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Abstract

Cross-modal matching has recently drawn much atten-
tion due to the widespread existence of multimodal data. It
aims to match data from different modalities, and generally
involves two basic problems: the measure of relevance and
coupled feature selection. Most previous works mainly fo-
cus on solving the first problem. In this paper, we propose
a novel coupled linear regression framework to deal with
both problems. Our method learns two projection matrices
to map multimodal data into a common feature space, in
which cross-modal data matching can be performed. And in
the learning procedure, the �21-norm penalties are imposed
on the two projection matrices separately, which leads to s-
elect relevant and discriminative features from coupled fea-
ture spaces simultaneously. A trace norm is further imposed
on the projected data as a low-rank constraint, which en-
hances the relevance of different modal data with connec-
tions. We also present an iterative algorithm based on half-
quadratic minimization to solve the proposed regularized
linear regression problem. The experimental results on two
challenging cross-modal datasets demonstrate that the pro-
posed method outperforms the state-of-the-art approaches.

1. Introduction
This paper focuses on the cross-modal matching prob-

lem, which has been widely studied in recent years. The

task of cross-modal matching is to predict whether a pair of

data points from two different modalities represent the same

underlying content or object. The cross-modal problem has

been existing in many fields. Take multimedia retrieval for

example, one often seeks to find the picture (or video) that

best illustrates a given text, or find the text that best de-

scribes a given picture (or video).

As shown in the next section, there have been some

methods proposed for solving the cross-modal problems.

Most of them just focus on learning a common latent sub-

space to make all data comparable. However, another im-

Figure 1. The overview of the proposed method. UA and UB are
projection matrices learned using our method on space A and B.

�21-norm and trace norm are used for coupled feature selection

and low-rank relevance measure respectively.

portant problem, how to simultaneously select relevant and

discriminative features from two different feature spaces, is

usually ignored. Here we call this problem “coupled feature

selection”. Although various feature selection methods [26]

have been developed for the single modality data analysis,

they are not extended to the case of multi-modality data.

Recently, �21-norm has been proved to be a powerful tool
for the feature selection problem [5, 8, 15], and trace nor-

m [1, 3, 4, 6] is used to encode the correlation of the design

matrix or prior knowledge by enforcing a low-rank solution.

Motivated by these recent advances, this paper proposes a

novel regularization framework (as shown in Figure 1) for

the cross-modal matching problem, by combining common

subspace learning and coupled feature selection. First, in-

spired by the potential relationship between Canonical Cor-

relation Analysis (CCA) and linear least squares [23], cou-

pled linear regression is used to project data from different

modalities into a common subspace that is defined by la-

bel information. In the same time, �21-norm is used to s-

elect the relevant and discriminative features from coupled

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.261

2088



modalities, and the trace norm regularization enforces the

relevance of the projected data with potentially connection-

s. Second, based on the alternative formulation for the trace

norm [4] and the half-quadratic analysis for �21-norm [8],

we develop an iterative algorithm to solve the proposed reg-

ularization problem. Finally, the proposed method is ap-

plied to text-image retrieval and experimental results on two

public datasets show that the proposed method outperforms

previous approaches.

Main contributions of our work can be summarized as

follows:

1) A novel regularization framework is proposed for the

cross-modal matching problem. It unifies coupled linear

regressions, �21-norm and trace norm into a generic mini-

mization formulation so that subspace learning and coupled

feature selection can be performed simultaneously.

2) An iterative algorithm is presented to efficiently solve

such kind of complex minimization problems. In each iter-

ation, the minimization problem is simplified to two inde-

pendent linear system problems. And we prove the conver-

gence of the proposed optimization method.

3) The proposed framework provides a new way to ef-

fectively deal with a challenging cross-modal problem, i.e.,

text-image retrieval. Experimental results on two pub-

lic cross-modal datasets have shown that our proposed

framework outperforms several relevant state-of-the-art ap-

proaches.

