
Fast Subspace Search via Grassmannian Based Hashing

Xu Wang
Math Department, University of Minnesota

wang1591@umn.edu

Stefan Atev
Proto Labs, Inc.

stefan.atev@gmail.com

John Wright
EE Department, Columbia University

johnwright@ee.columbia.edu

Gilad Lerman
Math Department, University of Minnesota

lerman@umn.edu

Abstract

The problem of efficiently deciding which of a database
of models is most similar to a given input query arises
throughout modern computer vision. Motivated by appli-
cations in recognition, image retrieval and optimization,
there has been significant recent interest in the variant of
this problem in which the database models are linear sub-
spaces and the input is either a point or a subspace. Cur-
rent approaches to this problem have poor scaling in high
dimensions, and may not guarantee sublinear query com-
plexity. We present a new approach to approximate near-
est subspace search, based on a simple, new locality sen-
sitive hash for subspaces. Our approach allows point-to-
subspace query for a database of subspaces of arbitrary di-
mension d, in a time that depends sublinearly on the num-
ber of subspaces in the database. The query complexity of
our algorithm is linear in the ambient dimension D, allow-
ing it to be directly applied to high-dimensional imagery
data. Numerical experiments on model problems in image
repatching and automatic face recognition confirm the ad-
vantages of our algorithm in terms of both speed and accu-
racy.

1. Introduction
Given a very large database of models, how can we ef-

ficiently determine which one that best fits a given input

query? This basic question arises repeatedly in computer

vision applications such as visual recognition, categoriza-

tion, image retrieval and beyond. These applications pose

two general challenges to the algorithm designer: imagery

data (and their features) are typically high-dimensional, and

databases arising in applications can be very large scale.

The large scale often precludes simply comparing the

query to each of the models in any reasonable amount of

time. Instead, researchers typically resort to more sophis-

ticated approximate nearest neighbor techniques, whose

query time is sublinear in the size of the database. For

the case in which the query is a vector and the database is

also a collection of vectors, these techniques are very well-

developed, in both theory and practice [5, 6, 11, 21].

However, data in computer vision problems often have

rich physical or geometric structure, which may not be well-

encoded using point models. For example, photometric or

textural properties of a collection of images can often be

better represented using linear or affine subspaces, rather

than a simple point model. In the approximate nearest sub-
space problem, we are given a collection of linear sub-

spaces. The goal is to efficiently determine which of the

database subspaces is closest to the input [3]. Good solu-

tions to this problem would allow us to efficiently query

large databases which contain much richer representations.

In contrast to approximate nearest neighbor, both the the-

ory and practice of approximate nearest subspace are still

developing. The most general known approach is due to

Basri et. al. [3]. It maps each subspace S ⊆ R
D to its or-

thogonal projection matrix PS , and then applies an approxi-

mate nearest neighbor algorithm to the projection matrices.

The advantage of this approach is that it cleanly reduces

the subspace problem to the better-understood point search

problem. However, because the projection matrix has size

Θ(D2), the algorithm’s performance suffers in high dimen-

sions.1 Moreover, the mapping from a subspace to an ortho-

projector does not preserve distances (for subspaces of dif-

ferent dimensions), and so performance guarantees for the

approximate nearest neighbor algorithm may not pull back

to the approximate nearest subspace problem. Algorithms

with sublinear query time, but exponential dependence on

dimension have also been introduced in [16].

Motivated in part by [3], there has been a flurry of re-

cent work on special cases of this problem. For example the

1[3] suggest using random projections after lifting as one means of con-

trolling the complexity.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.345

2776

case in which the query is a point and the database contains

hyperplanes (of dimension d = D − 1) has been studied

in connection to active learning and large-scale regression

[13]. Various approaches based on locality sensitive hash-

ing have been proposed [13, 15, 18, 19]. While various tech-

nical obstacles prevent these approaches from guaranteeing

sublinear query complexity over all inputs, they have been

used effectively in various practical vision problems. In the

algorithms community, there is also dedicated work on the

special case in which the queries are points and the database

consists of affine lines (d = 1). For example, Andoni et. al.

produce a data structure for this problem that has query time

O(D3n1/2+t) and space complexity D2nO(1/(c−1)2+1/t2),

for any t > 0 [2]. Again, the query time O(D3) could be

problematic in large dimensions.

