
Dynamic Probabilistic Volumetric Models

Ali Osman Ulusoy Octavian Biris Joseph L. Mundy
School of Engineering, Brown University

{ali ulusoy,octavian biris,joseph mundy}@brown.edu

Abstract

This paper presents a probabilistic volumetric frame-
work for image based modeling of general dynamic 3-d
scenes. The framework is targeted towards high quality
modeling of complex scenes evolving over thousands of
frames. Extensive storage and computational resources are
required in processing large scale space-time (4-d) data.
Existing methods typically store separate 3-d models at
each time step and do not address such limitations. A novel
4-d representation is proposed that adaptively subdivides in
space and time to explain the appearance of 3-d dynamic
surfaces. This representation is shown to achieve compres-
sion of 4-d data and provide efficient spatio-temporal pro-
cessing. The advances of the proposed framework is demon-
strated on standard datasets using free-viewpoint video and
3-d tracking applications.

1. Introduction
Three dimensional (3-d) dynamic scene modeling from

imagery is a central problem in computer vision with a wide
range of applications, including 3-d video, feature film pro-
duction, mapping, surveillance and autonomous navigation.
An important aspect of 3-d dynamic scene modeling is de-
veloping efficient representations that extend current 3-d
models to include temporal information. A common ap-
proach is to store a 3-d model at each time step [32, 17, 24].
However, this approach does not yield an integrated space-
time (4-d) data structure and does not scale well in dealing
with thousands of frames of data. In particular, such repre-
sentations do not exploit the fact that many 3-d objects, such
as buildings, roads and trees, persist through time and need
not be stored repeatedly for each time step. This observation
suggests storing static parts of the scene only once. In gen-
eral, compression of 4-d data can be achieved adaptively;
static parts of the scene are represented with infrequent up-
dates, while fast-moving objects are dynamically encoded
at each time step to accurately describe their motion.

This paper proposes a probabilistic volumetric represen-
tation for image based modeling of general dynamic scenes

Figure 1: Top: Renderings of various 4-d probabilistic volu-
metric models. Note the detailed appearance and in particu-
lar, specular highlights on the red ball. Bottom: The results
of the implemented 3-d tracking algorithm. The object be-
ing tracked is highlighted in green.

that achieves such compression and allows for efficient
spatio-temporal processing. This approach is facilitated by
a novel space-time representation that adaptively subdivides
in space and time to explain the appearance of dynamic 3-
d surfaces. Space is subdivided to represent rapidly vary-
ing spatial texture or surface properties, and time is subdi-
vided to represent motion. An intuitive modeling algorithm
is proposed, where 3-d models are estimated at each time
step and then inserted into the 4-d representation in an on-
line fashion. During this insertion, the algorithm performs
3-d change detection by comparing its prediction with the
incoming 3-d data to decide whether motion has occurred.
If so, new memory is allocated to explain the changes in the
incoming data. Otherwise, if the object is considered static,
the current representation is regarded as sufficient. The al-
gorithm provides a natural tradeoff between quality of 4-d
data and compression, that can be tuned depending on the
application.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.68

505

The resulting 4-d representation encodes probabilistic
surface geometry and appearance information that is dense
in both space and time, i.e. parameter estimates are avail-
able at all space-time cells. Appearance is modeled us-
ing a novel view-dependent mixture distribution that can
explain appearance variations due to non-Lambertian re-
flectance properties (note the specular reflections in Figure
1 top right image). The 4-d models can be used to synthe-
size high quality images from novel viewpoints without the
need to access the original imagery.

The proposed framework is tested on publicly available
datasets [1]. Two applications, novel view rendering (for
free-viewpoint video) and 3-d tracking, are used to evaluate
the quality of the 4-d models as well as the performance of
the overall modeling system. Novel view rendering allows
quantitative evaluation of the tradeoff between quality of
novel view imagery and storage requirements. Experiments
indicate a graceful drop in quality with increasing compres-
sion. Moreover, the implemented 4-d rendering algorithm
is capable of rendering 3-d video in almost real-time, based
on space-time ray tracing in the GPU. For tracking surfaces
in 4-d space-time, a mutual information (MI) based particle
filter algorithm is implemented. The proposed MI measure
integrates probabilistic surface and appearance information.
The tracking algorithm does not assume an a-priori shape
model and can track any initial 3-d region defined by a block
of cells. Accurate tracking performance is demonstrated for
objects undergoing complex motion including non-rigid de-
formations.