The remainder of the paper is organized as follows. In

Section 2, we overview related work on the cross-modal

problem. Section 3 describes our proposed regularized lin-

ear regression framework for cross-modal matching, along

with an iterative algorithm to solve this problem. In Sec-

tion 4, we report experimental results on two cross-modal

datasets. Finally, we conclude the paper in Section 5.

2. Related Work
Since the cross-modal matching is considered as an

important problem in some real applications, various ap-

proaches have been proposed to deal with this problem,

such as Canonical Correlation Analysis (CCA) [7], Partial

Least Squares (PLS) [20], and Bilinear Model (BLM) [22,

24]. Specifically, CCA is probably the most popular one due

to its wide-spread use in cross-media retrieval[7, 19], cross-

lingual retrieval [25] and some vision problems [13, 14].

Rasiwasia et al. [19] apply CCA to the cross-modal muti-

media retrieval. Based on the hypothesis that there is a ben-

efit to explicitly model correlations between two modalities,

CCA is used to learn a common subspace by maximizing

the correlation between the two modalities. Then, a seman-

tic space is learned to measure the similarity of different

modal features. Li et al. [14] apply CCA to face recognition

based on non-corresponding region matching. They use C-

CA to learn a common space in which the possibility of

whether two non-corresponding face regions belong to the

same face can be measured. Recently, Partial Least Squares

(PLS) [20] is also used for the cross-modal matching prob-

lem. To performmulti-modal face recognition, such as front

vs. profile, photos vs. sketches, and high-resolution photos

vs. low-resolution photos, Sharma and Jacobs [21] use PLS

to linearly map images in different modalities to a common

linear subspace in which they are highly correlated. Chen

et al. [2] apply PLS to the cross-modal document retrieval.

They use PLS to switch the image features into the text s-

pace, then learn a semantic space for the measure of similar-

ity between two different modalities . In [24], Tenenbaum

and Freeman propose a bilinear model (BLM) to derive a

common space for cross-modal face recognition, and BLM

is also used for text-image retrieval in [22].

Besides CCA, PLS and BLM, there are some other meth-

ods for the cross-modal problem. Lei and Li [12] pro-

pose coupled spectral regression to learn two associated

projections, which project heterogeneous data into a com-

mon space respectively in which classification is performed.

Quadrianto and Lampert [17] propose a metric learning

approach for cross-modal matching, which considers both

matching and non-matching samples. Huang et al. [10] pro-

pose a unified framework extended from graph embedding

and design an algorithm for face recognition across poses

or resolutions. Recently, Sharma et al. [22] extend Linear

Discriminant Analysis (LDA) and Marginal Fisher Analy-

sis (MFA) to their multiview counterpart, i.e., Generalized

Multiview LDA (GMLDA) and Generalized Multiview M-

FA (GMMFA), and apply them to deal with the cross-media

retrieval problem.

All above methods can be categorized into two classes:

one is to learn a common latent space in which both modali-

ties are projected, and the other is to map data of one modal-

ity into the space of another one. They all focus on mea-

surement of relevance, however, ignore another important

issue, i.e., coupled feature selection. Since the dimensional-

ity of real world data is often high, there are naturally many

redundant and irrelevant features. Hence, how to simulta-

neously select the relevant and discriminative features for

different modalities of data is very important. Accordingly,

we aim to jointly perform common subspace learning and

coupled feature selection. To achieve this goal, we propose

a generic minimization formulation by coupled linear re-

gressions, �21-norm and trace norm, which will be detailed
in the next section.

3. Learning Coupled Feature Spaces
In this section, we present a novel framework for the

cross-modal matching problem, which can be formulated

as a minimization problem. Then, an iterative algorithm

based on half-quadratic optimization is given to solve this

minimization problem. We begin with a brief introduction
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to some notations.