Moreover, many of the most interesting models for com-

puter vision have a dimension d that falls somewhere in be-

tween 1 and D − 1. For example, linear subspaces spanned

by images taken under varying lighting may have dimen-

sion between 3 and 9, depending on the properties of the

object [4]. Local image patches also typically lie near sub-

spaces of dimension higher than one [22, 23]. So, despite

the above progress, there is still a need for algorithms that

can guarantee a query time that is sublinear in the number

of models n, have good (linear or sublinear) dependence on

the ambient dimension D, and can handle the case when

the input is a point and the database consists of subspaces

of arbitrary dimension d.

Contributions. In this paper, we provide a solution of the

approximate nearest subspace (ANS) search problem based

on the notion of locality sensitive hashing (see e.g., [11]).

We consider only linear subspaces. Our theoretical guaran-

tees for the sub-linear complexity and preprocessing space

of our solution distinguish between three types of searches:

line-line query (this is equivalent to point-line query as

explained in §2; it is also equivalent with line-point and

point-point queries when the points lie on the sphere); line-

subspace query (this is equivalent to point-subspace query

as explained in §2); and subspace-subspace query (for sub-

spaces of the same dimension). For all of these searches,

our preprocessing space is O(n1+ρ + nDd) and query time

is O(Ddnρ), where d is the largest dimension of subspaces

among both query elements and the database elements, D
is the ambient dimension and ρ < 1.

Nevertheless, the precise formulations and their cor-

responding estimates are different for the three types of

searches. For the subspace-subspace query (with dimen-

sion of subspaces greater than 1), the above estimate for the

query time holds as long as for each query element there

is a sufficiently close element in the database and the ap-

proximation constant is sufficiently large (with respect to

the subspace dimension). For line-line search we can obtain

better estimates of the parameters, in particular, asymptotic

estimate of ρ (for a special setting).

Our theoretical setting is designed to address recognition

problems. For example, our unorthodox restriction on the

maximal distance between query element and the database

(this appears only in some of our statements) can often be

met in practice, where query points may be contained in

or be sufficiently close to the database. We confirmed in

practice the competitive speed and accuracy of our proposed

solution on model problems in image repatching and auto-

matic face recognition.

Organization of this paper. In §2 we introduce nota-

tional conventions and adapt the notion of locality sensitive

hashing to the ANS problem. We then generalize a well-

known theoretical framework claiming that a locality sen-

sitive hashing family gives rise to a search algorithm with

sub-linear time. In §3, we propose a concrete hashing fam-

ily for the Grassmanian manifold G(D, d) and for the union

G(D, 1) ∪ G(D, d). We then formulate the main theorems

of this work detailing the quality of the basic sub-linear

search procedure in each one of the three types of searches

described above. The details of the ANS algorithm result-

ing from the locality sensitive hashing family we proposed

are outlines in §4, whereas §5 compares our ANS algorithm

method with the ANS algorithm of Basri et al. [3] on model

problems in image repatching and automatic face recogni-

tion.

2. Problem Formulation and Preliminaries
The Grassmannian. Let G(D, d) denote the Grassma-
nian manifold, i.e., the space of all d-dimensional linear

subspaces of RD. If 0 < d1 ≤ d2 < D, L1 ∈ G(D, d1)
and L2 ∈ G(D, d2), the principal angles θ1 ≥ ... ≥ θd1

be-

tween L1 and L2 can be defined as follows [9]: Let QL1 and

QL2 be matrices whose columns are orthonormal bases for

L1 and L2, respectively. For i = 1, . . . , d1 let σi(Q
T
L1
QL2

)

denote the i-th largest singular value of the matrix QT
L1
QL2

.

