Ni=1. Note that we ignore the class la-

bel of each video. Firstly, we densely extract segments from

each video. Due to the fact that each training video is a short

clip that is approximately aligned in temporal dimension,

we divide each video clip into k segments of equal duration

with 50% overlaps. Then, we extract dense trajectory fea-

tures [24] for each segment with default parameter settings.

We resort to Bag of Visual Words (BoVW) method [28] to

represent each video segments. Specifically, we choose four

types of descriptors: HOG, HOF, MBHX, and MBHY [24].

For each type of descriptor, we construct a codebook of

size K, and a histogram representation is obtained for each

segment. In order to group segments, we need to define a

similarity measure between segments. Given two segments

Algorithm 1: Discovery of motion atoms.

Data: Discovery samples:V = {Vi}Ni=1.

Result: Motion atoms: A = {Ai}Mi=1.

- S ← DenseSampling(V).

- T ← CalculateSimilarity(S).

- A ← APCluster(T).

while t ≤MAX do
foreach cluster Ai with size(Ai) > τ do

TrainSVM(Ai,V).

FindTop(Ai,V).
end
CoverageCheck(A,V).

t← t+ 1.
end
- Return motion atoms: A = {Ai}Mi=1.

Si = {hm
i }4m=1 and Sj = {hm

j }4m=1, we define their simi-

larity as follows:

Sim(Si, Sj) =

4∑

m=1

exp(−D(hm
i ,hm

j )), (1)

where D(hm
i ,hm

j ) is the normalized χ2 distance between

two histograms:

D(hm
i ,hm

j ) =
1

2Mm

D∑

k=1

(hm
i,k − hm

j,k)
2

hm
i,k + hm

j,k

, (2)

where hm
i denotes the histogram feature vector for the m-th

feature channel of segment Si, Mm is the mean distance for

feature channel m over training samples.

With this similarity measure, we use Affinity Propaga-

tion (AP) to cluster segments [7]. AP is an exemplar based

cluster algorithm whose input is a similarity matrix between
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samples. The only parameter in AP is the preference value.

Due to large variance of action data, the preference param-

eter is set to be larger than the median similarity to en-

sure that the training segment is tightly clustered. We set

a threshold to eliminate the small clusters with the number

of segments less than τ .

Iterative Approach: Given clustering results, we firstly

train a SVM for each cluster. The segments within the clus-

ter are chosen as positive examples. We mine hard negative
examples from other clusters. An segment is identified as

hard negative example if its similarity with the current clus-

ter is less than a threshold. Then, we run the SVM classi-

fier on the training samples and detect its top m segments

with the highest SVM scores. Finally, we check coverage

percentage of current detection results and make sure that

each training sample has at least 1
2k segments detected in

the current result. Otherwise, we will randomly extract 1
2k

segments from this training sample and cluster the new seg-

ments. The newly formed cluster will be added into the

current results. We call this step as Coverage Check which

ensures that the current results are sufficient to represent the

whole training dataset. The whole process is running for a

fixed number of iterations and some examples are shown in

Figure 2.

Implementation Details: We divide each video into 5
segments with equal duration and we make sure each video

has at least 3 segments contained in the selected clustering

results. The codebook size for each descriptor is set to 1000.

During the iterative process, the cluster is kept if it has at

least 4 segments. We train SVM with χ2-RBF kernels [30]

for each cluster (C = 0.01), and detect top 10 segments

from training samples. The iteration number is set as 5.

4. Mining Motion Phrases
Motion atoms are obtained by clustering short video seg-

ments. One atom usually corresponds to a simple motion

pattern within a short temporal scale, and may occur in

different classes of complex actions. These facts limit the

discriminative ability of motion atoms in classifying com-

plex actions. To circumvent this problem, we make use of

these atoms as basic units to construct motion phrase with a

longer scale.

For action classification task, motion phrases are ex-

pected to have the following properties:

• Descriptive property: Each phrase should be a tempo-

ral composite of highly related motion atoms. It can

capture both the motion and temporal structure infor-

mation of these atoms. Meanwhile, to deal with mo-

tion speed variations, motion phrase needs to allow

temporal displacement among its composite atoms.