Notations. LetM ∈ Rn×m. For matrixM, its i-th row,
j-th column are denoted by M(i), Mj respectively. The

Frobenius norm of the matrixM is defined as

‖M‖F =
√√√√ n∑

i=1

∥∥M(i)
∥∥2
2

(1)

‖M‖2,1 is the sum of the �2-norm of the rows ofM:

‖M‖2,1 =
n∑
i=1

∥∥∥M(i)
∥∥∥
2

(2)

‖M‖∗ is the trace norm, i.e., the sum of the singular values
of the matrixM, defined as follows

‖M‖∗ =
min(m,n)∑

i=1

σi (3)

where σi denotes the i-th singular value of M. For M ∈
R
m×m, diag(M) ∈ R

m is the diagonal of the matrix M,

while for u ∈ Rm, Diag(u) ∈ Rm×m is the diagonal ma-

trix whose diagonal elements are ui.

3.1. Problem formulation

Suppose that we have a collection of data from two d-

ifferent modalities, each pair {xai ,xbi} represents the same
underlying content. For example, user tags (or textual de-

scriptions) and image features indicate the same objects or

content contained in the image. Given a query from one

modality, the goal of the cross-modal matching is to return

the closest match in another modality.

As shown in Figure 1, the cross-modal matching gener-

ally involves two problems: 1) The first problem is how to

measure the relevance of data from different modalities. 2)

The second one is how to select the relevant and discrim-

inative features from the coupled feature spaces, simulta-

neously. Previous methods mainly focus on the first prob-

lem, such as CCA or PLS. They project data from differen-

t modalities into a latent space, in which the possibility of

whether two different modal data represent the same seman-

tic concept can be measured. However, the second problem

is usually ignored. Compared to dimensionality reduction

or feature selection methods performed on the two feature

spaces separately, coupled feature selection is more likely

to find the most relevant features. Based on this considera-

tion, we propose that the feature selection procedure should

be performed on coupled feature spaces simultaneously for

better matching.

Given data from two different modalities: Xa =
[xa1 ,x

a
2 , ...,x

a
n] ∈ R

d1×n, Xb = [xb1,x
b
2...,x

b
n] ∈ R

d2×n,
each modality has n samples embedded in different dimen-
sional spaces (d1 and d2), and each pair {xai ,xbi} represents

the same underlying content and belongs to the same class.

Let Y = [y1,y2, ...,yn]
T ∈ R

n×c be the class label ma-
trix, where c is the number of classes. Our model aims to
learn two projection matrices to map the data of the cou-

pled spaces into the common space defined by class labels.

In the same time, we perform �21-norm on the projection

matrices for coupled feature selection, and impose a low-

rank constraint, defined by the trace norm, on the projected

data. That is, we have a generic minimization problem in

the following form,

min
Ua,Ub

1

2
(
∥∥XT

aUa −Y
∥∥2
F
+
∥∥XT

b Ub −Y
∥∥2
F
)

+λ1(‖Ua‖21 + ‖Ub‖21) + λ2

∥∥[XT
aUa XT

b Ub]
∥∥
∗

(4)

where Ua and Ub are the projection matrices for the cou-

pled spaces respectively. The first term is coupled linear re-

gression, which is used to learn two projection matrices for

mapping different modal data into a common space. The

second term contains two �21-norms that play a role of fea-
ture selection on two feature spaces simultaneously. And

the trace norm is to enforce the relevance of projected data

with connections.

