
Point-Based 3D Reconstruction of Thin Objects

Benjamin Ummenhofer and Thomas Brox
Computer Vision Group

University of Freiburg, Germany
{ummenhof, brox}@cs.uni-freiburg.de

Abstract

3D reconstruction deals with the problem of finding the
shape of an object from a set of images. Thin objects that
have virtually no volume pose a special challenge for recon-
struction with respect to shape representation and fusion of
depth information. In this paper we present a dense point-
based reconstruction method that can deal with this special
class of objects. We seek to jointly optimize a set of depth
maps by treating each pixel as a point in space. Points are
pulled towards a common surface by pairwise forces in an
iterative scheme. The method also handles the problem of
opposed surfaces by means of penalty forces. Efficient opti-
mization is achieved by grouping points to superpixels and
a spatial hashing approach for fast neighborhood queries.
We show that the approach is on a par with state-of-the-art
methods for standard multi view stereo settings and gives
superior results for thin objects.

1. Introduction
Image-based 3D reconstruction is the problem of infer-

ring the surface of real world objects solely from visual

clues. In the past years many algorithms have been devel-

oped to address this problem. To the best of our knowledge,

none of them addresses the reconstruction of very thin ob-

jects, such as the street sign in Fig. 1. The sign has almost

no volume compared to the size of its surface.

Such thin objects are very problematic for contempo-

rary reconstruction methods. Most methods represent the

scene as an implicit function defined at regular grid points

[3, 14, 13, 26, 12, 24]. Grids provide an effective struc-

ture to integrate information from multiple views and allow

for the approximation of derivatives by simple finite dif-

ferences. However, grids cannot properly represent objects

thinner than the voxel size, and the fixed grid comes with

high memory requirements, which severely limits the reso-

lution. In the case of an arbitrary thin object, the resolution

required to represent the object leads to extreme memory

requirements. Using adaptive grids, such as octrees [20],

Figure 1. Dense point cloud reconstruction of a street sign. Top:
Two renderings of the reconstruction when ignoring opposed sur-

faces (left and center) and a photo of the scene (right). Many points

are on the wrong side of the object. Bottom: Reconstruction result

of our approach explicitly modeling opposed surfaces. All images

are rendered with front- and back-faces visible. Our approach re-

solves collisions between points that represent different sides of

thin objects. Almost all points from the correct side pass the depth

test (left and center) and therefore lie on the correct side. The ap-

proach preserves the thin structure of the objects, as seen in the

view from the top (right).

mitigates this problem but cannot solve it.

Another popular surface representation is by triangle

meshes [8, 9, 5]. In contrast to voxel grids, they only model

the surface rather than the whole scene volume, and dif-

ferent parts of the scene can be represented by triangles of

different size. This makes mesh based algorithms suitable

for large scale reconstructions [9], and potentially also al-

lows to handle thin objects. However, mesh representations

typically have problems with change in topology during sur-

face evolution. For this reason, Vu et al. [9] create a Delau-

nay tetrahedral mesh where tetrahedra are labeled as inside

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.124

969

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.124

969

or outside. The initial surface triangles are the tetrahedron

faces that connect two tetrahedra with opposite labels. In

case of a thin sheet, none of the tetrahedra would be labeled

as inside the object and the triangulated surface would miss

the object.

We argue that the best representation for thin objects is

a point cloud representation with reference to a set of regis-

tered depth maps. Point clouds are the output of many 3D

sensors, such as laser scanners and a very traditional way to

represent 3D scenes [23, 4, 15]. They are very common in

robotics, yet have been less popular in computer vision in

recent years as they do not make the topology of the scene

explicit. However, regularity can be integrated by means

of pairwise forces. Similar to Szeliski and Tonnesen [23]

and Fua [4] we use forces to manipulate the orientation and

position of points. Usually the design of the forces is physi-

cally motivated and uses for instance the Lennard-Jones po-

tential to avoid a clustering of the points. We can avoid the

latter, because we keep a reference of the points to the depth

maps from which they originated and allow only for motion

of points along their projection rays. Related to this, Mer-

rell et al. [17] use multiple depth maps to model the scene.

