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Abstract

Temporal misalignment and duration variation in video
actions largely influence the performance of action recog-
nition, but it is very difficult to specify effective temporal
alignment on action sequences. To address this challenge,
this paper proposes a novel discriminative learning-based
temporal alignment method, called maximum margin tem-
poral warping (MMTW), to align two action sequences and
measure their matching score. Based on the latent struc-
ture SVM formulation, the proposed MMTW method is able
to learn a phantom action template to represent an action
class for maximum discrimination against other classes.
The recognition of this action class is based on the associ-
ated learned alignment of the input action. Extensive exper-
iments on five benchmark datasets have demonstrated that
this MMTW model is able to significantly promote the ac-
curacy and robustness of action recognition under temporal
misalignment and variations.

1. Introduction
A fundamental yet challenging problem in human action

recognition is to deal with its temporal variations. In addi-

tion to the compositional variance (i.e., the way of perform-

ing an action), the action can be performed at difference

paces and thus spanning different time durations. More-

over, in practice, action video data may not be accurately

localized along the time axis, and the starting and ending

of an action are not provided. If used in training, such ac-

tion videos can only be regarded as weakly labeled. If used

as inputs for recognition, they bring extra work of action

localization, explicitly or implicitly. Effective handling of

such temporal variations is important to the performance of

action recognition.

One approach to handle the the temporal structure is

based on statistical generative models, such as HMM [12],

dynamic Bayes nets [29], stochastic grammar [17] and

CRFs [15]. These methods attempt to model the genera-

tive process of actions so as to perform action inference and

Positive Sample Negative Sample

Find the Best Alignment Find the Best Alignment

Figure 1. The video action are temporally aligned to a phantom

action template. We learn a separating hyperplane such that the

positive and negative examples are separated with the largest mar-

gin when the best alignment is applied.

learning. As they exploit the structural or compositional

information in modeling, they may produce effective repre-

sentations for action parsing and interpretation. However,

learning the right structure can be very difficult.
Another approach is to perform explicit temporal align-

ment and localization. This facilitates discriminative mod-

els for action classification, whose training may be sim-

pler than generative models. Dynamic time warping (DTW)

has been used to align videos for recognition [32], time se-

ries classification [13] and action retrieval [14]. However,

DTW’s performance heavily depends on a good distance to

measure the frames’ similarity, especially when the dimen-

sion of the frame-level features are high. Generally such

distances are heuristically defined and specified in advance.

As a result, action alignment and classification are treated

independently.

In this paper, we propose to learn action alignment

so that we can unify action alignment and classification.
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Specifically, the proposed method, called maximum margin

temporal warping (MMTW), learns temporal action align-

ment for max margin classification. For each action class,

an MMTW model is learned to achieve maximum mar-

gin separation from the rest action classes. This learned

MMTW model can be treated as a phantom action template
for representing this action class. The learning is formulated

as a latent structural SVM, which can be efficiently solved

with the cutting plane algorithm. Comparing with DTW,

the proposed learning-based alignment leads to much bet-

ter recognition performance. In addition, the inference of

the proposed MMTW can be efficiently solved via dynamic

programming, which makes the algorithm capable of pro-

cessing very long videos. An illustration of the proposed

method is shown in Fig. 1.

The contributions of this work include the following.

First, the proposed maximum margin temporal warping

(MMTW) is a novel approach to both action alignment and

action recognition. It learns to align action videos and

to model actions. Second, we find an innovative method

to achieve computationally efficient action alignment and

MMTW inference based on dynamic programming, which

also enables effective learning. Third, we give a new for-

mulation of latent structural SVM learning.

We evaluate the proposed approach on five bench-

mark datasets: MSR Sport Action3D dataset [11], MSR-

DailyActivity3D dataset[26], Action Pair 3D dataset [16],

Olympic Sports dataset [15], and UCF-sports dataset [18].

Because the action models are discriminatively learned, and

the temporal deformation is explicitly modeled, the pro-

posed approach achieves excellent results on action recog-

nition tasks, as demonstrated by our extensive experiments

on these five benchmark datasets.