The principal angles π/2 ≥ θ1 ≥ θ2 ≥ · · · ≥ θd ≥ 0, are2

θi = arccos(σd−i(Q
T
L1
QL2

)), i = 1, . . . , d1. (1)

Using these angles, the “distance” between L1 and L2 is

distG(L1, L2) =

(
d1∑
i=1

θ2i

)1/2

. (2)

If d1 = d2 = d, it is a metric; where if d1 �= d2, it is

still a good measure of proximity. For example, if d1 = 1,

then distG(L1, L2) is the elevation angle between the line

L1 and the subspace L2.

2Here, we order the principal angles decreasingly, unlike the common

arrangement [9] (§12.4.3).

2777

Approximate Subspace Search. Motivated by the ap-

proximate nearest point search in [1], we define the approx-

imate nearest subspace search problem as follows:

Definition 2.1. (R, c)-approximate subspace search:
Let X be a set of d2-dimensional subspaces in R

D and R, c,
δ be positive numbers. A search algorithm is called (R, c)-
approximate subspace search if it fulfills the following re-
quirement. Given a query subspace L of dimension d1, if
there is an element L′ in X s.t. distG(L,L′) ≤ R, then, an
element L′′ in X with distG(L

′′, L) < cR is returned with
probability 1− δ.

For several applications, the most interesting query prob-

lem is the point-subspace query, the query is a point in R
D

and the database is a subset of G(D, d). By connecting

points with the origin to obtain lines, the point-subspace

query problem is reduced to the (R, c)-approximate sub-

space search problem with d1 = 1 (where we denote d2
by d). However, instead of measuring the Euclidean dis-

tance of the query point to the subspace, we measure the

equivalent “distance”, distG, between the line through the

query point and the subspace.

The use of this equivalent “distance” results in a point-

subspace query. Indeed, assume that the query point x0 has

a principal angle θ0 and Euclidean distance ||x0||2 sin θ0
w.r.t. the nearest subspace. Our algorithm returns a sub-

space which has principal angle cθ0 and Euclidean distance

||x0||2 sin(cθ0) < c||x0||2 sin θ0 with the query (the in-

equality is true for any c > 1). This means the solution

of the line-subspace query problem is also a solution for the

corresponding approximate point-subspace query problem.

Locality Sensitive Hashing. Following [11], we apply

the notion of locality sensitive hashing (LSH) family to the

subspace search situation. We generalize the definition of

[11] for LSH as follows:

Definition 2.2. Locality sensitive hashing family for
(X ,Q,F): Let X be a database, Q be a query set and F
be a mapping from X × Q to [0,∞), which aims to mea-
sure the nearness between query and database points. A
familyH of functions on X ∪Q with a probability measure
P is called (R, cR, p1, p2)-sensitive for (X ,Q,F) if for any
L1 ∈ X ,L2 ∈ Q:

P[h ∈ H|h(L1) = h(L2)] ≥ p1, if F (L1, L2) ≤ R;

P[h ∈ H|h(L1) = h(L2)] ≤ p2, if F (L1, L2) ≥ cR.
(3)

We require that p1 > p2 in order for the corresponding
algorithm to work.

We are interested in two cases. The first case is when

X,Q ⊂ G(D, d) and F = distG. This corresponds to

the approximate subspace-subspace query problem. In this

case, the definition of LSH family in [11] coincides with

Definition 2.2. The second case is when X ⊂ G(D, d),
Q ⊂ G(D, 1) and F = distG. This corresponds to the

approximate point-subspace (equivalently line-subspace)

search problem.

The following theorem states that using the general LSH

family of Definition 2.2, we can easily construct a corre-

sponding locality hashing algorithm. Thus our main issue

is to form an LSH family. This theorem is an immediate

generalization of a theorem in [11, page 17]. Its proof is the

same while replacing the neighborhood B(q, r) of a query

q with the set {x ∈ X|F (x, q) < r}.
Theorem 2.3. Let X be a database, Q be a query set,
F a mapping from X × Q to [0,∞) and denote by n
the size of X . If there is a (R, cR, p1, p2)-sensitive fam-
ily H for (X,Q,F), where p1, p2 ∈ (0, 1), then one can
randomly draw from H to form a set G of vector-valued
hash functions from X to {0, 1}�log1/p2

n� such that for
ρ = log(p1)/ log(p2):

• For any query point in Q, the corresponding basic
hashing procedure with G requires at most O(nρ/p1)
evaluations of the hash functions from G.

