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Abstract

Graph matching has been widely used in various ap-
plications in computer vision due to its powerful perfor-
mance. However, it poses three challenges to image sparse
feature matching: (1) The combinatorial nature limits the
size of the possible matches; (2) It is sensitive to outliers
because the objective function prefers more matches; (3)
It works poorly when handling many-to-many object cor-
respondences, due to its assumption of one single cluster
for each graph. In this paper, we address these problems
with a unified framework—Density Maximization. We pro-
pose a graph density local estimator (𝐷𝐿𝐸) to measure the
quality of matches. Density Maximization aims to maxi-
mize the 𝐷𝐿𝐸 values both locally and globally. The local
maximization of 𝐷𝐿𝐸 finds the clusters of nodes as well as
eliminates the outliers. The global maximization of 𝐷𝐿𝐸
efficiently refines the matches by exploring a much larger
matching space. Our Density Maximization is orthogo-
nal to specific graph matching algorithms. Experimental
evaluation demonstrates that it significantly boosts the true
matches and enables graph matching to handle both out-
liers and many-to-many object correspondences.

1. Introduction

Sparse feature correspondence (SFC) is a fundamental
problem for a wide range of applications in computer vi-
sion, such as image retrieval, object recognition, 3D recon-
struction, and motion estimation. Since these feature sets
have meaningful internal structure, they are often consid-
ered as two separate graphs, but not simply as point sets.
As a result, SFC can be modelled as graph matching in
which graph nodes represent features extracted from each
image while graph edges represent relationships between
features. Graph matching finds a mapping between the two
feature sets by minimizing the distortions of the two graphs.
Compared to the parametric models (e.g. Thin-Plate Spline)
and the methods with geometric constraints (e.g., RANSAC
with rigid transformation assumption), graph matching pro-

vides greater flexibility for object modeling and is more ro-
bust to large non-rigid transformations.

There have been a myriad of algorithms proposed for
graph matching [7]. Those before 1990s did not aim to
optimize a well-defined objective function. Among re-
cent algorithms, the Integer Quadratic Programming (IQP)
has emerged as a de facto formulation of graph matching
[2, 8, 14, 15, 23, 19, 11]. IQP explicitly considers both
unary and pair-wise terms which reflect the compatibilities
in feature appearance as well as pair-wise geometric rela-
tionships. Since IQP is NP-complete, the optimal solution
is virtually unachievable and approximations are required.
While recent approximate methods have led to tremendous
progress, the results for many real-world images are still far
from being perfect due to several factors.

Aside from its NP-complete nature, IQP owns several
limitations some of which might not have been explicitly
pointed out before. Firstly, the combinatorial nature of
graph matching makes computation of the full affinity ma-
trix in IQP intractable for large graphs. Secondly, due to the
non-negative property of the edge attributes, the objective
function of IQP prefers more matches even if they are out-
liers. Last but not least, IQP assumes that each graph con-
tains only one cluster of nodes. In real-world cases, how-
ever, image pairs can have a large number of sparse features,
significant clutter, multiple objects, and even many-to-many
object correspondences. Therefore, graph matching poses
three challenges to SFC: (1) its combinatorial nature limits
the size of the possible matches; (2) it is sensitive to out-
liers; (3) it works poorly for many-to-many object corre-
spondences.

To address the first challenge, most methods establish
the set of candidate matches by using unary descriptors of
discriminative features, such as SIFT [18], at a relatively
low cost. Then only a small number of matches are utilized
to build an initial graph. Their results might be unsatisfac-
tory due to the loss of useful information hidden in the full
matching space [5]. Cho et al.[5] proposed a progressive
framework to update candidate matches based on pair-wise
geometric relationships between new matches and the cur-
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rent graph matching result. It greatly boosts the objective
function of IQP. However, it tends to introduce many out-
liers because the current graph matching result might be
noisy. Furthermore, its computational complexity is high
because exploring the full matching space is required.

To address the second challenge, some popular attempts
extend the general graph to the hyper-graph [9, 13, 24]. By
using higher-order constraints (e.g., projective invariance)
instead of the unary or pair-wise ones, such methods suc-
cessfully filter out most outliers. Unfortunately, they also
work poorly for many-to-many object correspondences due
to the single cluster assumption.

To address both the second and the third challenges si-
multaneously, unsupervised clustering might be the most
promising approach. Each cluster of matches naturally cor-
responds to one object pair, and the outliers are filtered out
by eliminating the clusters with small sizes or authorities[3].
Cho et al.[1] and Zhang et al.[25] proposed two novel meth-
ods based on agglomerative clustering. Such methods are
based on heuristic rules and therefore global optimum can-
not be guaranteed. Other attempts perform clustering via
mode-seeking in the graph domain. Liu et al.[17] intro-
duced a graph shift algorithm to detect dense subgraphs
with iterative shrinking and expansion. Jouili et al.[12] pre-
sented a median graph shift which is an extension of the
medoid shift based on the concept of the median graph.
Both methods perform mode-seeking by shifting from one
subgraph to another subgraph, but not between nodes. As
will be shown, such method largely depends on the initial-
ization and is prone to local minima. Cho et al.[3] proposed
a node-shifting scheme based on the high-order personal-
ized PageRank (PPR) matrix. Its iterative PPR propagation
scheme tends to accumulate errors on outliers, and PPR ma-
trix is computationally expensive.