• Discriminative property: To be effective in classifica-

tion, motion phrases should exhibit different distribu-

Figure 3. Illustration for motion phrase: motion phrase is an

AND/OR structure over a set of atom units, which are indicated

by ellipsoids.

tions among different classes. It is desirable that a mo-

tion phrase is highly related to a certain class of action.

Thus it can discriminate one complex action class from

others.

• Representative property: Due to large variations

among complex action videos, each motion phrase can

only cover part of the action videos. Thus, we need

to take account of the correlations between different

phrases, and we wish to determine a set of motion

phrases which convey enough motion patterns to han-

dle the variations of complex actions.

Motion Phrase Definition: Based on the analysis

above, we define motion phrase as an AND/OR structure

on a set of motion atom units as shown in Figure 3. Similar

AND/OR structures have been successfully used for image

classification [29].

To begin with, we introduce some notations as follows.

Each atom unit, denoted as Π = (A, t, σ), refer to a motion

atom A detected in the neighborhood of temporal anchor

point t. The temporal extent of A in the neighborhood of

t is expressed as a Gaussian distribution N (t′|t, σ). The

response value v of an atom unit Π with respect to a given

video V is defined as follows:

v(V,Π) = max
t′∈Ω(t)

Score(Φ(V, t′), A) · N (t′|t, σ), (3)

where Φ(V, t′) is the BoVW representation extracted from

video V at location t′, Score(Φ(V, t′), A) denotes the SVM

output score of motion atom A, and Ω(t) is the neighbor-

hood extent over t.
Based on these atom units, we construct motion phrases

by AND/OR structure. We first apply OR operation over

several atom units that have the same atom label and are lo-

cated nearby (e.g. 1 and 2, 3 and 4 in Figure 3). The atom

unit that has the strongest response is selected (e.g. 1 and

4 are selected in Figure 3). Then, we conduct AND opera-
tion over the selected atom units and choose the smallest re-

sponse as motion phrase response. Thus the response value

r of an motion phrase P with respect to a given video V :

r(V, P ) = min
ORi∈P

max
Πj∈ORi

v(V,Πj), (4)
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where ORi denote the OR operations in motion phrase P .

The size of motion phrase is defined as the number of OR

operations it includes (e.g. the size of atom phrase in Figure

3 is 2).

In essence, motion phrase representation is the temporal

composite of multiple atomic motion units. The OR op-

eration allows us to search for the best location for current

motion atom, and makes it flexible to deal with the temporal

displacement caused by motion speed variations. The AND

operation incorporates temporal constraints among several

motion atoms. Above all, motion phrase not only delivers

motion information of each atom, but also encodes tempo-

ral structure among them. This structure representation can

enhance the descriptive power and make it more discrimi-

native for complex action classification.

Evaluation of Discriminative Ability: A motion phrase

P is discriminative for c-th class of complex action if it is

highly related with this class, but appears sparely in other

action classes. We define its discriminative ability as fol-

lows:

Dis(P, c) = Rep(P, c)− max
ci∈C−c

Rep(P, ci), (5)

where C represents all the classes and Rep(P, c) denotes

the representative ability of P with respect to class c, whose

high value indicates strong correlation with the class c:

Rep(P, c) =

∑
i∈S(P,c) r(Vi, P )

|S(P, c)| , (6)

where r(Vi, P ) denotes the response value of motion phrase

P in video Vi (Equation (4)), S(P, c) is a set of videos de-

fined as:

S(P, c) = {i|Class(Vi) = c ∧ Vi ∈ top(P )}, (7)

where Class(Vi) is the class label of video Vi and top(P )
represents a set of videos that have the highest response val-

ues for motion phrase P . Due to the large variance among

action videos, a single motion phrase could obtain strong

value only on part of the videos of certain class. Thus, we

evaluate its representative ability using the subset of videos

of this class.

Mining Motion Phrase: Given a training video set

V = {Vi}Ni=1 with class label Y = {yi}Ni=1 and a set of

motion atoms A = {Ai}Mi=1, our goal is to find a set of

motion phrases P = {Pi}Ki=1for complex action classes.