2. Related Work
Interest in 3-d dynamic scene modeling has been re-

newed recently, thanks to the advances in 3-d image-based
modeling for static scenes. Common 3-d representations
such as point clouds, meshes, and patches can be extended
to 4-d in naive ways. However, there are difficult issues
related to changes in topology and ambiguity that must
be taken into account. The desired representation should
be able to model arbitrary 4-d scenes, provide continu-
ous (dense) 4-d data for spatio-temporal analysis and scale
gracefully with increasing data. A brief overview and dis-
cussion of previously proposed representations is provided.

Time varying point clouds or patches are collections
of 3-d primitives augmented with temporal information
[34, 10, 23]. Such representations can model arbitrary 4-d
shapes with a specified number of 4-d primitives. A diffi-
culty, which is also encountered in their 3-d counterparts,
is sparsity, which hinders spatio-temporal processing that
requires dense association of 4-d model neighborhoods

Polygonal meshes are arguably the most popular repre-
sentation for 4-d modeling. They have been used exten-
sively in performance capture [4, 15] and free view-point
video [11]. Changes in scene topology are difficult to model

using meshes. This problem has been acknowledged in 3-d
tracking applications, where assumptions such as fixed or
known topology are commonly made [9, 8]. However, such
assumptions are generally not true for arbitrary 4-d scenes,
where little a-priori information is available. Moreover, re-
covering the topology of dynamic objects is a challenging
problem [19, 28]. Although there exist works that can han-
dle changes in topology such as [31, 7], their robustness
under ambiguities inherent to image-based model inference
due to occlusion and featureless surfaces is yet to be ad-
dressed.

Volumetric models provide an alternative to point and
mesh based representations. They can be used to model
complex 3-d scenes evolving over time while assuming little
about the observed scene. Moreover, they encode data that
is dense in space and time. This encoding supports scene
flow analysis [32, 17] and applications such as temporal in-
terpolation for free-viewpoint video [32].

A well known drawback of volumetric models is the ex-
ceedingly large storage requirements. The large storage
footprint presents a major obstacle for high resolution 3-d
modeling of static scenes, and is even more prohibitive for
4-d scenes with possibly thousands of frames. It is clear
that storing 3-d models for each time step individually is
not practical, nor efficient for spatio-temporal processing.

Compression of time varying volumes has been stud-
ied in the context of real time rendering [20]. In partic-
ular, Shen et al. propose Time-Space Partitioning (TSP)
tree [26], which is a time supplemented octree. Instead
of containing spatial information at its nodes, the TSP tree
contains a binary time tree that adaptively subdivides to
explain the temporal variation in the corresponding node.
This adaptive subdivision produces a coarse discretization
of time for slowly moving or static objects and a fine dis-
cretization of time to accurately describe motion. Hence,
the TSP tree achieves compression of time varying volumes
due to its adaptive subdivision of both space and time.

To the best of our knowledge, storage limitations and
efficient spatio-temporal processing of volumetric dynamic
scenes has not been addressed in image-based 4-d modeling
works proposed so far [32, 17, 24]. These issues inhibit the
processing of real world 4-d scenes learned from imagery.
Notable exceptions include [30, 29], where a 3-d model of
the static parts of the scene is used to identify and recon-
struct only dynamic objects at each time step. However,
these approaches do not address scalability nor do they tar-
get spatio-temporal processing.

This paper proposes a novel 4-d representation combin-
ing the state of the art in compression of time varying vol-
umes [26] and probabilistic 3-d modeling in the GPU [21].
Compared to storing and processing 3-d models at each
time step individually, the proposed framework allows for
significant reduction in storage requirements as well as ef-

506

ficient spatio-temporal computation. Experiments indicate
processing of detailed 3-d models of probabilistic surface
and appearance over hundreds of frames is made feasible
using the proposed framework. Novel view rendering and
3-d tracking applications are used to demonstrate the high
quality of 4-d data learned from imagery as well as the ben-
efit of dense space time data for flow analysis.