2. Related Work
Actions usually exhibit complex temporal structures.

Representing the temporal structure is crucial for success-

ful action recognition. Spatio-temporal pyramids [19] di-

vides the video into a pyramid of cells in the spatial and

temporal dimensions, and represents the video as bag-of-

words or max-pooling of the local features in each cell.

This representation achieves good balance between the in-

variance to the spatio-temporal distortion and the discrim-

ination to other classes. However, it only roughly charac-

terizes the temporal structure of the actions. Fourier tem-

poral pyramid [26] exploits the magnitudes of the low-

frequency Fourier coefficients of the features as the repre-

sentation. This representation is robust to temporal mis-

alignment because it discards the phase information, but

may fall short when the phase information may be impor-

tant for action classification. The temporal structure of an

action can also be modeled based on hidden Markov mod-

els [10, 11]. Learning a hidden Markov model for actions

is challenging because the frame-level labels is not avail-

able in the training data. Other temporal structure mod-

els include temporal AND-OR graph [17], actom sequence

model [5] and spatio-temporal graphs [2]. The proposed

method is a novel learning approach to learning the tempo-

ral structure for action alignment and classification. This

new method has exhibited good robustness to misalignment

and good discriminativeness for classification.

Structural max-margin learning has recently been intro-

duced to computer vision tasks to discriminatively learn

the relationship between the structural variables. Recently,

structural max-margin learning has been applied to action

detection [21, 23]. These models represent the bounding

box as a structured output, and employ structural output

SVM for model learning. [6] employs the structural output

SVM to learn a well shaped predictive function for early

action detection. [13] models the temporal structure of the

action with maximum margin temporal clustering. [22] and

[15] use a latent graphical model to represent the temporal

structure. These models typically requires careful initializa-

tion for the latent graphical model. The MMTW approach

proposed in this paper is much simpler than the above men-

tioned graphical models, and it enables easier learning and

results in better recognition accuracy.

3. Action Classification with Maximum Mar-
gin Temporal Warping

In this section, we propose maximum margin temporal

warping (MMTW) approach to integrate action temporal

alignment and action classification. The proposed MMTW

approach is robust to the temporal deformation and mis-

alignment in action recognition tasks, and has the discrimi-

native power of the max margin methods.

A video action is represented as a sequence of frame-

level features X = (x1, · · · ,xL), where xi is the vi-

sual descriptor extracted at the i-th frame. The details of

such features will be discussed in Sec. 6.1. We denote

an action dataset by {(X1, y1), (X2, y2), · · · , (XN , yN )},
where Xi ∈ X is a video action, and yi ∈ Y is its action

category labels. Action classification is to learn a mapping

f : X → Y . Here we assume binary classification i.e.,

Y = {+1,−1} for simplicity, because we can easily con-

vert the multi-class classification problem to binary classi-

fication problem with one-vs -the-rest approach.

For each action class, we define a phantom action tem-
plate T that consists of a sequence of atomic actions:

T = {t1, t2, · · · , tLT
}, (1)

where LT is the length of the atomic action sequence. tj
denotes the frame-level features for the j-th atomic action.

In addition, the expected length of an atomic action tj is μj ,

but it can deform under warping. Its variation is captured by
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Figure 2. The warping alignment matrix. The long sequence above

is aligned to the short sequence below red element (i, j) in the

alignment matrix means the i-th element in the long sequence is

aligned to the j-th element in the short sequence.

its deformation parameters aj and dj (details will be pro-

vided shortly). In the binary classification setting, the phan-

tom action template is associated with the positive class. In

the multi-class setting, each action class is associated with a

phantom action template. The phantom template and its de-

formation parameters are learned from training data (details

will be discussed in Sec. 5).

In order to deal with misalignment, we align an action

X of length L to the phantom action template T with a

warping function. The alignment can be represented by a

L×LT matrix, as shown in Fig. 2. Notice that the length of

the input action L and the length of the phantom template

LT are not necessarily the same. A warping path P is a

contiguous set of matrix elements that defines a mapping

between X and T . For example, an element p = (i, j)
means the i-th element in X is mapped to the j-th element

in T . We have the warping path:

P = p1, p2, · · · , pM . (2)

where M is the length of the warping path. One constraint

for the alignment is the boundary condition, i.e., p1 = (1, 1)
and pM = (L,LT ). This is similar to dynamic temporal

warping [14].
We define the cost function of aligning the action X to

the phantom action template T under a warping path P as:

g(X, P ) =
1

L

LT∑
j=1

tTj

ej∑
i=bj

xi + C(P ) (3)

where the {bj , bj + 1, · · · ej} elements in X are aligned

to the j-th element in T , and C(P ) is the cost of length

deformation of the atomic actions under the the warping P .