Given the class c, for each individual motion phrase, we

want each motion phrase to have high discriminative and

representative ability with current class c. Meanwhile, for

a set of motion phrases P = {Pi}Ki=1, we need consider

the correlation among them and define its set representative

power with respect to class c as follows:

RepSet(P, c) = 1

Tc
| ∪Pi∈P S(Pi, c)|, (8)

Algorithm 2: Mining motion phrases

Data: videos: V = {Vi, yi}Ni=1, motion atoms:

A = {Ai}Mi=1.

Result: Motion phrases: P = {Pi}Ki=1.

- Compute response value for each atom unit on all videos

v(V,Π) defined by Equation (3).

foreach class c do
1. Select a subset of atom units (see Algorithm 3).

2. Merge continuous atom units into 1-motion phrase

Pc
1 .

while maxsize < MAX do
a. Generate candidate s-motion phrase based on

(s− 1)-motion phrase.

b. Select a subset of motion phrases Pc
s (see

Algorithm 3).

end
3. Remove the motion phrase whose Dis(P, c) < τ .

end
- Return motion phrases: P = ∪c,sPc

s .

where Tc is the total number of training samples for class c,
S(Pi, c) is the video set defined in Equation (7). Intuitively,

considering the correlations of different motion phrases, we

can eliminate the redundance and ensure the diversity of

mining results. Thus, the set of motion phrases is able to

cover the complexity of action videos.

The main challenge comes from the fact that the possible

combination atom units that form a motion phrase is huge.

Assuming a video with k segments and the size of motion

atoms is M , there are M × k possible atom units. The total

number of possible motion phrase isO(2M×k). However, it

is impossible to evaluate all possible configurations for mo-

tion phrase. We develop an efficient phrase mining method,

inspired by Apriori algorithm [2]. If a phrase of size s has a

high representative ability for action class c (Equation (6)),

then any (s − 1)-atom phrase by eliminating one motion

atom should also have a high representative ability as well.

This observation allows us to obtain a representative phrase

of size s from a set of phrases of size s−1. The mining algo-

rithm is shown in Algorithm 2. Finally, we eliminate some

motion phrase of low discriminative ability with a threshold

τ .

During each iteration of Algorithm 2, due to the huge

number of possible motion phrases, we need to identify a

subset of motion phrases. Ideally, both the individual and

set representative ability should be as high as possible. We

design a method to select effective phrases in a greedy way.

Details are shown in Algorithm 3. In each iteration, we

determine a motion phrase with high individual representa-

tive power, that meanwhile increases the set representative

power the most.

Implementation Details: In current implementation,

we fix the parameter σi for each atom unit as 0.5. During
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Algorithm 3: Selecting a subset of motion phrases.

Data: motion phrases candidates P = {Pi}Li=1, class: c,

number: Kc.

Result: selected motion phrases: P∗ = {Pi}Kc
i=1.

- Compute the representative ability of each motion phrase

Rep(P, c) defined in Equation (6).

- Initialization: n← 0, P∗ ← ∅.
while n < Kc do

1. For each remaining motion phrase P , compute:

�RepSet(P, c) = RepSet(P ∪ P, c)−RepSet(P, c),
where RepSet(P, c) is defined in Equation (8).

2. Choose the motion phrase:

P ∗ ← argmaxP [Rep(P, c) +�RepSet(P, c)].
3. Update: n← n+ 1, P∗ ← P∗ ∪ {P ∗}

end
- Return motion phrases: P∗.

the mining process, for each motion phrase, we consider top

40 videos with highest response value (i.e. |top(P )| = 40).

For each class, we mine nearly the same number of motion

phrases.

5. Recognition with Motion Atoms and Phrases
Motion atoms and phrases can be regarded as mid-level

units for representing complex action. In this section, we

make use of them to construct a mid-level representation of

input action video, and develop a method to classify com-

plex actions with this new representation.