3. Dynamic Probabilistic Volumetric Models
This section describes the proposed framework for mod-

eling dynamic 3-d scenes from multi-view video. The pro-
posed 4-d space-time data structure is introduced in Section
3.1. The surface and appearance models encoded in this
representation are discussed in Section 3.2. Finally, esti-
mation of the proposed models from multi-view video is
described in Section 3.3.

3.1. Representation and Data Structures

The proposed data structure is a time-supplemented hy-
brid grid-octree optimized for computation in the GPU. It
is an extension of the data structure proposed by Miller et
al. for modeling 3-d static scenes in the GPU [21] to dy-
namic scenes, based on the TSP tree [26]. This extension
is made by supplementing the 3-d data structure with bi-
nary time trees that model the temporal variation of each
3-d cell. Rather than working with a single, deep octree and
time trees that span the entire time interval as proposed in
[26], the key idea is the use of shallow and compact data
structures (for both space and time) amenable to GPU pro-
cessing. The proposed data structure is shown in Figure 2.

The 3-d data structure proposed in [21] is based on a
uniform grid of shallow (4 levels) octrees. Its shallow nature
reduces the number of memory accesses needed to traverse
to a cell of interest. A compact bit tree representation (16
bytes) is used instead of a pointer based representation so
that once the bit tree is loaded in GPU memory, traversal is
free. Experiments indicate this data structure is four times
more efficient in terms of memory access compared to the
standard octree [21]. The data (surface, appearance, etc.)
associated with cells of the bit tree are stored contiguously
in separate data buffers.

The proposed representation supplements this 3-d data
structure with shallow binary time trees as shown in Figure
2. The time trees have a limited depth of 5 and can be stored
compactly in 8 bytes using the bit tree representation. Data
is stored only for the leaf cells of time trees to save storage.
Once the time tree is loaded in the GPU, only a single mem-
ory access is needed to traverse to a time query. Overall,
two memory accesses are sufficient to traverse to a space-
time cell of interest. This representation displays spatio-
temporal locality, i.e. cells that are close in space and time
are inexpensive to query, with possibly zero memory access.
This locality is important since spatio-temporal tasks typi-

Grid of shallow octrees Shallow time tree

data

[12,16)

[0,8)

[16,32)

[8,9) [9,10)

Figure 2: The proposed data structure. The blue cells and
arrow depict a typical space-time cell query.

cally require neighborhood accesses. For instance, in 3-d
tracking, a cell at time t is frequently compared to a nearby
cells at time t − 1. Note that such locality is not supported
if 3-d models are individually stored.

Compression of space and time is naturally achieved us-
ing the adaptive subdivision of the octrees and the time
trees respectively. Spatially homogeneous regions are rep-
resented with coarse subdivisions of the octree. Static (or
slowly moving) 3-d objects can be represented with a few
subdivisions of their time trees, hence avoiding repeated
storage for each time step.

In the proposed data structure, the time trees are limited
in their depth, which also limits the extent of the time in-
terval they are associated with. Since such a binary tree
can subdivide up to 32 leaves, the time interval of each
time tree spans 32 time steps. When the time interval of
a time tree ends, a new grid of octrees and associated time
trees, ”brick”, is initiated. The next brick’s time span begins
where the previous brick ends, e.g. when the brick in Figure
2 ends, the next brick would start at 32.

For a perfectly static scene, a time tree can represent the
32 time steps it is associated with, in a single root node.
Hence, it can achieve at most 32 levels of compression. Al-
though this shallow nature is not optimal in terms of com-
pression, it presents a major benefit. It allows for limiting
the number of cells (equivalently data items) in each brick,
such that they can be transferred to and processed efficiently
in the GPU. Note that as GPU memories grow, processing
larger bricks will become feasible. This will allow deeper
time tree structures, leading to higher levels of compression.