We denote the number of the elements in X that are aligned

to the j-th element in the phantom action template T by

lj = ej − bj +1. The deformation cost C(P ) is defined as:

C(P ) =
1

LT

LT∑
j=1

(
dj(

LT

L
lj − μj) + aj(

LT

L
lj − μj)

2

)

(4)

where μj is the expected length of the j-th atomic action
in the phantom action template T , and dj , aj model its

length variation. This cost function can be regarded as a

soft-version of the commonly used Sakoe-Chiba Band con-

straint [4].

The predictive mapping function is evaluated by finding

the optimal warping path P that maximizes the cost func-

tion Eq. (3).

f(X) = sign(max
P

g(X, P )) (5)

where sign(x) = +1 if x > 0 and −1 otherwise. The

solution of maxP g(X, P ) will be given in Sec. 4. Then

the binary classification of the action can be simply based

on f(X).

The proposed method has two advantages. First, it finds

the optimal alignment of the input action to the phantom ac-
tion template of a particular action class. Thus, it is robust

to temporal misalignment. Second, since both the phantom

templates and their deformation parameters are learnt from

the training data, the proposed method is more discrimi-

native and adaptive than the traditional dynamic temporal

warping.

4. Inference: Action Alignment and Classifica-
tion

In order to predict the class label of an input action X ,

we perform the following steps. First, we compute the opti-

mal warping path P to obtain f(X), i.e., action alignment.

Then, we determine the action class label of X by f(X),
i.e., action classification. As the second task is straightfor-

ward, here we focus on the first task.

We define a score function S(i, j, l) that indicates the

cost of warping the {1, 2, · · · , i}-th elements of the input

X to the {1, 2, · · · , j}-th elements of the phantom action

template T , where l elements are aligned to the j-th element

of the template.

This score function S(i, j, l) can be computed recur-

sively:

S(i, j, l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c(i, j) + δ(j, 1) , l = 1 and i, j = 1

c(i, j) +maxl(S(i, j − 1, l),

S(i− 1, j − 1, l)) + δ(j, 1) l = 1

c(i, j) + S(i− 1, j, l − 1)+

δ(j, l)− δ(j, l − 1) otherwise

(6)
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where c(i, j) = 1
Lt

T
j xi, δ(j, l) is the deformation cost of

aligning the l elements to the j-th element in T :

δ(j, l) = dj(
LT

L
l − μj) + aj(

LT

L
l − μj)

2 (7)

Then the maximum alignment score in Eq. (5) can be

easily obtained by f(X) = maxlS(LT , L, l) at the end of

the recursion. In addition, the optimal warping path can be

computed via back-tracking.

We can then compare the matching scores of all the ac-

tion categories for action recognition.

5. Learning via Latent Structural SVM
Since the warping path P is not observable in the traning

data, we formulate the learning problem as a latent struc-

tural SVM [33], with the warping path P as the latent vari-

able.

Given two warping path P and P ′, we define the loss

function Δ(P, P ′) as the loss of classifying P to P ′. Sup-

pose we have lj and l′j elements in the feature sequence X
aligned to the j-th element of the action template sequence

T in P and P ′, respectively. Δ(P, P ′) can be expressed as:

Δ(P, P ′) =
1

LT

T∑
j=1

(lj − l′j)
2 (8)

Denote by w = (t1, · · · , tLT
, d1, · · · , dLT

, a1, · · · , aLT
)

the concatenation of all parameters to learn in Eq. (3)

and (4). The training data are {(X1, y1), · · · , (XN , yN )},
where Xi ∈ X is the sequence of features, and yi ∈ Y is

the action category labels. The latent structural SVM can

be formulated as

min
w,ξ

1

2
‖w‖22 +

N∑

i=1

ξi

s.t.Δ(P, P i) + g(Xi, P )− g(Xi, P
i) ≤ ξi, ∀P, ∀yi = −1

1− g(Xi, P
i) ≤ ξi,∀yi = 1

ξi > 0, ∀i
(9)

where P i is the warping path for the i-th training data, P
can be any feasible warping path. The optimization speci-

fies that, for the negative training data, applying any warp-

ing path P to Xi should result in a score function g(Xi, P )
that satisfies the margin constraint; and for the positive trac-

ing data, applying the current warping path P i should result

in a score function that satisfies the margin constraint.