Finally, they generate a subset of high quality depth maps

by fusing the information from multiple neighboring depth

maps. A limitation of depth maps is the affinity to a specific

camera. Objects that are occluded for the specific point of

view cannot be represented. In contrast, our approach treats

the values of all depth maps as a point cloud and jointly

optimizes all points, improving all depth maps at the same

time.

The PMVS approach of Furukawa and Ponce [6] uses

a patch representation similar to a point cloud and poten-

tially can deal with thin objects. The patches originate from

feature matching and are added and removed in an iterative

way. Like in our approach, the depth and the normal of

the patches is optimized. However, the result obtained with

PMVS is not dense everywhere when rendered from one

of the camera viewpoints and lacks regularization, which

shows in the experiments.

A common challenge of point cloud representations is

computational efficiency because, in contrast to voxel grids

or meshes, the neighborhood structure is not explicit and

may change. We use efficient data structures and a coarse-

to-fine optimization based on superpixels to handle large

point clouds with millions of points.

Moreover, we explicitly deal with a problem that is spe-

cific to thin objects: if the object is regarded from opposite

viewpoints, points from different surfaces basically share

the same position but have opposite normals. Noise in the

measurements will lead to contradictive results, where in-

visible points occlude visible ones. We call this the prob-

lem of opposed surfaces and introduce a coupling term in

our energy model that deals with this problem.

We provide a complete reconstruction system that takes

as input a video sequence with known intrinsic camera pa-

rameters. An initial point cloud is computed via incremen-

tal bundle adjustment and a variant of semi-global match-

ing [10]. The heart of the approach is an energy model that

regularizes the point cloud and pulls the points to common

surfaces with normals that are consistent with the viewing

direction. We also iteratively refine the camera parameters

via dense alignment of the image and the corresponding ren-

dered view of the reconstruction.

2. Initial depth maps and camera parameters
The initialization of our algorithm consists of a set of

depth maps and the corresponding camera projection ma-

trices. The input is a video sequence taken with a camera

with known intrinsics. Point correspondences are obtained

with the optical flow tracker of Sundaram et al. [22], and the

external camera parameters are estimated with incremental

bundle adjustment. To capture potential loop closures we

add additional SIFT [16] correspondences.

For the dense reconstruction we automatically select an

equally spaced subset of about 50 images. For each we

compute a depth map with semi-global matching [10]. The

matching cost takes into account the surrounding frames

provided by the video sequence, as proposed by New-

combe et al. [19]. We accumulate a simple sum of abso-

lute differences photometric error over 14 neighboring im-

ages for 128 depth labels. Our SGM implementation uses

32 directions and an adaptive penalty for large depth label

changes steered by the gradient magnitude of the image.

Camera parameters and depth values yield a coarse esti-

mate of the scene. The depth maps contain a large amount

of outliers and noise.

3. Energy model
We represent the surfaces of a scene by a set of oriented

points P . The points are initially given by the dense depth

maps, i.e., each point Pi ∈ P corresponds to a pixel in one

of the input images. It contains the surface position pi ∈ R
3

and its normal vector ni at this point. This way the sampling

of the surface is defined by the image resolution. Surfaces

covered by many pixels in the image are automatically rep-

resented at a higher resolution in the reconstruction

Points generated from different depth maps are unlikely

to agree on the same surface due to noise, wrong measure-

ments and inaccurate camera poses. We treat the point cloud

as a particle simulation and define an energy that pulls close

points towards a common surface:

E = Esmooth + αEdata + βEcollision. (1)

Edata keeps the points close to their measured position p0,

Esmooth and Ecollision define pairwise forces that pull the

970970

points to a common surface and push the points to resolve

self intersections, respectively. The parameters α ≥ 0 and

β ≥ 0 steer the importance of the data term and the collision

forces respectively.

Each point in the point cloud corresponds to a depth map.

As we know the (approximate) camera parameters of this

view, we can reconstruct the projection ray. The point may

only move along the direction of this projection ray d, |d| =
1. This way a point stays always associated with the pixel

of its corresponding image. We denote the distance that the

point P has been moved away from its original position p0

by u and optimize this quantity together with the surface

normal n associated with this point.