3.2. Surface and Appearance Models

The proposed 4-d data structure is capable of storing var-
ious kinds of surface and appearance information. In volu-
metric 3-d image based modeling, probabilistic models of
occupancy and appearance have been proposed [6, 3, 22].
These models explicitly represent ambiguities and uncer-
tainties caused by calibration errors, moving objects, areas
of constant appearance and self-occlusions. They also facil-
itate estimation through Bayesian inference [5, 22, 16]. In

507

particular, Pollard and Mundy propose an online learning
algorithm that can update surface and appearance probabil-
ities one image at a time [22]. Initially implemented on a
regular grid of voxels, this model has been extended to vari-
able resolution grids by Crispell et al. through a continuous
representation of occupancy [12].

The 4-d models in this work store Crispell et al.’s con-
tinuous occupancy representation as well as an appearance
distribution. Formally, for a cell X at time t, the surface
probability is denoted as P (Xt ∈ S) and the appearance
distribution as p(ItX), where I can be intensity or color.

The 4-d surface and appearance information can be used
to synthesize images from novel viewpoints at time t. The
expected appearance on an arbitrary ray R at time t can be
computed as,

E[ItR] =
∑
X∈R

E[ItX]P (Xt ∈ S)P (Xtis visible) (1)

where X ∈ R denote the voxels along the ray R. This
equation is a direct extension of the expected image equa-
tion proposed in [22] to include time.

The choice of how P (IX) is modeled can have signif-
icant impact on novel view generation and free-viewpoint
video applications. The Gaussian distribution has been used
extensively for 3-d modeling [6, 3], as well as the more ex-
pressive Mixture of Gaussians (MoG) [22, 12]. However,
these models are inherently Lambertian and do not capture
view-dependent variations that commonly occur in current
motion capture datasets. The Lambertian assumption not
only degrades the appearance quality in novel view gener-
ation, but also leads to lower quality surfaces. This degra-
dation is due to the fact that estimation of appearance and
surface probabilities are coupled; an inadequate appearance
model cannot explain the fluctuations in appearance due to
view point changes, thus lowering the evidence of a surface.

A novel appearance model is proposed to capture view-
dependent variations. The model is parametrized by canoni-
cal directions {Vi}Ni=1 and associated Gaussian distributions
{µi,Σi}Ni=1 as pictured in Figure 3. The distribution cor-
responding to direction Vi is used to explain the intensity
when the cell is viewed from a camera looking towards Vi.
In general, when the cell is viewed from an arbitrary direc-
tion R, multiple distributions are used, weighted by their
directions’ proximity to R. Formally, the probability of an
appearance I seen from camera ray R is expressed as,

p(I ; R) =
1∑
wi

N∑
i=1

wi p(IX ; µi,Σi) (2)

where wi =

{
−Vi ·R if Vi ·R < 0

0 otherwise
(3)

Note that distributions only corresponding to directions that

lie on the hemisphere facing R have non-zero weights, i.e.
components facing away from R do not contribute.

RX

V1

V2

V3

P (IX ; µ1,⌃1)
P (IX ; µ2,⌃2)

P (IX ; µ3,⌃3)

Camera Ray

Figure 3: Depiction of the proposed view-dependent ap-
pearance model.

Similar algorithms have been proposed in the context of
view-dependent texture mapping [11, 13]. Most such works
use the original imagery to blend novel textures. Instead,
the proposed method takes a probabilistic approach by mod-
eling view-dependent distributions. Moreover, it does not
require access to the training imagery or precomputed tex-
ture atlases during novel view generation.

3.3. 4-d Modeling from Multi-view Video

This section describes the algorithm used to estimate 4-
d models that encode the proposed surface and appearance
distributions, from multi-view video. The input to the algo-
rithm is imagery and associated cameras calibrated in space
and time, i.e. known pose and time of capture. The mo-
tion capture studio environment provides such data along-
side with foreground/background segmentation, i.e. silhou-
ettes. The proposed algorithm does not require silhouettes
but can benefit from them, to remove irrelevant background
surfaces.