This optimization problem is challenging because it con-

tains a huge number of constraints in Eq. (9), correspond-

ing a lot of possible warping paths P . We can solve this

optimization problem via the cutting plane algorithm [33].

The cutting plane algorithm solves an optimization problem

with many constraints by iteratively solving the relaxed op-

timization problem with only a subset of the most violated

active constraints. Since Δ(P, P ′) can also be decomposed

according to each pj of the warping path P , the most vio-

lated constraints can be found with the dynamic program-

ming algorithm in Sec. 4.

In addition, since P i are not observable in the training

data, we iteratively solve the warping path P i, the expected

length μn
j , and the parameters w in our optimization. The

optimal warping path P i is solved via the dynamic pro-

gramming algorithm in Sec. 4 for the positive data of each

class. The parameters w is solved via linear SVM because

the cost function g(Xi, P ) is a linear function with respect

to the parameters w. The expected length μj for the j-th

atomic action element in the phantom action template is

computed as the average number of elements matched to

it in the positive training data:

μj =
1

N+

∑
i:yi=1

LT

Li
(eij − bij + 1) (10)

where bij and eij are the beginning and ending of the el-

ements warped to the j-th atomic action in the phantom

action template for Xi, N+ is the number of the positive

training data, Li is the length of the i-th training sequence,

j = 1, · · · , LT is the index of the atomic action in the phan-

tom action template.

In the beginning of the algorithm, we initialize P i to be

a uniform warping, which aligns the same number of ele-

ments to each atomic action in the phantom action template.

For example, if we align a length-4 sequence to a length-2

sequence, P i = ((1, 1), (2, 1), (3, 2), (4, 2)).

Finally, in order to deal with multi-class classification,

we apply the one-vs-the-rest approach to convert multi-

class classification to a set of binary classification prob-

lems. We learn a phantom action template and the associ-

ated score function f(Xi) for each class. The class having

the highest score function is regarded to be the predicted

class. We require the length of phantom action template LT

to be the same for all the classes. The outline of the whole

optimization algorithm is given in Alg. 1.

6. Implementation Details

6.1. Frame Feature Description

We represent an action by a sequence of high-

dimensional frame descriptors, as described in this section.

We are interested in action recognition from both the depth

sequences captured by Kinect cameras and conventional

RGB videos. The Kinect cameras can capture the depth

sequences and track human skeleton joints. The depth se-

quences give the distance of the object to the camera at each

pixel, and the tracked human skeleton joints contain the 3D
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1 Take a set of training data

{(X1, y1), (X2, y2), · · · , (XN , yN )} and the number

of the classes C.

2 Initialize the warping path P i to be the uniform

warping for all the training data, and initialize the

mean length of the template sequences according to

Eq. (10).

3 for iter = 1 to maxiter do
4 for c = 1 to C do
5 (1) Find the most violated warping path P for

all the negative training data (class label

yn �= c);
6 (2) Solve the parameters w with stochastic

gradient, with the most violated warping path

P specifying the constraints;

7 (3) Solve the optimal warping path Pn for all

the positive training data (class label yn = c);
8 (4) Estimate the expected length of the atomic

actions in the phantom action template
according to Eq. (10).

9 end
10 end
11 return parameters w and the expected lengths μj for

all the classes.
Algorithm 1: Latent Structural SVM Learning

locations of the joints. One pixel in the RGB video contains

the RGB values of the corresponding point in the scene.