In this paper, we try to solve those challenges with a
unified framework—Density Maximization. We first pro-
pose a density local estimator (𝐷𝐿𝐸) which is a reliable
measure for the quality of matches. Our work is inspired
by Lin et al.[16] who observed that the geometric trans-
formations associated with neighbouring true matches are
smoothly varying even for significant displacements. The
basic idea of 𝐷𝐿𝐸 is to measure the quality of a match by
using only the inliers from a local smooth neighbourhood,
in order to avoid being cluttered by outliers and other object
correspondences. Density Maximization is then modeled
as maximization of the 𝐷𝐿𝐸 values both locally and glob-
ally. Our local maximization, named Density-Ascent Shift
(𝐷𝐴𝑆), detects clusters of nodes as well as eliminates out-
liers. 𝐷𝐴𝑆 is a mode-seeking method similar to [12, 3, 17],
but is much more robust to clutter. Furthermore, 𝐷𝐴𝑆 is
much faster than [12, 3, 17] because it does not require it-
erations while [12, 3, 17] do. Our global maximization,
called Density-Ascent Update (𝐷𝐴𝑈 ), refines the candidate

matches by efficiently exploring a much larger matching
space. 𝐷𝐴𝑈 is similar to the progression method of Cho
et al.[5] which updates matches in a progressive way, but
is more than one order of magnitude faster than [5] while
introducing much less outliers.

Density Maximization performs 𝐷𝐴𝑆 and 𝐷𝐴𝑈 itera-
tively until convergence. At each iteration, the result of
𝐷𝐴𝑆 is the starting point of 𝐷𝐴𝑈 . This simple scheme
ensures that updating candidate matches is mainly based on
the inliers, thus leading to a high precision. Similar to the
progression method [5], Density Maximization is orthogo-
nal to specific graph matching algorithms and can be used
to improve any of them. Experimental evaluation on exten-
sive natural images demonstrates that Density Maximiza-
tion significantly boosts the true matches and enables graph
matching to handle outliers and many-to-many object cor-
respondences.

Compared to the state-of-the-art methods, Density Max-
imization has the following advantages:

(1) It addresses the three challenges of graph matching
in a unified framework.

(2) It is much more robust to significant clutter.
(3) It is more than one order of magnitude faster.
(4) Its precision is much higher.

2. Background

2.1. Graph matching formulation

Let 𝐺𝑃 = (𝑉 𝑃 , 𝐸𝑃 , 𝐴𝑃 ) and 𝐺𝑄 = (𝑉 𝑄, 𝐸𝑄, 𝐴𝑄) be
two attributed graphs, where 𝑉 denotes a set of nodes, 𝐸,
edges, and 𝐴, attributes. The objective of graph matching
is to find a mapping between 𝑉 𝑃 and 𝑉 𝑄, represented by
a binary assignment matrix 𝑋 ∈ {0, 1}𝑛𝑃×𝑛𝑄

with 𝑛𝑃 and
𝑛𝑄 denoting the numbers of nodes in 𝐺𝑃 and 𝐺𝑄 respec-
tively. 𝑋𝑖,𝑎 = 1 implies that node 𝑣𝑃𝑖 ∈ 𝑉 𝑃 matches node
𝑣𝑄𝑎 ∈ 𝑉 𝑄. Let 𝑥 ∈ {0, 1}𝑛𝑃𝑛𝑄

denote the column-wise
vectorized replica of 𝑋 , the integer quadratic programming
(IQP) formulates graph matching as

𝑥∗ = argmax
𝑥

𝑥𝑇𝑊𝑥, (1)

𝑠.𝑡. ∀𝑖 ∑𝑛𝑄

𝑎=1 𝑥𝑖𝑎 ≤ 1,∀𝑎 ∑𝑛𝑃

𝑖=1 𝑥𝑖𝑎 ≤ 1 and

𝑥 ∈ {0, 1}𝑛𝑃𝑛𝑄

The two-way constraints of (1) refer to the one-to-one
matching from 𝐺𝑃 to 𝐺𝑄. In sparse feature correspon-
dence, the nodes represent features extracted from each im-
age while the edges denote relationships between features.
The symmetric affinity matrix 𝑊 encodes both the unary
and pairwise similarities. A diagonal element 𝑊𝑖𝑎;𝑖𝑎 rep-
resents a unary similarity of a match (𝑣𝑃𝑖 , 𝑣𝑄𝑎 ), and a non-
diagonal term 𝑊𝑖𝑎;𝑗𝑏 refers to a pairwise similarity of two
matches (𝑣𝑃𝑖 , 𝑣𝑄𝑎 ) and (𝑣𝑃𝑗 , 𝑣𝑄𝑏 ). Every element of 𝑊 is
non-negative.
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Initial matches Graph matching DAUDAS DASAn image pair
Density Maximization

Figure 1. Overview of our Density Maximization framework. The Graph Matching result contains 283 true matches together with 315
outliers. Density Maximization improves Graph matching by iterating 𝐷𝐴𝑆 and 𝐷𝐴𝑈 . 𝐷𝐴𝑆 eliminates most outliers and detects four
clusters of true matches. 𝐷𝐴𝑈 boosts the number of true matches to 416 and introduces only 63 outliers. The final step 𝐷𝐴𝑆 further
removes 19 outliers. True matches are shown with color lines and false matches are shown with black lines.