3.2. An iterative solution

It is very complicated to directly minimize the above ob-

jective function involving �21-norm and trace norm. Here,

an iterative algorithm based on the half-quadratic minimiza-

tion [8, 9] is proposed to solve this problem. Toward this

end, we first need to introduce a variational formulation for

the trace norm [4]:

Lemma 1. Let M ∈ R
n×m. The trace norm of M is

equal to:

‖M‖∗ =
1

2
inf
S�0

tr(MTS−1M) + tr(S) (5)

and the infimum is attained for S =
(
MMT
)1/2

.
Using this lemma, we can reformulate (4) as

min
Ua,Ub

min
S�0

f(Ua,Ub) + λ1(‖Ua‖21 + ‖Ub‖21)

+
λ2

2
tr([XT

aUa XT
b Ub]

TS−1[XT
aUa XT

b Ub]) +
λ2

2
tr(S)

(6)

where f(Ua,Ub) denotes the first term of the objective

function. Since

tr(

[
A B
C D

]
) = tr(A) + tr(D) (7)

The third term in (6) can be rewritten in the following form:

tr([XT
aUa XT

b Ub]
TS−1[XT

aUa XT
b Ub])

⇒ tr(UT
aXaS

−1XT
aUa) + tr(UT

b XbS
−1XT

b Ub)
(8)
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In order to alternately minimize the objective function

over Ua,Ub and S, we need to add a term
λ2μ
2 tr(S−1) as

in [4] . Otherwise, the infimum over S could be attained at
a non-invertible S, leading to a non-convergent algorithm.
The infimum over S is then attained for

S = (XT
aUaU

T
aXa +XT

b UbU
T
b Xb + μI)1/2 (9)

If we define φ(x) =
√

x2 + ε , we can replace ‖Ua‖21
and ‖Ub‖21 with

∑d1
i φ(
∥∥uia∥∥2) and ∑d2

i φ(
∥∥uib∥∥2) re-

spectively, according to the analysis for the �21-norm in [8].
And ε is a smoothing term, which is usually set to be a s-
mall value. It can be proved that φ(x) =

√
x2 + ε satisfies

all conditions as follows.

x → φ(x) is convex on R,

x → φ(
√

x) is concave on R+,

φ(x) = φ(−x), ∀x ∈ R,

φ(x) is C1 on R,

φ
′′
(0+) > 0, lim

x→∞φ(x)/x2 = 0.

(10)

Then, we can optimize φ(·) in a half-quadratic way [16]
according to the following Lemma 2 [8].

Lemma 2. Let φ(·) be a function satisfying all condi-
tions in (10), for a fixed

∥∥ui∥∥
2
, there exists a dual potential

function ϕ(·), such that

φ(
∥∥ui∥∥

2
) = inf

p∈R

{
p
∥∥ui∥∥2

2
+ ϕ(p)

}
(11)

where p is determined by the minimizer function ϕ(·) with
respect to φ(·).
According to Lemma 2, the objective function (6) can be

reformulated as follows.

min
Ua,Ub

min
S�0

f(Ua,Ub) + λ1(tr(U
T
aPUa) + tr(UT

b QUb))

+
λ2

2
(tr(UT

aXaS
−1XT

aUa) + tr(UT
b XbS

−1XT
b Ub))

+
λ2

2
tr(S))

(12)

Given S, optimizing the objective function (12) overUa

and Ub respectively is equal to optimizing the following

two problems, according to the half-quadratic analysis for

�21-norm [8].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Ua

1

2

∥∥XT
aUa −Y

∥∥2
F
+ λ1tr(U

T
aPUa)

+
λ2

2
tr(UT

aXaS
−1XT

aUa)

min
Ub

1

2

∥∥XT
b Ub −Y

∥∥2
F
+ λ1tr(U

T
b QUb)

+
λ2

2
tr(UT

b XbS
−1XT

b Ub)

(13)

where P = Diag(p) and Q = Diag(q). And p and q are
auxiliary vectors of the two �21-norms, respectively. The
elements of p and q are computed respectively as follows.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pi =
1

2
√
‖uia‖22 + ε

qi =
1

2
√∥∥uib∥∥22 + ε

(14)

where ε is a smoothing term, which is usually set to be a
small constant value.