• The number of elements in G is at most O(nρ/p1).
Thus evaluating at n points requires storage of order
O(n1+ρ/p1). The total storage is the sum of this stor-
age and the storage of the original data.

The failure probability δ of the data structure is at most
1/3 + 1/e (e is Euler’s number).

We remark that any LSH algorithm may return an empty

set, unlike tree-based algorithms (see e.g., [3]).

3. Hashing Linear Subspaces
In this section, we describe a general hashing scheme

that applies to approximate nearest subspace search prob-

lems in which the database consists of d2-dimensional sub-

spaces, and the query is a d1-dimensional subspace. We

claim (and prove in the supplementary material) that this

scheme gives a locality sensitive hashing family for two

cases of practical importance: d1 = d2 (subspace-subspace

query) and d1 = 1, d2 > 1 (line-subspace query).

We generate the hashing scheme simply by thresholding

the angle between the subspace L and a randomly generated

line � ∈ G(D, 1):

Definition 3.1. Let Q = G(D, d1) and X = G(D, d2). For
each line � ∈ G(D, 1) and 0 < θ0 < π/6, we associate a
function h�,θ0 : X ∪Q −→ {0, 1}, via

h�,θ0(L) =

{
0, distG(�, L) > θ0,

1, distG(�, L) ≤ θ0.
(4)

2778

Let Hθ0(d1, d2, D) denote the set of such functions h�,θ0 ,
with the uniform measure on G(D, 1). Also denote
Hθ0(d,D) = Hθ0(d, d,D).

Main Properties. In practical applications such as recog-

nition, it is valuable to allow the database to consist of sub-

spaces (say, one subspace per subject). Our construction

also yields sublinear-time algorithms for the important case

of point-subspace (or equivalently line-subspace) query and

consequently for the line-line search:

Theorem 3.2. For any D, d ≤ D, c > 1, R > 0 and
0 < θ0 < π/6, there exist fixed positive real numbers 0 <
p2 < p1 < 1, such that Hθ0(1, d,D) is a (R, cR, p1, p2)
locality sensitive family on (G(D, d),G(D, 1), distG).

Finally, our construction extends to query subspaces of

higher dimensions, i.e., Q = X = G(D, d), with one

caveat: We require R to be small (R < R0(c, θ0) � 1),

and c to be large (c >
√
d):

Theorem 3.3. For any fixed 0 < θ0 < π/6 and c >
√
d,

there exists R0(c, θ0)� 1 such that for any R < R0, there
are positive real numbers 0 < p2 < p1 < 1 depending
on c and R, such that Hθ0(d,D) with the induced uniform
measure on it is (R, cR, p1, p2)−locality sensitive hashing
family over (G(D, d),G(D, d),distG).

Algorithmic Implications. The sub-linear time in our

theoretical guarantees depends on the exponent ρ =
log(p1)/ log(p2). In general, ρ depends on the parameters

D, d, c, R and θ0. An integral expression for the exponent

ρ is provided in the supplementary material. In practice,

ρ can be estimated by numerically integrating this expres-

sion and it can be numerically optimized by noticing the

effect of various values of c, R and θ0 on its expression (see

supplemental material). The choice of R depends on the

distribution of the query points within the database and the

estimate of ρ improves as R decreases. Ideally, each query

element needs to be within distance R to the database. In

many practical cases, the query points are contained or suffi-

ciently close to the database and R can be sufficiently small.

The “precision” parameter c is chosen according to practical

needs (in the case where the query elements are contained

in the database it can be arbitrarily large). To make p2 as

small as possible, θ0 should be chosen to be π/6 (that is,

maximal) and empirical experiments support this choice.