2.2. Analysis of IQP

Aside from the NP-complete nature, IQP has several
other limitations.

Firstly, the combinatorial nature makes the computation
of 𝑊 intractable. A real-world image of common size con-
tains more than 𝑛 = 1000 sparse features by using the pop-
ular affine or scale invariant detectors such as SIFT [18],
MSER [20] and Harris Affine [21]. This results in a huge
affinity matrix of dimension (𝑛×𝑛)2 = 10004. Most graph
matching methods reduces the size of 𝑊 by using matches
at a relatively high unary similarity. Such a simple scheme
often leads to the loss of useful information hidden in the
full matching space [5].

Secondly, IQP prefers more matches. Let 𝑣𝑃𝑖 and 𝑣𝑄𝑎
denote two noisy features which have no true matching
ones, setting 𝑋𝑖;𝑎 = 1 non-decreases the objective func-
tion 𝑥𝑇𝑊𝑥 because every element of 𝑊 is non-negative.
This means that IQP prefers including the matches of all
the features, even if they might be outliers. To alleviate this
problem, some methods sparsify 𝑥 by increasing large val-
ues while smoothing out small values [2, 8, 14, 23, 11]. The
results still contains many outliers.

Finally, IQP assumes that the feature set from one image
belongs to a single cluster. This means that the quality of
one match is measured based on all current matches. From
(1) we can see that the contribution of each match (𝑣𝑃𝑙 , 𝑣𝑄𝑚)
to the objective function is

𝐶(𝑙,𝑚) = 𝑥𝑙𝑚(
∑

𝑖 ∕=𝑙,𝑎∕=𝑚

𝑊𝑖𝑎;𝑙𝑚𝑥𝑖𝑎 +
∑

𝑗 ∕=𝑙,𝑏∕=𝑚

𝑊𝑙𝑚;𝑗𝑏𝑥𝑗𝑏)

(2)
If 𝐶(𝑙,𝑚) > 𝐶(𝑙, 𝑠), IQP prefers (𝑣𝑃𝑙 , 𝑣𝑄𝑚) to (𝑣𝑃𝑙 , 𝑣𝑄𝑠 ),
and vice versa. 𝐶(𝑙,𝑚) contains the similarities between
(𝑣𝑃𝑙 , 𝑣𝑄𝑚) and all the other matches. This measure is prob-
lematic for many-to-many object correspondences because
the matches in one object correspondence might clutter
those in others. To avoid this, each object correspondence

should be considered independently.

3. Density Maximization

Similar to [2, 4, 14, 18], we construct an association
graph 𝐺𝑎𝑔 = (𝑉 𝑎𝑔, 𝐸𝑎𝑔, 𝐴𝑎𝑔) based on the affinity ma-
trix 𝑊 . We take each candidate match (𝑣𝑃𝑖 , 𝑣𝑄𝑎 ) as a node
𝑣𝑖𝑎 ∈ 𝑉 𝑎𝑔 , and its associated weight 𝑊𝑖𝑎;𝑗𝑏 as the attribute
𝑎𝑖𝑎;𝑗𝑏 ∈ 𝐴𝑎𝑔 of the edge 𝑒𝑖𝑎;𝑗𝑏 ∈ 𝐸𝑎𝑔 . Then the origi-
nal graph matching problem between 𝐺𝑃 and 𝐺𝑄 becomes
node selection problem in the graph 𝐺𝑎𝑔 . For brevity, we
will use a single letter to index the node of 𝐺𝑎𝑔 in the fol-
lowing sections, e.g., 𝑣𝑖 denotes the 𝑖 − 𝑡ℎ node and 𝑊𝑖;𝑗

denotes the component of 𝑊 at the 𝑖−𝑡ℎ row and the 𝑗−𝑡ℎ
column.

Figure 1 shows the framework of Density Maximization.
Given an image pair, the salient features are firstly extracted
from each image and then 𝑁𝐶 candidate matches are readily
established using unary descriptors of the features at a rela-
tively low cost. Those matches are taken as the nodes of an
initial association graph. Graph matching selects best nodes
from it in order to maximize the objective function in (1).
Then a reduced set of nodes and their edges are selectively
used to construct a new graph which is called valid graph
𝐺𝑉 in this paper. Density Maximization improves 𝐺𝑉 by
iterating 𝐷𝐴𝑆 and 𝐷𝐴𝑈 . Based on 𝐺𝑉 , 𝐷𝐴𝑆 finds the
clusters of nodes as well as removes the outliers by local
maximization of the 𝐷𝐿𝐸 values. 𝐷𝐴𝑈 produces a up-
dated graph 𝐺𝑈 with 𝑁𝐶 nodes by global maximization of
the 𝐷𝐿𝐸 values via exploring a much larger graph called
potential graph 𝐺𝑇 . At each iteration, the result of 𝐷𝐴𝑆
is the starting point of 𝐷𝐴𝑈 . This ensures that the updates
of matches are mainly based on inliers. The iterations con-
tinue until the total 𝐷𝐿𝐸 values no longer increase. The
final step 𝐷𝐴𝑆 further removes the outliers introduced by
𝐷𝐴𝑈 . As can be seen from Fig.1, Density Maximization is
orthogonal to specific graph matching algorithms, and any
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Figure 2. Kernel density estimation for inliers (denoted by red star)
and outliers (denoted by black dot). (a) No Ω constraint. (b) With
Ω constraint.