Specifically, for each motion atom A, we define a spe-

cial motion phrase, in which there is only one atom unit

(A, 0,+∞). We call this special motion phrase as 0-motion
phrase. Then, with a set motion phraseP = {Pi}Ki=1 whose

sizes range from 0 to MAX , we represent each video V
by an activation vector f = [r1, · · · , rK ], where ri is the

response value of motion phrase Pi with respect to video

V . We use this activation vector as a representation for

video data. For classifier, we resort to linear SVM imple-

mented by LIBSVM [5], and adopt one-vs-all scheme for

multi-class classification.

6. Experiments
We evaluate the effectiveness of motion atom and phrase

on two complex action datasets: Olympic Sports dataset

[15] and UCF50 dataset [18]. The Olympic sports dataset

has 16 sports classes, and there are 649 videos for train-

ing and 134 for testing. We conduct experiments accord-

ing to the settings released on its website1. The final per-

formance is evaluated by computing the average precision

(AP) for each action class and the mean AP over all the

classes (mAP). UCF50 [18] is a large dataset for complex

action recognition. It includes 50 action classes with 6, 618

1http://vision.stanford.edu/Datasets/OlympicSports/
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Figure 4. Left: performance of motion phrase for different sizes on

the Olympic Sports dataset. Right: performance trend of varying

maximum size for motion phrase on the Olympic Sports dataset.

videos, and each action class is divided into 25 groups with

at least 100 videos for each class2. We adopt the Leave-

One-Group-Out-Cross-Validation scheme and report the av-

erage accuracy for multi-class classification.

Size of Motion Phrases: We examine the performance

of motion phrases with different sizes on the Olympic

Sports dataset and the results are shown in Figure 4. Firstly,

we observe that 1-motion phrase achieves better results than

other phrases. 1-motion phrases are mined for high dis-

criminative and representative power, and thus their per-

formance is better than 0-motion phrases (motion atoms),

whose discriminative power is relatively low. Secondly,

we notice that the mAPs of 2-motion phrases and 3-motion

phrases are lower than the mAPs of 1-motion phrases and

0-motion phrases. This may be due to the large variations

of video data, and the number of mined 2-motion phrases

and 3-motion phrases is much smaller than the other two.

Although motion phrases of large size are more discrimina-

tive than others, they only cover a small part of the video

data. Thus their representative power may be relatively low.

Besides, the information conveyed by large motion phrases

has been partly contained in the motion phrases of smaller

size.

We combine the representation of motion phrases with

different sizes and the performance is shown in the right

of Figure 4. We see that the performance increases appar-

ently in using motion phrases of size from 0 to 2. But there

is only slight improvement when including motion phrases

of size 3. These results indicate that the maximum size 2

may contain enough information for complex action recog-

nition. Therefore, in the remaining discussions, we fix the

maximum size of motion phrases as 2.

Effectiveness of Representation: In this part, we ex-

amine the effectiveness of motion atom and phrase as mid-

level representation. We compare the mid-level representa-

tion with low-level features. Specifically, we use the same

descriptor (i.e. HOG, HOF, MBHX, MBHY) and codebook

size (i.e. 1000) to construct a bag of visual words repre-

2http://crcv.ucf.edu/data/UCF50.php
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Figure 5. Some examples of 2-motion phrase for complex actions: diving platform, basketball-layup, triple-jump and gym-vault. Motion

phrase can automatically locate temporal composites of multiple motion atoms (indicated by red boxes) in complex actions.

Dataset Olympic Sports UCF50

Low-level Features (linear) 58.1 % 66.6 %

Low-level Features (kernel) 70.1 % 77.4 %

Motion Atoms 76.1% 82.5%

Motion Atoms and Phrases 79.5% 84.0%

Combine All 84.9% 85.7%
Table 1. Performance comparison of motion atom and phrase with

low-level features on the Olympic Sports dataset and the UCF50

dataset. Combine all indicates the combination of low-level fea-

tures with motion atoms and phrases, with which we obtain state-

of-the-art performances on two datasets.

Methods Performance (mAP)

Laptev et al. [12] 58.2%

Niebles et al. [15] (from [23]) 62.5%

Tang et al. [23] 66.8%

Liu et al. [14] 74.4%

Wang et al. [24] 77.2%

Our best result 84.9%
Table 2. Comparison of our methods with others on the Olympic

Sports Dataset.