In two situations, we can assert the asymptotic behavior

of the exponent ρ. The first case is when both Q and X
are subsets of G(D, 1) (if the points are on the sphere, then

it translates to point-point query, that is, nearest neighbor

search), D approaches infinity and the query elements are

sufficiently close to the database.

Theorem 3.4. If Q = X = G(D, 1), R = α/
√
D (α > 0),

cR = O(1) and 0 < θ0 < π/6 is fixed, then

lim
D→∞

ρ(D, d, c, R, θ0) ≤ 1/(1 + eα
2/2). (5)

The second case is when Q ⊂ X ⊂ G(D, d) and n ap-

proaches infinity. Here ρ can be arbitrarily small as follows.

Theorem 3.5. Assume that Q ⊂ X ⊂ G(D, d). For any
ρ > 0, there is a locality sensitive hashing scheme to re-
trieve points from X , whose query time is at most O(Ddnρ).

Theorem 3.5 follows from two observations. The first

one is that since every query is in the database, we can pick

R to be very small and c to be large while keeping cR small.

The second observation is that since c is large, the ratio be-

tween the logarithms of p1 and p2 can be made sufficiently

small.

4. Algorithm: Grassmanian-based Locality
Hashing (GLH)

We propose the Grassmanian-based locality hashing

(GLH) algorithm, which exploits standard techniques from

locality sensitive hashing to convert the hashing scheme

described in the previous section into an efficient near-

subspace search. In offline preprocessing, we generate a

hash table and assign database points to it. This process is

described in Algorithm 1, where SD−1 denotes the (D−1)-
dimensional unit sphere.

Algorithm 1 Preprocessing

Input: S,K ∈ N, 0 < θ0 ≤ π/6 (θ0 ∈ R) and a database

X ⊂ G(D, d).
Output: Keys {KeyLj,k}L∈X1≤j≤S,1≤k≤K (KeyLj,k ∈ R) and

random vectors {xj,k}1≤j≤S,1≤k≤K (xj,k ∈ S
D−1).

Steps:

for 1 ≤ j ≤ S do
for 1 ≤ k ≤ K do
• Randomly choose xj,k from S

D−1 according to

the uniform measure

• lj,k := Span(xj,k)
end for
for L ∈ X do
• KeyLj,k = hlj,k,θ0(L), k = 1, . . . ,K

end for
end for
return {KeyLj,k}L∈X1≤j≤S,1≤k≤K and {xj,k}1≤j≤S,1≤k≤K

At query time, we are given a new input subspace L and

an input parameter N ∈ N (together with the given database

and as well as the hash table and random vectors, which

were generated in the preprocessing step). We consider as

possible candidates at most N subspaces in the database,

2779

which hash to the same bin as L, and perform an exhaustive

search within this set. This procedure is described below in

Algorithm 2.

Algorithm 2 Locality sensitive hashing for subspace search

Input: A query subspace L ∈ G(D, 1) ∪ G(D, d), a

database X ⊂ G(D, d), S,K,N ∈ N, random vectors

{xj,k}1≤j≤S,1≤k≤K and keys {KeyLj,k}L∈X1≤j≤S,1≤k≤K .

Output: An (R, c)-approximate nearest subspace of L.

Steps:

• lj,k := Span(xj,k), 1 ≤ j ≤ S, 1 ≤ k ≤ K
• L = ∅

• Count=0

for 1 ≤ j ≤ S do
if Count ≤ N then
• KeyL = (hlj,1,θ0(L), ..., hlj,K ,θ0(L))

• Search for L′ ∈ X , s.t. (KeyL
′

j,1, ...,KeyL
′

j,K) =

KeyL

• If such L′ exists and distG(L
′, L) ≤ cR, then

Count=Count+1 and L = L ∪ {L′}
end if

end for
return The subspace in L closest to L (if exists)