of them can be adopted as the graph matching module in the
framework.

3.1. Density local estimator

Recently, graph density has shown its potentials to iden-
tify inliers and detect strongly connected node clusters in
an association graph. A few attempts to define the graph
density include the average kernel density of Liu et al.[17],
the random walk density of Cho et al.[4], and the personal-
ized PageRank density of Cho et al.[3]. Now we define our
density local estimator (𝐷𝐿𝐸). The main difference be-
tween 𝐷𝐿𝐸 and other methods lies in its well-defined local
smooth domain.

The intuitive of 𝐷𝐿𝐸 is to estimate graph density at one
node by using only the nodes within a same object, so that it
can avoid the clutter problem introduced by outliers and the
nodes in other objects. However, it is difficult to determine
whether two nodes belong to a same object. Fortunately,
it has been observed that the geometric transformations as-
sociated with neighbouring matches in a same object are
smoothly varying even for significant displacements [16].
This reveals a simple method to approximately identify the
nodes within a same object by using a local smooth neigh-
bourhood Ω. Ω(𝑖) should satisfy two criteria: (1) Locality:
the neighbours are within a close proximity to node 𝑣𝑖. (2)
Smoothness: the neighbours should have similar values to
𝑣𝑖 for a same measure. These criteria prevent the scope of
neighbours from extending into outliers and the nodes in
other objects.

We adopt the popular kernel density estimation method
to compute the graph density locally. We consider node se-
lection as a distribution and use 𝑥𝑖 to denote the probability
of selecting node 𝑣𝑖. Suppose we sample the distribution
𝑁 ( 𝑁 →∞) times, then the number of selecting 𝑣𝑖 is 𝑁𝑥𝑖.
The density at 𝑣𝑖 is

𝐷𝐿𝐸(𝑖) =

∑
𝑗∈Ω(𝑖) 𝑁𝑥𝑗𝐾(𝑖, 𝑗)

𝑁
=

∑

𝑗∈Ω(𝑖)

𝑥𝑗𝐾(𝑖, 𝑗) (3)

This is called 𝐷𝐿𝐸 in this paper. 𝐾(𝑖, 𝑗) = 𝑊𝑖;𝑗 implies
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Figure 3. (a)Top 10 max TDP values. (b)The clusters for top 10
max TDP values. The match clusters of the four object pairs (de-
noted with red, green, blue and cyan lines) have TDP values sig-
nificantly larger than those of the false match clusters.

the similarity between 𝑣𝑖 and 𝑣𝑗 . The only difference be-
tween 𝐷𝐿𝐸 and the classical kernel density estimation lies
in Ω.

The Locality of 𝑣𝑗 with respect to 𝑣𝑖 is defined by using
the k-nearest neighbour function 𝑘𝑁𝑁(⋅, 𝑘):

𝐿(𝑣𝑖, 𝑣𝑗) = 1 𝑖𝑓 𝑣𝑗 ∈ 𝑘𝑁𝑁(𝑣𝑖, 𝑘), 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(4)

The Smoothness of Ω(𝑖) is defined on two measures: the
geometric transformation and the probability of node selec-
tion. The Smoothness of geometric transformation between
node 𝑣𝑖 and 𝑣𝑗 amounts to 𝑊𝑖;𝑗 . The Smoothness of proba-
bility is measured by 𝑒𝑥𝑝(−(𝑥𝑖 − 𝑥𝑗)

2/𝜎2) with a parame-
ter 𝜎. Then Ω(𝑖) is defined as a 𝜀− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑

Ω(𝑖) = {𝑣𝑗 ∈ 𝑉 𝑉 ∣Φ(𝑖, 𝑗) > 𝜀}
∪
{𝑣𝑖} (5)

where Φ(𝑖, 𝑗) = 𝐿(𝑣𝑖, 𝑣𝑗)𝑊𝑖,𝑗𝑒𝑥𝑝(−(𝑥𝑖 − 𝑥𝑗)
2/𝜎2) and

the parameter 𝜀 controls the size of Ω(𝑖). Figure 2 demon-
strates the impact of Ω. With the constraint of Ω, the in-
liers’ 𝐷𝐿𝐸 values almost consistently larger than those of
outliers at nearby locations.