Methods Performance (accuracy)

Laptev et al. [12] (from [20]) 47.9%

Sadanand et al. [20] 57.9%

Kliper-Gross et al. [11] 72.6%

Reddy et al. [18] 76.9%

Wang et al. [25] 78.4%

Wang et al. [24] 85.6%

Our best result 85.7%
Table 3. Comparison of our methods with others on the UCF50

Dataset.

sentation for low-level features. We choose two kinds of

classifier for these low level features: linear SVM and χ2-

RBF kernel SVM. Note that for motion atoms and phrases,

we only use linear SVM. The results are summarized in Ta-

ble 1. We can find that the motion atom based mid-level

representations achieve better performance than low-level

features on both datasets. We also notice that the perfor-

mance of low-level features largely depends on the classi-

fiers used, and χ2-RBF kernel SVM performs better than

linear SVM. However, motion atoms can achieve good re-

sults just with linear SVM. The combination of motion

atoms and phrases can further improve the recognition re-

sults. These results partly verify the importance of incorpo-

rating temporal structure information among motion atoms.

Finally, we combine motion atoms and phrases with low-

level features, and obtain the state-of-the-art performances

on both datasets. The results show that our mid-level repre-

sentations are also complementary to low-level features.

Comparison with Other Methods: We compare mo-

tion atoms and phrases with other methods on both datasets,

and the results are shown in Table 2 and Table 3. On

the Olympic Sports dataset, [15, 23] use latent variable to

model decomposition of atomic actions. They usually train

a single model for each complex action. Our mid-level rep-

resentation aims to find multiple motion atoms and phrases,

and each representation covers a subset of videos. These

results indicate the effectiveness of multiple representations

(mixture representations) to handle large variance in video

data, which has been verified in object detection [6, 10]. In

[14], the authors use attribute representation, where the at-

tributes are specified in advance, and we find motion atoms

and phrases learned from training data are more flexible and

effective.

For the UCF50 dataset, [12, 11] focus on designing new

low-level features: STIP+HOG/HOF, Motion Interchange
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Pattern. From the results of Table 3, we see that our motion

atoms and phrases outperform these low-level features on

UCF50 dataset. This can be ascribed to the fact that these

low-level features only capture motion and appearance in-

formation in a local region which limits their descriptive

power. Action Bank [20] is a global template for complex

action, which cannot deal with large variance of video data

well. Unlike action bank, our motion atom and phrase cor-

respond to middle-level “parts” of the action, similar to the

mid-level motionlet [25]. They make good tradeoff between

low-level features and global template, and is more effec-

tive for representing complex action videos. However, mo-

tionlets are limited in temporal domain and lack descriptive

power for longer temporal structure.

Compared with the latest paper [24], our motion atom

and phrase use less descriptor and smaller codebook size.

Besides, we only use linear SVM and do not incorporate

structure information with spatial-temporal pyramids. Our

results outperform on the Olympic Sports dataset and are

comparable on the UCF50 dataset. This indicates that mo-

tion atom and phrase is effective for action classification,

especially for complex action classes with longer temporal

scale.

Visualization: We show some examples of motion

atoms and phrases in Figure 2 and Figure 5 respectively.

From the results, one can see that the proposed discrimi-

native clustering method can group segments with similar

motion and appearance. Each cluster usually corresponds

to one atomic action such as running, rolling, and landing.

Motion phrase consists of a sequence of motion atoms. As

shown in the examples of Figure 5, motion phrase can dis-

cover waiting and diving for diving-platform, running and

layup for basketball-layup, running and jumping for triple

jumping, and running and landing for vault.

7. Conclusion
We propose motion atom and phrase for representing and

recognizing complex actions. Motion atom describes sim-

ple motion pattern in a short temporal scale, and motion

phrase encodes temporal structure of multiple atoms in a

longer scale. Both of them can be seen as mid-level “parts”

of complex actions. We evaluate the performance of the

proposed method on two complex action datasets: Olympic

Sports dataset and UCF50 dataset. From the experimental

results, we see that motion atoms and phrases are effective

representations and outperform several recently published

low-level features and complex models.
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