5. Experiments
The scheme of Basri, Hassner and Zelnik-Manor

(BHZ) [3] is the most general known approach for the ap-

proximate subspace search problem. To evaluate the per-

formance of our GLH scheme, we carry out experiments on

two model problems and compare the results with results by

BHZ. In the first problem, patch-based image reconstruc-

tion, the ambient dimension is relatively low. Both schemes

perform much faster than exact search. While the speed

of the GLH scheme and the BHZ scheme are comparable,

the performance of GLH is more stable across different im-

ages. Moreover, GLH has higher accuracy over BHZ for

all images. The data sets of the second problem contain

cropped images of faces under different illuminating condi-

tions, where subspaces are formed by spans of vectorized

images of the same face. In this setting the ambient dimen-

sion is relatively high and the GLH scheme obtains reliable

results, while the BHZ scheme fails most of the time.

5.1. Image Approximation

We follow Basri et al. [3] (with few technical modifi-

cations) and try to reconstruct images using a dictionary of

subspaces constructed from an arbitrarily chosen image. We

use the Berkeley segmentation database [17], which con-

tains 100 test images of size 481× 321.

We randomly pick one image from this database and also

randomly select 1000 pixels from it. Then, 16 different,

overlapping 5×5 patches around each pixel are used to pro-

duce a k = 4 dimensional subspace by taking principal

components. This produces a database of 1,000 subspaces.

Each of the 100 images is subdivided into nonoverlapping

5×5 patches. For each patch, we search for the closest sub-

space in the database by using both the GLH scheme and

the BHZ scheme. We take the projection of the patch onto

the selected subspace as its approximation.

To measure the quality of reconstruction, we use the

structural similarity (SSIM) index [20], which effectively

detects the distortion of an image from another image. We

recall that −1 ≤ SSIM ≤ 1 and SSIM = 1 if and only if

the two images are identical. Figure 1(a) shows that the

(a) SSIM indices

(b) Running time

Figure 1. Structural similarities (between original and repatched

images) and number of evaluations: 100 test images from the

Berkeley Segmentation Database are used in this experiment. Fig-

ure(a) shows the SSIM indices, which reflect similarity between

the original images and their repatched images; the SSIM indices

for GLH and BHZ are in red (upper curve) and blue (lower curve)

respectively. Figure (b) shows the number of evaluation needed to

repatch each image, where the blue lower flat curve is for GLH,

red lower volatile curve is for BHZ and green upper flat curve is

for the linear exact search.

2780

Figure 2. Repatched images: Three original images are in the first column. Images repatched by GLH are in the second column. Images

repatched by BHZ are in the third column.

GLH algorithm performs better than BHZ [3] on all images

in terms of quality. Also, Figure 1(b) shows that the GLH

algorithm is often faster and more importantly, has signifi-

cantly less variability in its speed. We note that the number

of operations for each algorithm and not actual time is re-

ported in Figure 1(b). In Figure 2, we demonstrate repatch-

ing of three images by both GLH and BHZ. In the first

column are the original images, in the second column are

images repatched by GLH and in the third column images

repatched by BHZ. Our algorithm is able to obtain better

near neighbors, and hence much better visual quality.

5.2. Face Recognition with Two Databases

Images of faces with fixed pose under different illumi-

nation conditions lie near linear subspaces of dimension 9
(Epstein et al. [7], Ho et al. [12], Basri and Jacobs [4]).

Therefore a database of faces can be easily transcribed into

a set of subspaces (where each subspace represents a face).

If a query is a single image of a face, then the problem is

to recognize the closest face (subspace) to the given image

(point). Alternatively, the query can include several images

of the same face under different illumination conditions. In

this case, the query is a subspace. Basri et al. [3] used un-

cropped images which are easier to recognize due to back-

ground, clothing and characteristic position of each subject.

In the following two experiments, we use cropped images.

We first used cropped images of the Multi-Pie database

(see [10]) with frontview. That is, we used all subfolders

of the form 05 0 for all persons of all four sessions of the

multiview folder. There were a total of 239 persons and 80

frontview images for each. We cropped these well-aligned

images by restricting the set of pixels and then used 23×19
cropped images. The subspaces of different faces (under

different illumination conditions) are often close to each

other (Epstein et al. [7], Ho et al. [12], Basri and Jacobs [4]).