The data term penalizes points that diverge from their

initial position:

Edata =
∑
Pi∈P

‖p0
i − pi‖2 = |ui|. (2)

We use the non-squared error norm because it is more ro-

bust to outliers than the squared norm. The derivative with

respect to u is constant and does not depend on the dis-

tance to the initial position, i.e., there is a constant force

that draws the point towards its initially measured position.

The energy Esmooth defines pairwise interactions of

points and reads

Esmooth =
∑
Pi∈P

∑
Pj∈P\{Pi}

ηni,nj

1

ρi
wij | 〈pj − pi,ni〉 |,

(3)

where 〈, 〉 denotes the dot product. The energy measures a

weighted unsigned distance of Pi to the surfaces defined by

the neighboring points Pj . The energy for two points Pi

and Pj is minimal if the points lie on the respective planes

defined by their position and normal. The weight wij ac-

counts for the importance of the neighbors and is defined

as

wij = W (‖pj − pi‖, r) | 〈pj − pi,ni〉 |
‖pj − pi‖ . (4)

W is a smoothing kernel also referred to as Poly6 in the

particle simulation literature:

W (l, r) = 0 for l > r, else
315

64πr9
(r2 − l2)3. (5)

The support of the function is limited and allows to cut off

neighbors with a distance greater than a distinct radius r.

Neighbors close to Pi are considered more important. The

second term in (4) weights the angle between the normal ni

and the neighboring point’s position pj . Points directly be-

hind or in front of a point Pi should have a high influence as

they promote a different position for the surface described

by pi and ni, while a point near the tangent plane describes

a similar surface at a different position. Fig. 2 shows the

value of wij for varying positions of pj . The choice of

the smoothing radius r defines the size of the neighborhood

and therefore directly influences the runtime as well as the

topology of the reconstruction. E.g. two distinct surfaces

with the same orientation may be joined when r is chosen

too large. The radius r also relates to the depth uncertainty

of the initial depth maps and should be chosen accordingly.

The function η restricts the computation of the smooth-

ness force to points that belong to the same surface. Points

with normals pointing in different directions shall not influ-

ence each other; hence we define

ηni,nj
=

{
〈ni,nj〉 , if 〈ni,nj〉 > 0

0, otherwise.
(6)

We use the density ρi to normalize the energy and make it

independent of the point density. The density at position pi
is

ρi =
∑
Pj∈P

W (‖pj − pi‖, r). (7)

A special problem that arises for the reconstruction of

thin objects are inconsistencies between the front-face and

the back-face of a thin object. Due to noise, points with

normals pointing in different directions may occlude each

other. To resolve this opposed surface problem, we intro-

duce a penalty force:

Ecollision =
∑
Pi∈P

∑
Pj∈P\{Pi}

η−ni,nj

1

ρi
wij

max(0, 〈pj − pi,ni〉)
(8)

The energy measures the truncated signed distance of points

Pi to the surfaces defined by the neighboring points Pj . The

energy becomes non-zero if the distance of the points is

positive and the normals have different directions (the dot

product of the normals is negative). Point pairs Pi, Pj with

this configuration are in conflict because they occlude each

other but belong to opposite surfaces of the object.

4. Point cloud optimization
The gradient of the global energy (1) defines the forces

that are used in an iterative scheme to optimize the posi-

tion and normal of the points. The energy is non-convex

due to the non-convex dependency of the weights w on the

variables ui and ni. We assume that a sufficient number of

points is close enough to the actual surface to find a good

local minimum.

We use gradient descent for fixed values of w and ρ to

optimize the points and update w and ρ after each iteration,

which yields a fixed point iteration scheme for w and ρ.

Computing the gradient of Eq. (1) using a regularized norm

‖x‖ε =
√
x2 + ε2 is straightforward.

971971

Figure 2. Weight wij with radius r = 1 for varying positions of pj

relative to pi. The normal ni is pointing in positive y-direction.

The weight is low (black) when pj is far away and when the point

is ’beside’ pi describing a different part of the surface.