The algorithm starts by estimating a 3-d volumetric
model (surface and appearance distributions) independently
for each frame, using the online update algorithm of Pollard
and Mundy [22]. The update algorithm is modified to make
use of silhouette information by simply discarding back-
ground pixels. This scheme is similar to Photo hulls pro-
posed by Slabaugh [27] in that occupancy and appearance
of voxels only inside the visual hull are estimated.

The next step is inserting the 3-d models into the pro-
posed 4-d representation in an online manner. The insertion
algorithm takes as input a 4-d model with time span 0 to
T−1 and 3-d model at time T . The algorithm performs two
major steps, here referred to as conform and compare. In the
conform stage, the octree of the current 4-d model is subdi-
vided such that each octree node has same or higher reso-
lution compared to the corresponding node in the incoming
octree. This makes sure the 4-d model can match the spa-
tial subdivision of the incoming 3-d model. In the compare
stage, the 4-d model’s prediction for time T is compared
against the incoming 3-d model’s data. Note that this pre-
diction is obtained simply by traversing the time trees to
reach leaf node containing T . If the prediction does not ac-
curately match the incoming data, the corresponding time

508

trees are subdivided to allocate new memory and incoming
data is copied into the 4-d representation.

As proposed in Section 3.2, the 4-d models represent
probabilistic information. Hence, in the comparison step,
the distance between two probability distributions must be
evaluated. KL divergence provides an attractive measure for
this task. DKL(P ||Q) is a measure of information lost when
Q is used to approximate P . This provides the interpreta-
tion: P is the true distribution of the incoming 3-d data, and
it is being approximated by Q, the prediction. Hence, P is
regarded as well-represented if DKL(P ||Q) < τ .

In practice, both surface and appearance distributions are
used for comparison, denoted by

DKL(P (X
T) ||Q(XT)) < τS ∧

DKL(p(I
T
X) || q(ITX)) < τA, (4)

where τS and τA are specified thresholds on surface and
appearance distances respectively.

4. Experiments and Applications
The proposed framework is implemented under the open

source VXL project [2]. Experiments are presented on
a number of sequences from the publicly available “’4-d
repository” from INRIA [1]. All sequences were collected
in a motion capture studio and share the same setup with
16 cameras distributed on a hemisphere and 1624x1224 im-
agery. Foreground segmentation is also provided for each
image. The sequences are STICK (280 frames), GUARD
PUNCH TWO (255 frames), ADULT CHILD BALL (340
frames) and BOY PLAYING BALL (530 frames), and exam-
ple renderings of estimated 4-d models is displayed in Fig-
ure 1 respectively, from left to right.

First, the effectiveness of the proposed view-dependent
appearance model is demonstrated in comparison to a sin-
gle Gaussian and Mixture of Gaussians (MoG) models. The
evaluation is carried out for static 3-d scenes. Five random
frames are selected from each of the four sequences. All
models are estimated using the online update framework
[22]. The learning for the view-dependent model is simi-
lar to that of the single Gaussian case, where the parameters
of the distribution are updated incrementally with incoming
intensities. However, each Gaussian component is updated
with a different weight (3), according to its direction’s prox-
imity to the training camera.

The resulting models are compared through novel view
generation (see eq (1)). Namely, the models are trained with
a leave-one-out procedure, where a random viewpoint is left
out during training. This viewpoint is used to render the
most probable image, given the model, corresponding to the
actual left out image. Subsequently, the model-predicted
image is compared to the left out (ground truth) image using
the SSIM image similarity measure [33], which takes into
account human perception.

Sequence Gaussian MoG View-dependent
STICK 0.59 0.62 0.70
GUARD PUNCH TWO 0.46 0.53 0.62
ADULT CHILD BALL 0.74 0.71 0.76
BOY PLAYING BALL 0.79 0.76 0.80

Table 1: Average SSIM scores of novel view rendering ex-
periments for three different appearance models.