Then, the optimal solution of (13) can be computed via

solving the following two linear system problems.{
(XaX

T
a + λ1P+ λ2XaS

−1XT
a )Ua = XaY

(XbX
T
b + λ1Q+ λ2XbS

−1XT
b )Ub = XbY

(15)

Algorithm 1: Iterative Algorithm for Learning Coupled
Feature Spaces (LCFS)

Input: Xa ∈ Rd1×n,Xb ∈ Rd2×n andY ∈ Rn×c
Output: Ua ∈ Rd1×c andUb ∈ Rd2×c
Set t = 0. InitializeUa andUb as zero matrix.

repeat
1. ComputeVDiag(sk)V

T as the eigenvalue

decomposition of (XT
aUaU

T
aXa +XT

b UbU
T
b Xb).

2. Set S−1 = VDiag(1/
√

sk + μ)VT .

3. Compute pti and qti according to (14)

4. ComputeUt
a andU

t
b by solving the two linear

system problems in (15).

5. t = t+ 1

until Converges

Algorithm 1 summarizes the alternate minimization pro-

cedure to optimize (4). Step 1 and Step 2 correspond to the

trace norm, which is expected to reinforce the relevance of

projected data of different modalities with connections. In

Step 3, we compute the auxiliary vectors p and q that cor-
respond to the two �21-norms and play an important role in
coupled feature selection. In Step 4, we find the optimal

solutionUa andUb.

3.3. Convergence and complexity

According to half-quadratic minimization, the objective

function is minimized in each step, and will decrease step

by step until it achieves an optimal solution.

Proposition 1. Assume f be the objective function, and
let F t .

= f(U t
I , S

t, pt, qt), then {F t}t=1,... generated by

Algorithm 1 converges.
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Query PCA+PLS PCA+BLM PCA+CCA PCA+GMMFA GMMFA PCA+GMLDA LCFS

Image 0.2757 0.2667 0.2655 0.3090 0.2253 0.2418 0.3438
Text 0.1997 0.2408 0.2215 0.2308 0.1695 0.2038 0.2674

Average 0.2377 0.2538 0.2435 0.2699 0.1974 0.2228 0.3056

Table 1. Comparison of MAP (Mean Average Precision) performance of different methods on the Pascal VOC dataset. And PCA is

performed on the original features to remove redundant features.

Proof. According to the definition of F t, we have the

following equation:

F t − F t−1 = {f(U t
I , S

t, pt, qt)− f(U t−1
I , St, pt, qt)}

+{f(U t−1
I , St, pt, qt)− f(U t−1

I , St, pt−1, qt−1)}
+{f(U t−1

I , St, pt−1, qt−1)− f(U t−1
I , St−1, pt−1, qt−1)}

(16)

According to (15), Lemma 1 and Lemma 2, the three terms

at the right side of the above equation are less than or equal

to zero. Hence, the sequence {F t}t=1,... is non-increasing.

It is easy to verify that F t is bounded below. Consequently,

we can conclude that {F t}t=1,... converges.

For the computational cost of our method, the bottleneck

lies on the eigenvalue decomposition of Step 1 in Algorithm

1, where the time complexity is O(n3). It can be reduced
to O(n2.376) using the Coppersmith-Winograd algorithm.
Therefore, the time complexity of the offline training pro-

cess is O(k(d3 + n2.376)) approximately, where k is the
number of iteration needed to converge, n is the number of
training samples, and d = max(d1, d2), d1 and d2 are the
dimensions of the two modality data, respectively.

4. Experimental Results
Given a cross-modal problem, we can learn two projec-

tion matrices on the training set using the iterative algorith-

m given by Algorithm 1. Then, using the two projection

matrices we can project each pair of data into the common

subspace defined by class labels, in which the relevance of

projected data from different modalities can be easily mea-

sured. In the testing phase, we take one modality data of

the testing set as the query set to retrieve the other modal-

ity data. We apply the proposed LCFS approach to deal

with a challenging cross-modal problem, i.e., text-image re-

trieval. And we evaluate and compare different methods on

two publicly available datasets - Pascal VOC 2007 [11] and

Wiki image-text dataset [19].