The node selection probability 𝑥 naturally corresponds
to the solutions to (1) since many graph matching methods
solve (1) by relaxing the constraints on 𝑥 such that its ele-
ments can take real values in [0,1]. In those methods, 𝑥 can
be viewed as the confidence that the matches are true [14]
or as the probability of visits by random walks [2, 13, 4]. In
this paper we consider 𝑥 as the node selection probability.
For other graph matching methods in which 𝑥 are integer,
we normalize 𝑥 to obtain a uniform distribution. Therefore
𝐷𝐿𝐸 is orthogonal to specific graph matching algorithms
whether 𝑥 are continuous or not, unlike other methods.

3.2. Density Ascent Shift

As shown in Fig.1, the aim of 𝐷𝐴𝑆 is to produce node
clusters and eliminate outliers from valid graph 𝐺𝑉 . 𝐷𝐴𝑆
is a mode-seeking method and the density modes on a graph
are defined as follows.
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Algorithm 1: Density Ascent Shift
Input: matching (𝐺𝑉 , 𝑥)
Output: clean graph 𝐺𝐶 and an indicator 𝐼𝑆 for clusters
1 compute 𝐷𝐿𝐸(𝑖) ∀𝑣𝑖 ∈ 𝐺𝑉

2 for each node 𝑣𝑖 ∈ 𝐺𝑉 do
𝐷𝐴(𝑖) = argmax𝑗∈Ω(𝑖) 𝐾(𝑖, 𝑗)Δ𝐷𝐿𝐸(𝑗)

end
3 assign each node 𝑣𝑗 to its mode by a tree traversal

along 𝐷𝐴(𝑖), and compute the total-density
4 compute the 𝑇𝐷𝑃 for each cluster, and remove

outliers with 𝑇𝐷𝑃 < 𝑡
5 produce final graph 𝐺𝐶 using the left clusters, set

𝐼𝑆(𝑖) = 𝑚 if node 𝑣𝑖 belongs to the 𝑚− 𝑡ℎ cluster

Definition 1 Density modes on a graph are local maxi-
mizers of the 𝐷𝐿𝐸 values.

𝐷𝐴𝑆 performs mode-seeking along the density-ascent
direction. The density-ascent 𝐷𝐴(𝑖) of node 𝑣𝑖 is formu-
lated as

𝐷𝐴(𝑖) = arg max
𝑗∈Ω(𝑖)

𝐾(𝑖, 𝑗)Δ𝐷𝐿𝐸(𝑗) (6)

which means the neighbouring node of 𝑣𝑖 with the high-
est expectation of 𝐷𝐿𝐸 increment. This density-ascent is
the steepest ascent over the 𝐷𝐿𝐸 values within Ω(𝑖). Ω(𝑖)
prevents shifting into irrelevant clusters. Similar to other
mode-seeking methods[12, 4, 3], 𝐷𝐴𝑆 is guaranteed to
converge.

Theorem 1 A finite sequence of density-ascent shifts
from any node converges to a density mode.

Proof Since Ω(𝑖) of any node 𝑣𝑖 includes itself, the 𝐷𝐿𝐸
values of a sequence of shifts keep strictly increasing until
the shifts reach a node whose density-ascent is itself. The
final node, therefore, is the density mode, and the length
of the sequence is ∣𝑉 𝑉 ∣ at most, with ∣𝑉 𝑉 ∣ denoting the
number of nodes in 𝐺𝑉 .

For each node, we compute its density-ascent just once.
Then the successive density-ascent for any node already ex-
ists. The trajectory of nodes sharing a common density
mode builds a tree, and leads to a natural cluster. Then
the cluster label of all nodes associated with each disjoint
tree can be assigned in a single tree traversal, similar to the
medoid shift[22].

We define the total-density of each cluster as the sum
of the 𝐷𝐿𝐸 values of its members, and the total-density-
percentage (𝑇𝐷𝑃 ) of each cluster as the ratio between its
total-density and the sum of the total-densities of all the
clusters. The clusters of outliers usually have very small
total-density, so that 𝑇𝐷𝑃 provides a reliable measure for
detection and elimination of them, as shown in Fig.3. 𝐷𝐴𝑆
is depicted in Algorithm 1.

Algorithm 2: Density Ascent Update
Input: potential graph 𝐺𝑇 , clean graph 𝐺𝐶 ,𝑥 and 𝑁𝐶

Output: a updated graph 𝐺𝑈

1 𝑛𝑥(𝑖)← 0, 𝑑𝑥(𝑖)← 0, ∀𝑣𝑖 ∈ 𝐺𝑇

for each node 𝑣𝑗 ∈ 𝐺𝐶 do
for each 𝑣𝑖 ∈ Ω′(𝑗) do

𝑛𝑥(𝑖)← 𝑛𝑥(𝑖) + 𝑥𝑗𝐾(𝑗, 𝑖)
𝑑𝑥(𝑖)← 𝑑𝑥(𝑖) +𝐾(𝑗, 𝑖)