The average SSIM scores for each sequence are pre-
sented in Table 1. It can be observed that the proposed view-
dependent model scores consistently higher than Gaussian
and MoG models. The contrast can be best appreciated in
scenes where non-Lambertian effects are abundant. For in-
stance, in GUARD PUNCH TWO, the white karate uniforms
are the dominant material in the scene and demonstrate
view-dependent variations due to the spot lights above. In
STICK, the Taekwando staff as well as the arms and shoul-
ders of the actor also exhibit such effects. Figure 4 presents
a visual comparison of the three appearance models on a
frame from STICK. It can be observed neither the Gaussian
nor the MoG models can explain the variation of intensi-
ties on the staff, arms or shoulders. Therefore, these mod-
els have difficulty forming the geometry of such surfaces.
In contrast, the proposed model is able to explain these
complex variations via learning distinct appearance mod-
els for different viewpoints. Accurate estimation of surface
geometry as well as appearance result in the higher scores
achieved by the proposed model.

In sequences where view-dependent variations are not
prevalent, the proposed model behaves similarly to Gaus-
sian or MoG models. For instance, in ADULT CHILD BALL
or BOY PLAYING BALL, only the upper region of the ball
contains highlights, whereas rest of the scene is largely
Lambertian. The proposed model attains the highest SSIM
scores for these sequences as well, however, the improve-
ments are less significant.

4.1. Free-viewpoint video rendering

Free-viewpoint video is a popular application in 4-d
modeling, where the user interactively chooses viewpoints
to observe a dynamic scene. This application necessitates
realistic synthesis of novel view imagery at interactive rates.
The proposed framework readily supports this synthesis
through computation of Eq. (1), which provides the ex-
pected appearance of a camera ray. This equation is com-
puted efficiently using space-time ray tracing in the GPU.

An analysis of novel view rendering quality with varying
compression is presented. The test datasets are trained with
a leave-one-out procedure, where a randomly left out view-
point is used to render a video of the dynamic scene. The
rendered video is compared to ground truth by averaging
the SSIM scores of each frame in the video. The results are
presented in Figure 5a. The datasets yield high SSIM scores

509

(a) (b) (c)

Figure 4: Novel view renderings using three different appearance models. Please zoom in the images to appreciate the
differences. The scene is a frame from GUARD PUNCH TWO. (a) Gaussian. (b) MoG. (c) Proposed view-dependent model.

when compression rate is low, except for GUARD PUNCH
TWO, which results in a relatively lower score. GUARD
PUNCH TWO presents challenges in terms of 3-d model-
ing because it contains regions of constant appearance (the
karate uniforms) and significant occlusions coupled with
limited viewpoints.

0 5 10 15 20 25 30
Compression ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SS
IM

(a)

0 5 10 15 20 25 30
Compression ratio

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Re
nd

er
in

g
sp

ee
du

p(
x)

adult_child_ball
stick
guard_punch_two
boy_playing_ball

(b)

Figure 5: Novel view rendering quality and performance
behavior with varying compression. (a) Rendering quality
measured by SSIM. The legend for this plot is identical to
that of (b). (b) Rendering performance. The baseline is the
performance of rendering 3-d models at each time step.

As observed in Figure 5a, video fidelity gradually de-
creases with increasing compression. Note that compres-
sion is controlled by the subdivision of time trees (see Sec-
tion 3.1). High levels of compression can be achieved by
allowing a coarse subdivision of time. However, an object
undergoing fast motion may require a fine temporal reso-
lution to be described accurately. Such objects may not be
modeled well if the allowed resolution doesn’t match the
speed of the object. In general, insufficient sampling of time
leads to motion artifacts along object trajectories which, in
turn, degrade the rendered image quality. An example is
provided in Figure 6. Note that due to the high speed of the
rotating staff, artifacts begin to appear under 3 fold com-
pression and are more severe under high compression.

It should also be noted that the legs and torso of the ac-
tor move at lower speeds and therefore, their motion can be
significantly compressed with little effect on visual quality.
As seen in Figure 6, they are modeled accurately even un-

der high compression. Overall, the datasets analyzed in the
paper are quite challenging in this regard; they contain fast
moving large objects. In such scenes, even little compres-
sion may prevent achieving the desired temporal resolution
and result in image artifacts. Moreover, the objects under-
going motion are quite large and therefore affect substantial
image regions on the rendered video. Nonetheless, the pro-
posed framework achieves compression ratios of at least 3
while retaining visually acceptable quality as seen in the
supplemental video. Future work will address real world,
e.g. outdoor, scenes where static or slowly moving objects
are much more frequent and higher levels of compression
are anticipated.