In theory, these subspaces are at most 9-dimensional (as

established in [4]), however, 9-dimensional subspaces are

hard to distinguish due to this proximity. We have experi-

2781

mentally found out that the subspaces are approximately of

dimension 5 and thus use this dimension (unlike [3] who

use 9).

For each person, we randomly picked 36 23×19 cropped

images out of the 80 frontview images, vectorize them to lie

in 437 dimensions and recorded their total least squares 5-

dimensional subspace (spanned by the top 5 principal com-

ponents). We created 239 such subspaces (one for each

person). For each d = 1, ..., 10, we created 239 query

subspaces as the span of d randomly picked images from

the rest of the 44 images (the ones not used to create the

database). The results of the GLH scheme, compared to

BHZ scheme, are summarized in Figure 3, where for each

query dimension d, the darker bar represents the success

rate (among 239 query d-dimensional subspaces) of GLH

and the brighter bar represents success rate of BHZ. GLH

performs significantly better for d ≥ 4. We note that GLH

takes place in 437 dimensions, while BHZ takes place in

95703 dimensions (437*(437+1)/2=95703).

Figure 3. Success Rate for different Query dimension

We performed a similar experiment with the cropped im-

ages of the Extended Yale Face Database B [8, 14]. In this

database, there are 38 persons, where for each person there

are 64 different 24×21 face images with different illumina-

tions. The database of 38 5-dimensional subspaces is cre-

ated by randomly choosing 36 images out of the 64 images

per person, vectorizing them to lie in 504 dimensions and

computing their 5-dimensional total least squares subspace.

Similarly to the previous experiment, for d = 1, ..., 10 we

form the query d-dimensional subspaces by the span of ran-

domly chosen d vectors from the other 28 images. Fig-

ure 4 report the success rate (among 38 queries) of GLH

and BHZ for 1 ≤ d ≤ 10. GLH performs significantly bet-

ter than BHZ across all dimensions d. GLH takes place

in 504 dimension, whereas BHZ in 127,260 dimensions

(504*505/2=127,260).

Figure 4. Success Rate for different Query dimension

6. Conclusion

We have proposed GLH, a sublinear time algorithm for

the approximate point-to-subspace query and subspace-to-

subspace query problems. It is based on a new locality sen-

sitive hashing family, which takes advantage of the geomet-

ric position of different subspaces as encoded in their prin-

cipal angles with random lines. The GLH algorithm per-

forms stably and reliably in numerical experiments, and in

particular outperforms previous approaches to approximate

nearest subspace.

Although this method provides good results in our ex-

periments, there is still room for improvement. First, it is

desirable to extend the method to also handle affine sub-

spaces. This would require hashing families that encode not

only angles but also distances and maintain locality sensi-

tivity hashing. Secondly, as with other algorithms for this

problem, in extremely high ambient dimension, GLH shows

the greatest advantage over linear scan when the database is

very large. Therefore, it is desirable to find hashing families

that work well even when the database is small.

Acknowledgements. We acknowledge the financial sup-

port of NSF and ONR: XW and GL were partially sup-

ported by NSF grants DMS-09-15064 and DMS-09-56072

(awarded to GL), JW was partially supported by ONR

N00014-13-1-0492, and GL was also partially supported by

the IMA (during 2011-2012). XW, SA and GL thank the

2782

DTC and IMA at UMN for their hospitality and encourage-

ment of cross collaborations. Finally, we thank the review-

ers for their useful feedback.

7. Appendix
Implementation of GLH and BHZ. For GLH, we chose

the following parameters: K = 3, S = 20 and θ = π/8.

BHZ is based on ANN (approximate nearest neighbor)

search. We used the ANN implementation provided by

David M. Mount and Sunil Arya.3 with the following pa-

rameters: split rule = ‘suggest’, shrink rule = ‘none’, eps =

10, near neigh = 1, run queries = ‘priority’.