end
end
𝑥← 𝑛𝑥./𝑑𝑥

2 𝐷𝐿𝐸(𝑖)← 0, ∀𝑣𝑖 ∈ 𝐺𝑇

for each node 𝑣𝑗 ∈ 𝐺𝐶 do
for each 𝑣𝑖 ∈ Ω(𝑗) do

𝐷𝐿𝐸(𝑖)← 𝐷𝐿𝐸(𝑖) + 𝑥𝑗𝐾(𝑗, 𝑖)
end

end
3 𝐺𝑈 ←𝑁𝐶 nodes with the largest 𝐷𝐿𝐸 values

3.3. Density Ascent Update

Given a clean graph 𝐺𝐶 , the aim of 𝐷𝐴𝑈 is to produce a
updated graph 𝐺𝑈 with 𝑁𝐶 nodes by maximizing the total
𝐷𝐿𝐸 values. To achieve this, 𝐷𝐴𝑈 explores the potential
graph 𝐺𝑇 which contains 𝐺𝐶 but is much larger. 𝐺𝑇 covers
most true matches and will be detailed later. 𝐷𝐴𝑈 firstly
estimates the 𝐷𝐿𝐸 values of the nodes in 𝐺𝑇 , and then
select 𝑁𝐶 best nodes with largest values to construct 𝐺𝑈 .
since 𝐺𝐶 ⊂ 𝐺𝑇 , this global maximization scheme ensures
that 𝐷𝐴𝑈 non-decreases the total 𝐷𝐿𝐸 values.

To compute the 𝐷𝐿𝐸 value for each node 𝑣𝑖 in 𝐺𝑇 , we
need to identify Ω(𝑖) at first. But the node selection proba-
bility 𝑥𝑖 might be unavailable if 𝑣𝑖 does not belong to 𝐺𝐶 .
Here we approximate 𝑥𝑖 by

𝑥𝑖 =

∑
𝑗∈Ω′(𝑖) 𝑥𝑗𝐾(𝑖, 𝑗)

∑
𝑗∈Ω′(𝑖) 𝐾(𝑖, 𝑗)

(7)

which is a weighted average of the selection probabil-
ities over a local smooth neighbourhood Ω′(𝑖). Ω′(𝑖)
is similar to Ω(𝑖) but does not consider the probabil-
ity Smoothness since 𝑥𝑖 is unknown. However, 𝑥𝑗 for
𝑗 ∈ Ω′(𝑖) might be unavailable. We observe that Ω′(𝑖)
is nearly symmetric for true matches. By investigat-
ing the nodes for true matches in Fig.1 we find that
if 𝑗 ∈ Ω′(𝑖) the probability for 𝑖 ∈ Ω′(𝑗) is above
90%. Therefore (7) can be approximately rewritten as
𝑥𝑖 =

∑
𝑖∈Ω′(𝑗) 𝑥𝑗𝐾(𝑗, 𝑖)/

∑
𝑖∈Ω′(𝑗) 𝐾(𝑗, 𝑖). Let 𝑛𝑥(𝑖) =∑

𝑖∈Ω′(𝑗) 𝑥𝑗𝐾(𝑗, 𝑖) and 𝑑𝑥(𝑖) =
∑

𝑖∈Ω′(𝑗) 𝐾(𝑗, 𝑖), the con-

tribution of each node 𝑣𝑗 in 𝐺𝐶 to 𝑛𝑥(𝑖) is 𝑥𝑗𝐾(𝑗, 𝑖), and
that to 𝑑𝑥(𝑖) is 𝐾(𝑗, 𝑖) if 𝑖 ∈ Ω′(𝑗). Therefore all 𝑥𝑖 can be
estimated very efficiently by traversing the nodes of 𝐺𝐶 .

Since Ω′(𝑖) is nearly symmetric, Ω(𝑖) is also nearly sym-
metric because 𝑒𝑥𝑝(−(𝑥𝑖 − 𝑥𝑗)

2/𝜎2) is symmetric. Then
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(3) can be rewritten as 𝐷𝐿𝐸(𝑖) =
∑

𝑖∈Ω(𝑗) 𝑥𝑗𝐾(𝑗, 𝑖)

which means that the contribution of each node 𝑣𝑗 in 𝐺𝐶

to 𝐷𝐿𝐸(𝑖) is 𝑥𝑗𝐾(𝑗, 𝑖). Therefore all 𝐷𝐿𝐸(𝑖) can be effi-
ciently calculated by traversing the nodes of 𝐺𝐶 . 𝐷𝐴𝑈 is
summarized in Algorithm 2.

The potential graph 𝐺𝑇 is constructed using 𝑍 matches
for each feature based on the unary similarity. We test on
the image pairs of the intra-class dataset[1] which own large
intra-category variations, and find that 𝐺𝑇 covers more than
95% true matches when 𝑍 = 40. This reveals that exploring
the whole matching space like Cho et al.[5] is unnecessary.