4.1. Experimental settings

We compare the proposed LCFS approach with several

related methods, namely, PLS [21], BLM [22, 24], CCA

[7, 19], GMMFA and GMLDA [22], for two cross-modal

retrieval tasks: (1) Image query vs. Text database, (2) Tex-

t query vs. Image database. In testing phase, the cosine

distance is adopt to measure the similarity of features. Giv-

en an image (or text) query, the goal of each cross-modal

���������	


Figure 2. The top nine images retrieved by our method on the Pas-

cal VOC dataset, given the tags “boat+water”.

task is to find the nearest neighbors from the text (or im-

age) database. We want more correct matches in the top K
documents for a better retrieval.

The mean average precision (MAP) [19] is used to eval-

uate the overall performance of the algorithms. To com-

pute MAP, we first evaluate the average precision (AP) of a

set of N retrieved documents by AP = 1
T

∑N
r=1 P (r)δ(r),

where T is the number of relevant documents in the re-

trieved set, P (r) denotes the precision of the top r retrieved
documents, and δ(r) = 1 if the rth retrieved document is
relevant (where relevant means belonging to the class of the

query) and δ(r) = 0 otherwise. The MAP is then comput-
ed by averaging the AP values over all queries in the query

set. Besides, we also use precision-scope curve [18] and

precision-recall curve [19] to evaluate the effectiveness of

different methods. The scope is specified by the number

(K) of top-ranked documents presented to the users. The
precision-recall curve is a classical measure of information

retrieval performance, but some researchers [18] consider

the characterization of retrieval performance by curves of

precision-scope more expressive for multimedia retrieval.

So we report results with both of the measures here.

For our method, the parameters λ1 and λ2 are empirical-

ly set to 0.1 and 0.001, respectively, in all experiments.

4.2. Results on Pascal VOC dataset

In this subsection, we first report the results of differ-

ent methods on the Pascal VOC dataset. The Pascal VOC
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(d)

Figure 3. Performance of different methods on the Pascal VOC dataset, based on precision-scope curve (top row) for K = 50 to 1000 and

precision-recall curve (bottom row). Left column: Image query vs. Text database. Right column: Text query vs. Image database.

dataset [11] consists of 5011/4952 (training/testing) image-

tag pairs, which can be categorized into 20 different class-

es. Some images are multi-labeled, so we select images

with only one object, which results in 2808 training and

2841 testing data. The image features are 512-dimensional

Gist features [11], and the text features are 399-dimensional

word frequency features.

As we mentioned in Section 2, the compared method-

s just focus on the common subspace learning, so Princi-

pal Component Analysis (PCA) is performed on the orig-

inal features to remove redundant features. Our method

can perform coupled feature selection, so we do not per-

form PCA on the original features for our method. Table

1 shows the MAP scores achieved by PLS, BLM, CCA,

GMMFA, GMLDA and our method (LCFS) on the Pascal

VOC dataset. To illustrate the importance of PCA, the re-

sults of GMMFA without performing PCA on the original

features are also reported, as shown in Table 1, which are

much worse than those of performing PCA.We observe that

our method outperforms its several counterparts. This may

be because our method selects the relevant and discrimina-

tive features from the two modalities simultaneously, and

the learnt common space is more compact and effective.

From Table 1, we also see that GMMFA and GMLDA does

not obtain similar results as expected, and GMLDA does

not work as well as GMMFA. This may be because the text

features of the Pascal VOC dataset are very sparse, which

maybe does not agree the assumption of GMLDA.

Figure 2 shows the top nine retrieval images using a tag

vector containing “boat+water” as query. Firstly, tag vec-

tors and image feature vectors are projected into the com-

mon space by the proposed method. Then, for a tag vector,

we return the nearest K images as the retrieved results. We

can see that most retrieved images are very relevant to the

given query.