For the 3D human skeleton joint locations, we employ

the pairwise joint position feature [26]. This feature first

normalizes the joint locations so that it is invariant to the

absolute body position, the initial body orientation and the

body size. Then, for each joint, we compute its 3D relative

positions to all the other joints. The relative positions of all

the joints are utilized as the frame descriptor to represent

the 3D human skeleton configuration. This representation

is a very intuitive way to represent human motion.

For the depth sequences, we employ the local HON4D

feature [16]. HON4D feature treats the 3D depth sequence

as a surface in the 4D spatio-temporal space, and em-

ploys the distribution of the surface normal orientation as

a shape descriptor. The local HON4D features are com-

puted around the 3D locations of each human skeleton joint.

For each human skeleton joint, we divide its local neigh-

bors as a Nx × Ny × Nz 3D spatial grid, and compute the

HON4D histograms in all the cells. The concatenation of

the HON4D histograms in all the cells for all the human

skeleton joint are used as the frame descriptor. This descrip-

tor can roughly characterize the local spatial shape around

each joint to represent the human-object interactions.

For RGB videos, we employ widely used HOG [3] and

HOF [8] features. The dense HOG and HOF features are

extracted at a regular grid for all the frames. We employ the

k-means clustering to learn a codebook for all HOG/HOF

features. Then each HOG/HOF feature can be quantized by

the nearest visual word in the codebook. Finally, the his-

togram of the visual words in one frame is employed as the

frame descriptor. Because the HOG and HOF features are

histograms and we are using linear classifiers, we employ

the root histograms of the HOG and HOF as the frame de-

scriptors, as suggested in [1].

Our proposed method can use several frame descriptors

together. We simply concatenate the different frame de-

scriptors if we use more than one frame descriptor to rep-

resent a frame. We will be explicit on this when describing

our experiments.

6.2. Other Treatments

First, we observe that there may exist some other (non-

temporal) variations in some actions. For example, for the

action “call cellphone”, some people tend to use their right

hand, while some people use their left hand. Learning a

mixture of MMTW can help in this situation. We cluster the

training data of each action category via k-means cluster-

ing using the video-level descriptors (such as bag-of-words

and Fourier temporal pyramid). We learn a phantom action
template for each cluster as a sub-category of a conceptual

action class.

Second, in order to avoid the trivial alignment, i.e., align-

ing most of the sequence into the same atomic action, we

restrict aj and dj in Eq. (4) to be larger than a threshold

η = 0.1 for all j. If the optimization results in aj or dj that

is smaller than η, we cap them by 0.1.

7. Experiments

We evaluate the proposed MMTW method on five bench-

mark datasets. The first three dataset are: MSR Sport Ac-

tion 3D dataset [11], MSR-DailyActivity3D dataset [26]

and 3D ActionPair dataset [16]. These datasets contain

the depth sequences captured with Kinect cameras and the

tracked human skeleton joint positions. We also evaluate

the proposed MMTW approach on two RGB video dataset,

Olympic sports dataset [15] and UCF-sports dataset [18], to

validate its performance on RGB videos.

In the following experiments, unless specified, we use

a mixture of two MMTW models for each action class, as

described in Sec. 6.2.

7.1. MSR Sports Action3D dataset

MSR Sports Action3D dataset [11] is an action dataset

of depth sequences captured by Kinect camera. It contains

twenty actions: high arm wave, horizontal arm wave, ham-
mer, hand catch, forward punch, high throw, draw x, draw
tick, draw circle, hand clap, two hand wave, side-boxing,
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Figure 3. Example frames from different actions from MSR Sports

Action dataset [11], MSR-DailyActivity3D dataset [26], 3D Ac-

tion Pair dataset [16], adn UCF Sports dataset [18]

bend, forward kick, side kick, jogging, tennis swing, tennis
serve, golf swing, pick up & throw. Every action was per-

formed by ten subjects three times each. Example depth se-

quences from this dataset are shown in Fig. 3. This dataset

also contains the human skeleton joint positions tracked by

the algorithm in [20].

We employ the relative joint positions as the frame de-

scriptors for this dataset, and set the length of the phantom
action template LT = 11 in this experiment. The accuracy

of different methods is shown in Table 1. The proposed

MMTW approach achieves a state-of-the-art 92.67% accu-

racy with the same experimental setup as in [26]. Moreover,

compared with the 71.79% accuracy of using the uniform

warping (no action alignment), the proposed MMTW ap-

proach achieves much better accuracy because it discrimi-

natively aligns the sequences.