The update scheme is

ut+1
i = ut

i − τ∂ut
i
E

nt+1
i = nt

i − τ∂nt
i
E,

(9)

where ni and Eni
are parameterized with spherical coordi-

nates in an appropriate local coordinate frame.

The gradient descent scheme is very slow since the time

step size τ must be chosen small to achieve convergence.

We found that a mixture of coordinate descent and gradient

descent significantly speeds up convergence. In coordinate

descent, each variable is optimized separately.

We update ni using a standard approach for normal esti-

mation as described in [1]. It comes down to computing the

covariance matrix for the neighborhood of each point. The

normal estimate is the smallest eigenvector of the matrix.

The sign ambiguity is resolved by the fact that the surface

must point towards the camera that observes it.

The variables ui are updated using line search along the

viewing ray of each point. The energy (1) with fixed density

ρ and weight w is a sum of weighted and possibly truncated

‖‖12-norms, thus the minimum is located at a position on the

ray where one of the summands becomes zero. While it is

not possible to evaluate the derivative at the possible min-

ima, we can compute the derivative in the intervals between.

Sorting these intervals with respect to the coordinate ui al-

lows us to quickly compute the minimum. The sorting can

be aborted as soon as the sign of the derivative changes and

the minimum is found.

Let ût
i be the position on the ray where the energy for the

point is minimal. The updated value ut+1
i is

ut+1
i = (1− ω)ut

i + ωût
i. (10)

For the coordinate descent to converge, ω ≤ 1. We track

the minimum and maximum values of u over time for all

points and decrease ω by the factor 1
2 when the minimum

and maximum is not altered for 80% of the points in the

last iteration. If ω falls below 1
4 , we switch to the gradient

descent scheme. Gradient descent is stopped as soon as the

same criterion as for decreasing ω applies.

To resolve remaining collisions we add a last iteration us-

ing the coordinate descent scheme for the variables u with

ω = 1. The penalty forces defined by the energy in Eq. (8)

only act after a collision occurs. The line search of the co-

ordinate descent scheme allows to find a state free of colli-

sions for points where the penalty forces act too late.

4.1. Runtime optimization

Processing point clouds with millions of points is com-

putationally expensive. The time complexity for updating

a point cloud with N fully connected points is in O(N2).
Fortunately, due to the limited support of the smoothing ker-

nel (5), the complexity can be reduced to O(N) since only

neighboring points within a radius r need to be considered.

To this end, we use a modified implementation of the spatial

hashing scheme proposed by Ihmsen et al. [11] to acceler-

ate neighborhood queries. Instead of a chained hash table

we implemented the open addressing scheme from [7]. The

hash table allows for a fast query of the neighboring spatial

cells and the particles inside these cells in O(1).

To further reduce the runtime, we subsample the neigh-

boring points. For each queried cell, three random points

are sampled. We found that this subsampling hardly influ-

ences the quality of the reconstruction.

Moreover, we employ a hierarchical approach where we

group multiple pixels to superpixels using the approach of

Weikersdorfer et al. [25]. This reduces the problem size at

the beginning of the optimization. We compute 5000 su-

perpixels per image as seen in Fig. 3 and store the assign-

ment of the original pixels, so that we can reverse the oper-

ation and return to the full resolution later on. We optimize

the superpixel point cloud until convergence and transfer

the positions and normals to the original point cloud. The

optimization result of the superpixel point cloud yields a

good approximation of the solution and greatly reduces the

number of iterations spent on the original problem with N
points.

4.2. Outlier removal

Due to erroneous depth maps, the initial point cloud may

contain a large number of outliers, i.e., points that do not

describe an actual surface of the scene. Some of them even

persist after regularization.

To detect these outliers, we compute for each point Pi

how many points from other images support the correspond-

ing surface. A point Pj supports a point Pi if the position

pi is close to the tangent plane defined by pj and nj . We

972972

Figure 3. The use of superpixels reduces the size of the point cloud

and significantly speeds up the optimization. Left: Original im-

age. Right: Rendering with 5000 superpixels. The sampling den-

sity adapts to the scene depth to create superpixels with approxi-

mately equal size in space.

define the support as

S(Pi) =
∑
N

(1− δIi,Ij)max

(
1− | 〈pj − pi,ni〉 |

sj
, 0

)
.