3.4. Analysis

Using the approximate nearest neighbour (ANN)
search, the computational complexity of 𝐷𝐴𝑈 is
𝑂(𝑘∣𝑉 𝑉 ∣ log(𝑍𝑛𝑃 )) with ∣𝑉 𝑉 ∣ denoting the node
number of 𝐺𝑉 , 𝑛𝑃 denoting the node number of graph
𝐺𝑃 (i.e., the feature number of one image) and 𝑘 = 50.
As far as we know, the only work similar to 𝐷𝐴𝑈 is the
progression method[5] whose computational complexity is
𝑂(𝑘1𝑘2∣𝑉 𝑉 ∣ log(𝑛𝑃 ) log(𝑛𝑄)) with 𝑘1 = 25 and 𝑘2 = 5.
𝐷𝐴𝑈 is more than one order of magnitude faster because
𝑘1𝑘2 log(𝑛

𝑃 )𝑙𝑜𝑔(𝑛𝑄)/𝑘 log(𝑍𝑛𝑃 ) > 10 for general cases
with 𝑛𝑃 > 1000 and 𝑛𝑄 > 1000. The main difference is
that 𝐷𝐴𝑈 explores the potential graph 𝐺𝑇 while the pro-
gression method searches the whole matching space based
on 𝐺𝑉 . Since 𝐺𝑇 covers most true matches, exploring
𝐺𝑇 does not degrade the performance. On the other hand,
this scheme successfully avoids many outliers in the whole
matching space, as will be shown in the experiments.

The computational complexity of 𝐷𝐴𝑆 is
𝑂(𝑘∣𝑉 𝑉 ∣ log ∣𝑉 𝑉 ∣), more than one order of magni-
tude faster than most mode-seeking methods. The high
efficiency benefits from its non-iteration scheme. More
importantly, either 𝐷𝐴𝑈 or 𝐷𝐴𝑆 is much faster than
most graph matching methods [2, 8, 14, 15, 23, 19, 11],
indicating that we can improve graph matching without
introducing too much computational cost.

An important trick of our Density Maximization frame-
work is that 𝐷𝐴𝑈 takes the result of 𝐷𝐴𝑆 as its start-
ing point at each iteration. This ensures that the updating
matches is mainly based on inliers. In this way, Density
Maximization significantly increases the precision in sharp
contrast with the progression method, as shown in Fig.4.

4. Experiments

In our experiments, the candidate matches are generated
using the SIFT descriptor. To measure the similarity be-
tween two matches (𝑣𝑃𝑖 , 𝑣𝑄𝑎 ) and (𝑣𝑃𝑗 , 𝑣𝑄𝑏 ), we adopted the
symmetric transfer error 𝑑(𝑖𝑎; 𝑗𝑏) used in [5, 13, 1, 4]. The
affinity matrix 𝑊 is calculated by 𝑊𝑖𝑎;𝑖𝑏 = 𝑚𝑎𝑥(50 −
𝑑(𝑖𝑎; 𝑗𝑏), 0). In Density Maximization, we set 𝜎 = 0.2,
𝑘 = 50, 𝜀 = 10 and 𝑡 = 0.03.
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Figure 4. Performance growth on the image pair in Fig.1 by our
Density Maximization and the progression method[5]. The plot
shows the precision w.r.t the iteration steps. Note that the step 0
denotes the result by graph matching.

(a) (b) (c) (d)

Figure 5. (a)The result by GP[5] based on the graph matching re-
sult in Fig.1. (b)The result by our 𝐷𝐴𝑈 . (c)The result by GP
together with our 𝐷𝐴𝑆. The false match clusters are denoted by
yellow and magenta lines. (d)The result by our 𝐷𝐴𝑈 together
with our 𝐷𝐴𝑆. There is no false match clusters.

We test Density Maximization on three challenging
benchmark datasets: Intra-class dataset[1], ETHZ toys
dataset[10], Co-recognition dataset[6]. Intra-class dataset
consists of 30 image pairs of large transformations and
intra-class variation. It provides detected MSER features
and initial matches. In this dataset, most images have a
small number of features and only several hundreds of ini-
tial matches. For fair comparison, we adopt those features
and always fix the number of candidate matches 𝑁𝐶 to the
same as the number of the given initial matches. ETHZ toys
dataset includes 9 different rigid/non-rigid objects together
with the test images of significant clutter. Co-recognition
dataset contains 6 image pairs with complex many-to-many
object correspondences. The ground truth feature correpon-
dences are manually constructed for each image pairs to en-
able quantitatively evaluation. For these two dataset, we use
the MSER and the Harris affine detectors with the SIFT de-
scriptor, and set 𝑁𝐶 = 3000. Our testing environment is
MS Windows 7 Professional with Intel Core i5-3550 CPU
3.3GHz, 16GB RAM.

4.1. Density Maximization vs related work

Density Maximization contains novel approaches to both
updating matches (i.e., 𝐷𝐴𝑈 ) and clustering matches (i.e.,
𝐷𝐴𝑆). We will show the effectiveness of it in both of these
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(a) (b)

(c) (d)

Figure 6. (a)A image pair. (b)The result by SAE[17]. (c)The result
by (ACC)[1]. (d)The result by our 𝐷𝐴𝑆. True matches are shown
with green lines and false matches are shown with black lines.