We also evaluate the dynamic temporal warping (DTW)

in our dataset using the Euclidean distance of the skeleton

joint positions as the frame matching. We found that DTW

algorithm does not perform well in our experiments, be-

cause the Euclidean distance can not discriminatively char-

acterize the similarity of two human skeleton configura-

tions. In contrast, as the proposed MMTW method learns

the best alignment from the training data, it can better dis-

tinguish different actions.
Finally, we study the robustness of the proposed method

to temporal misalignment and phantom action template

length, shown in Fig. 4. In this experiment, we circu-

larly shift half of the training data and testing data, and

keep the rest of the data the same. The accuracy of the

proposed MMTW approach is compared with that of the

uniform warping and Fourier Temporal Pyramid [26]. We

find that the MMTW approach is much more robust than

Method Accuracy %

Action Graph on Bag of 3D Points [11] 74.7

Histogram of 3D Joints [28] 78.9

Eigenjoints [30] 82.3

HON4D + Ddesc [16] 88.9

Actionlet Ensemble [26] 88.2

Random Occupancy Pattern [25] 86.5

Depth HOG [31] 85.5

Dynamic Temporal Warping 54.0

Hidden Markov Model 63.0

Uniform Warping 71.8

MMTW 92.7

Table 1. The performance of the methods on Action3D dataset.
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Figure 4. The robustness of the methods to temporal shifts and

phantom template length.

the uniform warping approach because of the explicit ac-

tion alignment in MMTW. We also find that the MMTW

approach is more robust than the Fourier Temporal Pyra-

mid approach under large temporal misalignment. More-

over, the proposed method is insensitive to the length of the

phantom action template. An example alignment can be

found in the supplemental materials.

7.2. MSR-DailyActivity3D dataset

DailyActivity3D dataset is a daily activity dataset cap-

tured by a Kinect device. There are 16 activity types:drink,

eat, read book, call cellphone, write on a paper, use lap-
top, use vacuum cleaner, cheer up, sit still, toss paper, play
game, lay down on sofa, walk, play guitar, stand up, sit
down. If possible, each subject performs an activity in two

different poses: “sitting on sofa” and “standing”. Some ex-

ample frames are shown in Fig. 3. This dataset also pro-

vides the human skeleton joint positions tracked via [20].

Modeling human-object interaction is very important for

this dataset. Thus, in addition to the relative joint posi-
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Method Accuracy %

HON4D + Ddesc [16] 80.00

Actionlet Ensemble [26] 85.75

Dynamic Temporal Warping 34.45

Uniform Warping 69.38

MMTW 88.75

Table 2. The performance of the methods on Sports Action 3D

dataset.

Method Accuracy %

HON4D + Ddesc [16] 96.67

Skeleton + LOP + Pyramid [26] 82.22

Depth HOG [31] 66.11

Uniform Warping 90.00

MMTW 97.22

Table 3. The performance of the methods on 3D action pairs

dataset.

tions, we also use the local HON4D features [16] extracted

at each human skeleton joint, as well as the human skeleton

joint positions per-frame features. We use a patch size of

12× 12× 6, and divide it into a 3× 3× 1 grid for HOV4D

features. We set the length of the phantom action template
LT = 12 in this experiment. Table 2 shows the perfor-

mance of different methods. The proposed MMTW method

achieves 88.75% accuracy. It outperforms the state-of-the-

art methods.

7.3. 3D ActionPair dataset

3D ActionPair dataset [16] is an action dataset captured

by a Kinect camera. This dataset contains six pairs of ac-

tions: ‘Pick up a box/Put down a chair, Lift a box/Place a
box, Push a chair/Pull a chair, Wear a hat/Take off hat, Put
on a backpack/Take off a backpack, Stick a poster/Remove
a poster. Since the motion cue is usually similar for a pair

of the actions, modeling the temporal structure is crucial

for successful action recognition. The example frames are

shown in Fig. 3.