(11)

sj is the disk radius that we also use for rendering the point.

The disk radius is simply computed as sj = ξ
f , where ξ is

the depth of the point and f is the focal length. The Kro-

necker delta is used to make sure that the support is com-

puted only when Pi and Pj originate from different images

I . The neighborhood N contains only points within a ra-

dius si. We remove points with a support of S < 3 after

optimizing the point cloud with respect to the energy (1).

5. Point rendering and camera refinement
An important quality of a scene representation is the abil-

ity to render images from arbitrary views. We use the sur-

face splatting approach of Botsch and Kobbelt [2] to render

the point cloud. Our CUDA implementation of the algo-

rithm allows us to render the scenes shown in Fig. 4 at about

50Hz.

We use a full image alignment as described in New-

combe et al. [19] to improve the initial camera parameters.

The camera refinement is applied in an optional outer itera-

tion loop that also includes updating the depth maps. Hence,

it is quite costly, but it can improves details in the recon-

struction. The improvement usually saturates after three it-

erations.

6. Results
We compare the reconstructions obtained with our ap-

proach to the PMVS algorithm of Furukawa and Ponce [6]

and the KinectFusion algorithm by Newcombe et al. [18].

PMVS is one of the top performing reconstruction systems

on the Middlebury benchmark [21], and it uses a patch-

based representation, thus it potentially can deal with thin

objects. KinectFusion acquires depth maps from an RGB-

D camera and fuses them using a voxel grid. The voxel grid

Figure 6. Two of the 50 input images of the street sign scene. The

highlighted pixels contribute to the reconstruction and are repre-

sented in the point cloud. The total number of points is about 5

million.

stores an implicit function, the zero level set of which repre-

sents the surface. The limited resolution of the grid cannot

deal with very thin objects.

Datasets and test system. We used two challenging

scenes that show thin as well as conventional objects. Fig.

4 depicts the scenes and their corresponding reconstruc-

tion. We use different values for the radius of the neigh-

borhood and the parameters α, β for the two scenes. For

both datasets we set the radius r to three times the disk ra-

dius of a pixel at the average depth of the scene. For the

street sign scene we set parameter α to 0.05 for the super-

pixels level and 0.001 for the full resolution. For the toy

ship we set α to 0.1 for the superpixels level and 0.001 for

the full resolution. The strength of the collision forces is set

to β = 1 for both datasets and both hierarchy levels of the

point cloud.

The test system is an Intel Xeon X5690 3.4 GHz six core

processor with an NVIDIA GeForce GTX Titan GPU. We

used the GPU for computing the depth maps, the spatial

hash table, and for rendering the point cloud during camera

refinement. The point cloud is optimized on the CPU.

Comparison with PMVS. The reconstruction results of

our system and PMVS are depicted in Fig. 5. PMVS was

run on images with a resolution of 1280x720 to increase the

number of reconstructed patches. Our method uses down-

sampled images with a resolution of 640x360 to reduce the

number of points. Both approaches produce a reasonable re-

construction of the scene. The reconstruction of the sign is

not consistent without an explicit collision handling. PMVS

973973

Figure 4. Test sequences with thin objects and their reconstructions. Top: The street sign sequence was captured with a commodity hand-

held camera. Beside the sign, the scene contains non-thin objects like the stone cube and the snow patch. Our reconstruction captures most

of the thin sign and the majority of the surrounding objects. Bottom: The viking ship was acquired using an Asus Xtion depth camera.

The reconstruction faithfully renders the thin sail.

Figure 7. Left: The toy ship reconstructed with the KinectFusion

approach by Newcombe et al. [18]. The implicit surface function

is sampled on a regular grid and cannot represent the thin sail. The

reconstruction is too thick as seen in the bottom image. Right:
Our approach can deal with the sail but smooths away some of the

details. We use a single video sequence taken with the same depth

camera for the reconstruction process.

places points on the wrong side of the sign. Our method be-

haves similarly, if we disable the collision forces. Regions

without structure, such as the plain white parts of the sign,

are not reconstructed by PMVS, whereas the depth maps

generated by the semi-global matching algorithm can infer

the depth value from nearby edges. Hence, our reconstruc-

tion of the sign is denser.