For BHZ, the trade-off between efficiency and quality

can be achieved by tuning the parameter eps in the ANN

search. We used the same eps that was mentioned in Basri

et al. [3] (eps = 10). With this choice of eps, GLH and

BHZ had comparable speed in the image approximation

task; while in the recognition task, BHZ was slower than

GLH (e.g., about 10 times slower for the cropped images of

the Extended Yale Face Database B [8, 14]). Smaller val-

ues of eps results in more accurate results of BHZ, but with

slower speed.

References
[1] A. Andoni and P. Indyk. Near optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Comm. of
the ACM, 51(1), 2008.

[2] A. Andoni, P. Indyk, R. Krauthgamer, and H. L. Nguyen. Ap-

proximate line nearest neighbor in high dimensions. SODA,

2009.

[3] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate

nearest subspace search. TPAMI, 33(2), 2011.

[4] R. Basri and D. Jacobs. Lambertian reflectance and linear

subspaces. TPAMI, 25(2):218–233, February 2003.

[5] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9):509–517, 1975.

[6] K. Clarkson. A randomized algorithm for closest-point

queries. SICOMP, 17:830–847, 1988.

[7] R. Epstein, P. Hallinan, and A. Yuille. 5±2 eigenimages suf-

fice: An empirical investigation of low-dimensional lighting

models. In IEEE PBMCV, June 1995.

[8] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman.

From few to many: Illumination cone models for face recog-

nition under variable lighting and pose. TPAMI, 23(6):643–

660, 2001.

[9] G. H. Golub and C. F. Van Loan. Matrix computations, 3rd

edition. Baltimore: Johns Hopkins University Press, 1996.

[10] R. Gross, I. Matthews, J.F. Cohn, T. Kanade, and S. Baker.

Multi-pie. Proceedings of the Eighth IEEE International

3The ANN library is available on http://www.cs.umd.edu/ mount/ANN/

Conference on Automatic Face and Gesture Recognition,

2008.

[11] S. Har-Peled, P. Indyk, and R. Motwani. Approximate near-

est neighbor: Towards removing the curse of dimensionality.

Theory of computing, 8:321–350, 2012.

[12] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Cluster-

ing appearances of objects under varying illumination condi-

tions. In CVPR, 2003.

[13] P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashing Hy-

perplane Queries to Near Points with Applications to Large-

Scale Active Learning. In NIPS, 2010.

[14] K.C. Lee, J. Ho, and D. Kriegman. Acquiring linear sub-

spaces for face recognition under variable lighting. TPAMI,
27(5):684–698, 2005.

[15] W. Liu, J. Wang, Y. Mu, S. Kumar, and S. Chang. Compact

hyperplane hashing with bilinear functions. In International
Conference on Machine Learning (ICML), Edinburgh, Scot-

land, 2012.

[16] A. Magen. Dimensionality reductions that preserve volumes

and distance to affine spaces, and their algorithmic applica-

tions. RANDOM, 2002.

[17] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-

ume 2, pages 416–423, July 2001.

[18] Y. Mu, J. Wright, and S. Chang. Accelerated large scale

optimization by concomitant hashing. In Computer Vision–
ECCV, pages 414–427. Springer, 2012.

[19] J. Sun, Y. Zhang, and J. Wright. Efficient point-to-subspace

query in �1 with application to robust face recognition. 2012.

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to struc-

tural similarity. IEEE Trans. Image Process., 13(4):600–612,

2004.

[21] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Advances in Neural Information Processing Systems (NIPS),
2008.

[22] A. Yang, J. Wright, Y. Ma, and S. Sastry. Unsupervised

segmentation of natural images via lossy data compression.

Comput. Vis. Image Underst., 110(2), May 2008.

[23] G. Yu, G. Sapiro, and S. Mallat. Solving inverse prob-

lems with piecewise linear estimators: From gaussian mix-

ture models to structured sparsity. Image Processing, IEEE
Transactions on, 21(5):2481–2499, 2012.

2783