We employ the relative joint positions and the local

HOV4D features [16] extracted at each human skeleton

joint and the human skeleton joint positions per-frame fea-

tures. We use a patch size of 12× 12× 6, and divide it into

a 3 × 3 × 1 grid for HOV4D features. We set the length

of the phantom action template LT = 16 in this experi-

ment. The experimental setting of [16] is used in our ex-

periments. The result is shown in Table 3. The proposed

MMTW method achieves excellent accuracy (97.22%) on

this dataset because it can model the temporal order of the

time sequence very well, and its performance is much better

than uniform warping.

Method Accuracy %

STIP [8] 62.0

Decomposable Motion Segments [15] 72.1

Latent Temporal Structure [22] 66.8a

Uniform Warping 52.9

MMTW 73.8

Table 4. The performance of the methods on Olympic Sports dataset.

aThis result is obtained under a different experimental setting.

7.4. Olympic Sports dataset

The Olympic Sports dataset [15] is captured by RGB

cameras. It contains the sports actions from 16 sport

classes: basketball layup, bowling, clean and jerk, discus
throw , diving platform 10m, diving springboard 3m, ham-
mer throw,high jump, javelin throw, long jump, pole vault,
shot put, snatch, tennis serve, tripe jump, vault with 50 se-

quences per class. The actions in this dataset usually exhibit

the complex temporal structure and temporal misalignment.

The sequences are collected from YouTube, and the class

label annotations are obtained using Mechanical Turk.

We extract dense HOG/HOF features for all the

frames, and employ the bag-of-words representation of the

HOG/HOF features in one frame as frame-level descrip-

tor. The length of the phantom action template is set to

be LT = 30. The experimental setting suggested by [15] is

employed in this experiment. Table 4 shows the experimen-

tal results. The proposed method archives better accuracy

than [15] because the proposed approach is more flexible

than [15]. In the proposed MMTW method, one atomic ac-

tion can occur at any place of the input sequence, as long

as the order of the atomic action is preserved, while [15]

restricts the position of the atomic action.

7.5. UCF-sports datasets

The UCF-Sports dataset [18] is captured by RGB cam-

eras. It contains the sports actions from 12 categories:

Diving-side, Golf-swing-back, Golf-swing-front, Golf-
swing-side, Kicking-front, Kicking-side, Riding-horse,Run-
side, skateboard, swing-bench, Swing-sideangle, walking.

Each action is performed 5-12 times.

We extract dense HOG/HOF features for all the

frames, and employ the bag-of-words representation of the

HOG/HOF features in one frame as frame-level descrip-

tor. The length of the phantom action template is set to

be LT = 25 in this experiment. We employ the leave-one-

out cross validation experimental setting. Table 5 shows

the accuracy of different methods. The proposed MMTW

approach archives 90.00% accuracy despite the fact that

MMTW merely uses dense HOG/HOF features here. Al-

though other methods can achieve slightly better recogni-

tion accuracy by modeling the spatio-temporal context [27]
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Method Accuracy %

Dense HOG/HOF [24] 81.6

Dense HOG3D [24] 85.6

Feature Learning [9] 86.5

Hierarchical spatio-temporal context [7] 87.3

Context and appearance distribution [27] 91.3

Action Bank [19] 95.0

Uniform Warping 55.56

MMTW 90.00

Table 5. The performance of the methods on UCF-Sports dataset.

or using detection responses [19], since this paper is mainly

focuses on temporal structure modeling, we simply use

widely used HOG/HOF features and have already obtained

comparable performance to [27] and [19]. This experiment

also shows that the proposed MMTW can achieve much bet-

ter recognition accuracy than the bag-of-words representa-

tion when dense HOF/HOF features are employed [24].

8. Conclusion
This paper proposes a novel unification of action align-

ment and classification, called maximum margin temporal

warping (MMTW). MMTW method integrates the advan-

tages of the dynamic temporal warping and discriminative

max-margin learning. Due to the learned action alignment,

it is robust to the temporal variations and misalignment,

while at the same time maximizes the margin among dif-

ferent action classes. Extensive experiments have demon-

strated the robustness and superior performance of the pro-

posed approach on five benchmark datasets. In the future,

we plan to apply the proposed approach to other sequential

data classification applications, such as handwriting recog-

nition.
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