The images in the right column of Fig. 5 show the sur-

face normals. The normals obtained with our method are

smoother and show less noise than the normals obtained

with PMVS. On the other hand, our method tends to over-

smooth some object borders, as can be seen from the stone

cube below the sign.

The number of patches in the PMVS reconstruction is

102711. Our reconstruction is a point cloud with 5.2 million

points. Each point originates from a pixel of one of the input

images. Fig. 6 highlights in two input images the pixels that

are used in the reconstruction.

Comparison with KinectFusion. We used the open

source KinectFusion implementation available on http:
//pointclouds.org/ for our experiments. KinectFu-

sion is a real-time approach and allows for interactive steer-

ing of the acquisition of new data while the reconstruction

is running. We scanned the object several times to get a

good coverage. As expected, the reconstruction of the sail

poses a problem to KinectFusion. We tried to scan the sail

repeatedly from the front and the back side, which moves

the position of the sail but does not change its thickness.

To compare our approach with KinectFusion we

recorded a video sequence with the same depth camera. In-

stead of computing depth maps from the color images, we

974974

Figure 5. Reconstruction of a street sign with and without collision handling and comparison with PMVS [6]. Images from left to right: (i)

rendered image with front and backfaces, (ii) color coded front and backface, (iii) surface normals. The street sign shows self-intersections

when collisions are not handled. Top: In our reconstruction, all points are on the right side of the object, as can be seen by the uniform

color in the middle image. The surface normals are consistent and smooth. Middle: Result of our approach without collision handling

(β = 0). The front and the back side of the sign penetrate each other. Despite the collisions, the majority of the normals remain smooth.

The normals of the ground show some disturbances. Bottom: The PMVS algorithm of Furukawa and Ponce [6] does not handle collisions.

It creates many patches lying on the wrong side of the sign. The reconstruction models a larger area of the ground but also contains more

clutter. The normals are noisy and some disturbances are visible. Especially the surface of the snow patch suffers from the lack of a strong

regularization in the PMVS algorithm.

directly use the depth maps generated by the camera. Our

system is an offline approach and does not allow to influ-

ence the acquisition. Fig. 7 shows our results compared to

KinectFusion. KinectFusion yields the reconstruction with

the better overall quality but also uses more data. Our sys-

tem yields the better reconstruction for the sail. The quality

of the normals of both reconstructions is similar.

6.1. Runtime

Most of the runtime of our system is spent on the opti-

mization of the point cloud. The gradient descent and the

coordinate descent scheme allow for a parallel implementa-

tion of this step.

Table 1 gives an overview of the runtimes for the pre-

sented datasets. The runtime mainly depends on the number

of points. We can also observe that the distribution of the

points influences runtime. Iterations take longer in the be-

ginning, when the point cloud still contains a large amount

of noise.

Image size Points Time

Street sign 640x360 5.2 million 2h 17m

Toy ship 640x480 3.8 million 1h 24m

Table 1. Runtimes on Xeon X5690@3.4GHz + GTX Titan

7. Conclusion
We have proposed an approach for reconstructing arbi-

trarily thin objects. The presented method fuses the infor-

975975

mation from multiple depth maps and produces dense sur-

faces. The fusion process explicitly handles intersections

of opposing surfaces, a problem that has been neglected by

many previous methods. The reconstructed point cloud can

be rated as a dense surface representation, as each point cor-

responds to a pixel in the input images.

Acknowledgements We gratefully acknowledge partial

funding by the ERC Starting Grant VideoLearn.