D PG 𝐷𝐴𝑈 ACC SAE 𝐷𝐴𝑆 PG+ DM
ACC

1 81 83 71 43 83 71/70 73/81
2 69 77 63 No 85 62/69 72/88
3 66 81 67 No 91 61/74 75/92

Table 1. Recall (%) of PG and our 𝐷𝐴𝑈 , Precision (%) of
ACC, SAE and our 𝐷𝐴𝑆, Recall/Precision (%) of PG+ACC and
our Density Maximization (DM). D 1,2 and 3 denote Intra-class
dataset, ETHZ toys dataset and Co-recognition dataset respec-
tively. ’No’ denotes the failure of SAE.

steps as well as a whole.
Firstly we compare our 𝐷𝐴𝑈 with the graph progres-

sion (GP)[5] since it is the only similar work to 𝐷𝐴𝑈 as far
as we know. For fair comparison, we adopt the same pro-
gressive framework as GP, which performs graph matching
and updating matches iteratively. Since the aims of both
𝐷𝐴𝑈 and GP are to boost the true matches, we access Re-
call on the three datasets. The results of GP contain lots of
overlapping matches. To compute Recall more accurately,
we count the overlapping matches only once. The overall
results are given in Table 1. Compared to our 𝐷𝐴𝑈 , GP
tends to introduce more outliers which are very difficult to
remove. Figure 5 shows the outliers of an example. The av-
erage times for each iteration of GP to process each image
pair in the three data-sets are 0.45, 5.32 and 31.53 seconds
respectively. The corresponding times for 𝐷𝐴𝑈 are 0.27,
1.64 and 3.73 seconds respectively.

Secondly, we compare our 𝐷𝐴𝑆 with two state-of-the-
arts methods: the agglomerative correspondence clustering
(ACC)[1] and the Shrink-and-Expansion (SAE)[17]. Since
SAE cannot handle both ETHZ toys and Co-recognition
datasets (the source code provided by the authors on the
internet has ’out of memory’ problem when handling thou-
sands of matches), we only report its result for Intra-class
dataset. Since the aim of 𝐷𝐴𝑆 is to improve Precision, we
access Precision on the three datasets. The overall results
are given in Table 1 and an example is shown in Fig.6. SAE

(a) (b)

(c) (d)

Figure 7. (a)A image pair. (b)Graph matching result. (c)The result
by GP+ACC. (d)The result by our Density Maximization. True
matches are shown with green lines and false matches are shown
with black lines.

D SM PM BGM IPFP RRWM

1 43/47 39/44 32/36 47/39 45/41
2 23/64 27/52 18/45 33/67 29/53
3 27/51 25/49 21/42 33/41 31/44

Table 2. Performance improvement (%) over Recall/Precision by
Density Maximization.

tends to include lots of outliers. The results of ACC are
much better, but are still noisy. In contrast, our 𝐷𝐴𝑆 suc-
cessfully detects true matches and distinguishes them from
outliers. To process each image pair in the three datasets
𝐷𝐴𝑆 takes only 0.69, 1.72 and 1.93 seconds on average,
while ACC takes 8.74, 78.52 and 95.73 seconds. SAE is
much slower and takes more than one minute on average to
process each image pair of Intra-class dataset.

Finally, we compare our Density Maximization with a
combined method—GP+ACC. GP+ACC is performed in a
similar way of Density Maximization: GP and ACC are per-
formed iteratively till convergence. We measure both Recall
and Precision on the three datasets. As shown in Fig.7, the
outliers introduced by GP cannot be eliminated by ACC,
and result in noisy clusters. So GP+ACC increases Recall at
the expense of Precision. Our Density Maximization solves
this problem effectively by avoiding outliers from source. It
largely outperforms GP+ACC in both precision and recall
as shown by Table 1.

4.2. Density Maximization vs Graph Matching

In this experiment, we show the improvement of Den-
sity Maximization on several state-of-the arts graph match-
ing methods: SM[14], PM[24], BGM[8], IPFP[15] and
RRWM[2]. The quantitative results are summarized in Ta-
ble 2, and some examples are shown in Fig.8. The graph
matching methods cannot distinguish inliers from outliers,
and fail to separate matches of one object from those of
others. Density Maximization solves these problems effec-
tively by detecting clusters of true matches. The precision
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(a) (b)

(c) (d)

(e) (f)

Figure 8. (a) and (b) are two input image pairs. (c)Result by
RRWM[2] for (a). (d)Result by SM[2] for (b). (e)The result by our
Density Maximization with RRWM as the graph matching mod-
ule. (f)The result by our Density Maximization with SM as the
graph matching module. True matches are shown with color lines
and false matches are shown with black lines.

is boosted by 36% ∼ 67%, and the recall by 18% ∼ 47%.

5. Conclusion

We introduced a unified framework, called Density Max-
imization, which effectively resolves the three limitations of
conventional graph matching and achieves impressive per-
formance improvement. By globally and locally maximiz-
ing a novel proposed density estimator, i.e., density local
estimator, Density Maximization leads to the integration of
updating matches, eliminating outliers and cluster detec-
tion. We point out that the key to the high performance
is twofold: a well-defined local smooth neighbourhood to
avoid clutter and an iteration scheme to ensure that updating
matches is mainly based on inliers. Experiments demon-
strate that Density Maximization is adequate for very chal-
lenging real-world images which contain many-to-many ob-
ject correspondences and significant outliers.
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