The corresponding precision-scope curves and

precision-recall curves are plotted in Figure 3. The

scope (i.e., the top K retrieved items) for the precision-

scope curves varies from K=50 to 1000. The top row

shows the performance of different methods based on

the precision-scope curves for both forms of cross-modal

retrieval tasks, i.e., Image query vs. Text database (left)

and Text query vs. Image database (right). We observe

that compared with its several counterparts, our method

obtains better results for both tasks. The bottom row

shows the performance of different methods based on the
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Figure 4. Performance of different methods on the Wiki dataset, based on precision-scope curve for K = 50 to 1000. (a) Image query vs.

Text database. (b) Text query vs. Image database.

precision-recall curves, and our method also outperforms

other methods for both forms of cross-modal retrieval.

4.3. Results on Wiki dataset

The Wiki image-text dataset [19], generated from

Wikipedia’s “featured articles”, consists of 2866 image-text

pairs. In each pair, the text is an article describing people,

places or some events and the image is closely related to the

content of the article. Each pair is labeled with one of 10

semantic classes. We split it into a training set of 1300 pairs

(130 pairs per class) and a testing set of 1566 pairs. The rep-

resentation of the text with 10 dimensions is derived from

a latent Dirichlet allocation model. The images are repre-

sented by the 128 dimensional SIFT descriptor histograms.

Due to the low dimensions of image and text features them-

selves, PCA is not used to reduce the dimensions of the

original features here.

Table 2 shows the MAP scores of different approaches

on the Wiki dataset. Our method achieves MAP scores of

0.2798 and 0.2141 for the image query and text query re-

spectively, only a little bit better than those of GMMFA and

GMLDA. The reason is that the dimensions of image and

text features are low, so the �21-norms of our method for
coupled feature selection could hardly take effect. We also

see that GMMFA, GMLDA and our method perform bet-

ter than PLS, BLM, and CCA. This is because BLM, CCA

and PLS only use pairwise information, GMMFA, GML-

DA and our method use class information, which provides

much better separation between classes.

Due to limited space, we only show the corresponding

precision-scope curves, which are plotted in Figure 4. We

can see that for both forms of cross-modal retrieval, our

method finds more correct matches in the topK documents

than its compared methods. Figure 5 shows two examples

of text queries and the top five images retrieved by our

method. In each case, the query text and its paired image

Methods Image query Text query Average

PLS 0.2402 0.1633 0.2032

BLM 0.2562 0.2023 0.2293

CCA 0.2549 0.1846 0.2198

GMMFA 0.2750 0.2139 0.2445

GMLDA 0.2751 0.2098 0.2425

LCFS 0.2798 0.2141 0.2470

Table 2. Comparison of MAP (Mean Average Precision) perfor-

mance of different methods on the Wiki dataset.

are shown at the left, and the top five images are shown at

columns 3-7. Note that our method finds the closest match-

es at semantic level, i.e., the common space defined by class

labels. The retrieved images are perceived as belonging to

the same category of the query text (“Geography & places”

at the top, “Warfare” at the bottom).

5. Conclusion

In this paper, we have proposed a general regularization

framework to solve the problem of cross-modal matching,

which consists of coupled subspace learning for differen-

t modalities, the �21-norms for coupled feature selection ,
and the trace norm for the measurement of relevance. Un-

der the framework, different projection matrices are learnt

to project different modal data into a common subspace de-

fined by label information, and relevant and discriminative

features for the coupled spaces are selected simultaneously

in the projection procedure. To solve this complex regular-

ization problem, we have harnessed an alternative formula-

tion of the trace norm, and reformulated �21-norm based on
half-quadratic analysis, which leads to an iterative algorith-

m. Experimental results on two public cross-modal datasets

have demonstrated that the proposed method performs bet-

ter than some relevant state-of-the-art methods.
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Figure 5. Two examples of text queries (the first column) and the top five images (columns 3-7) retrieved by our method on the Wiki

dataset. The second column contains the paired images of the text queries .
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