References
[1] J. Berkmann and T. Caelli. Computation of surface geom-

etry and segmentation using covariance techniques. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,

16(11):1114–1116, 1994. 4324

[2] M. Botsch and L. Kobbelt. High-quality point-based render-

ing on modern GPUs. In Computer Graphics and Applica-
tions, 2003. Proceedings. 11th Pacific Conference on, pages

335–343. IEEE, 2003. 4325

[3] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, SIGGRAPH ’96, pages 303–312, New York,

NY, USA, 1996. ACM. 4321

[4] P. Fua. Reconstructing complex surfaces from multiple

stereo views. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), pages 1078–1085. IEEE,

1995. 4322

[5] Y. Furukawa and J. Ponce. Carved visual hulls for image-

based modeling. International Journal of Computer Vision
(IJCV), 81(1):53–67, Jan. 2009. 4321

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-

tiview stereopsis. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(8):1362–1376, 2010. 4322, 4325,

4327

[7] I. Garcı́a, S. Lefebvre, S. Hornus, and A. Lasram. Coherent

parallel hashing. ACM Trans. Graph., 30(6):161:1–161:8,

Dec. 2011. 4324

[8] C. Hernández Esteban and F. Schmitt. Silhouette and stereo

fusion for 3D object modeling. Computer Vision and Image
Understanding, 96(3):367–392, 2004. 4321

[9] V. H. Hiep, R. Keriven, P. Labatut, and J.-P. Pons. To-

wards high-resolution large-scale multi-view stereo. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1430–1437. IEEE, 2009. 4321

[10] H. Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 807–814. IEEE, 2005. 4322

[11] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner. A par-

allel SPH implementation on multi-core CPUs. Computer
Graphics Forum, 30(1):99–112, 2011. 4324

[12] K. Kolev, T. Brox, and D. Cremers. Fast joint estimation

of silhouettes and dense 3D geometry from multiple images.

Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 34(3):493–505, 2012. 4321

[13] V. Kolmogorov and R. Zabih. Multi-camera scene re-

construction via graph cuts. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 82–96.

Springer, 2002. 4321

[14] K. N. Kutulakos and S. M. Seitz. A theory of shape by space

carving. International Journal of Computer Vision (IJCV),
38(3):199–218, July 2000. 4321

[15] M. Lhuillier and L. Quan. Quasi-dense reconstruction from

image sequence. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 125–139. Springer,

2002. 4322

[16] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision (IJCV),
60(2):91–110, Nov. 2004. 4322

[17] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M.

Frahm, R. Yang, D. Nistér, and M. Pollefeys. Real-time

visibility-based fusion of depth maps. In Proceedings of the
International Conference on Computer Vision (ICCV), pages

1–8. IEEE, 2007. 4322

[18] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,

O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim,

and A. Fitzgibbon. KinectFusion: Real-time dense surface

mapping and tracking. In Mixed and Augmented Reality (IS-
MAR), 2011 10th IEEE International Symposium on, pages

127–136. IEEE, 2011. 4325, 4326

[19] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.

DTAM: Dense tracking and mapping in real-time. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), pages 2320–2327. IEEE, 2011. 4322, 4325

[20] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro,

and W. Stuetzle. Robust meshes from multiple range maps.

In 3-D Digital Imaging and Modeling, 1997. Proceedings.,
International Conference on Recent Advances in, pages 205–

211. IEEE, 1997. 4321

[21] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and

R. Szeliski. A comparison and evaluation of multi-view

stereo reconstruction algorithms. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol-

ume 1, pages 519–528. IEEE, 2006. 4325

[22] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajecto-

ries by GPU-accelerated large displacement optical flow. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 438–451. Springer, 2010. 4322

[23] R. Szeliski and D. Tonnesen. Surface modeling with oriented
particle systems. SIGGRAPH ’92. ACM, New York, NY,

USA, 1992. 4322

[24] B. Ummenhofer and T. Brox. Dense 3D reconstruction with

a hand-held camera. In Pattern Recognition, pages 103–112.

Springer, 2012. 4321

[25] D. Weikersdorfer, D. Gossow, and M. Beetz. Depth-adaptive

superpixels. In Pattern Recognition (ICPR), 2012 21st In-
ternational Conference on, pages 2087–2090. IEEE, 2012.

4324

[26] C. Zach, T. Pock, and H. Bischof. A globally optimal al-

gorithm for robust TV-L1 range image integration. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), pages 1–8. IEEE, 2007. 4321

976976