(a) (b) (c)

Figure 6: Novel view renderings of STICK with varying
compression ratios. (a) No compression. (b) 3 fold com-
pression. (c) 15 fold compression.

The performance of novel view video rendering with
varying thresholds is also evaluated and the results are
shown in Figure 5b. The baseline against which perfor-
mance is compared is the performance of rendering when
3-d models are stored at each time step. The performance
is evaluated as the GPU execution time, which includes

510

transfer of data as well as computation. It can be observed
that the performance increases rapidly with higher levels of
compression, due both to the decrease in the total number
of cells that need to be transferred to the GPU, as well as re-
duced traversal of time trees. The baseline performance on
average takes 100ms to render a novel view image. Hence,
the proposed system can achieve rendering at interactive
rates when allowing acceptable degradation of rendering
quality.

4.2. 3-d Tracking

The proposed framework provides dense surface and ap-
pearance information in both space and time, i.e. estimates
are available at all cells. Note that point or mesh based rep-
resentations are sparse by comparison. This dense nature al-
lows 3-d motion analysis and tracking applications such as
scene flow [32, 17]. In particular, motion analysis and track-
ing algorithms commonly used for video processing can be
directly extended to their 3-d counterparts for the proposed
framework. As a demonstration, an annealed particle fil-
ter tracker [14] is implemented that displays the benefits of
dense surface and appearance information, as well as the
feasibility of flow analysis in the proposed framework.

The annealed particle filter is a robust Bayesian frame-
work for tracking in high dimensional state spaces [14].
It employs simulated annealing to search for and localize
peaks of the observation density or fitness function. A
mutual information (MI) measure is proposed as the fit-
ness function, which integrates both surface and appear-
ance distributions in “expected appearance”, defined as
E[ItX]P (Xt ∈ S). The expected appearance was initially
proposed by Restrepo et al. as a characterization of volu-
metric models in the context of 3-d object recognition [25].

The implemented tracker assumes no shape prior and
tracks the 3-d positions of objects given an initial label-
ing. The motion model is chosen to be a two part Gaussian
mixture distribution, where the mean of one Gaussian is the
velocity estimate and the other Gaussian is zero mean. All
experiments were conducted with 5 annealing steps and 128
particles.

A bounding box around the plastic ball is marked as ini-
tial 3-d region to be tracked in datasets ADULT CHILD BALL
and BOY PLAYING BALL. In ADULT CHILD BALL, the ball
is being bounced back and forth between a man and a child.
Although the motion of the ball is mostly smooth, there are
large velocity changes as well as significant non-rigid de-
formations when the ball hits the ground. In BOY PLAYING
BALL, the boy is bouncing the ball while rotating around
himself. The motion is characterized by very high speeds
and frequent changes in direction. The deformations are
also more pronounced. For both datasets, the track is main-
tained accurately for the duration of the dataset. Screen-
shots of the respective tracks are shown in Figures 1 and 7.

Figure 7: Tracking results of a plastic ball in BOY PLAYING
BALL viewed from a training camera.

Please see the supplementary video for the entire result.
The tracker was also extended to include 3-d rotations.

An initial experiment is provided for proof of concept.
The Taekwondo staff undergoing fast rotation is tracked as
shown in Figure 8. The algorithm maintains track until the
performer reaches with his second hand and grabs the staff.
The second hand disrupts the tracker because it is not con-
tained in the provided initial region and that it encapsulates
substantial volume compared to the initial region. This is-
sue will be addressed in future work using adaptive tracking
as well as segmentation of objects being tracked.

As mentioned in Section 3.1, the proposed representation
possesses spatio-temporal locality, which allows the tracker
to evaluate the MI measure very efficiently. The tracker
benefits from increasing compression similarly to render-
ing performance behavior shown in Figure 5b. The current
implementation takes roughly thirty seconds (for the ball
example) to evaluate the MI function for 128 particles. The
ball encapsulates a large 3-d region which slows down the
evaluation. Significant speedups are anticipated when track-
ing smaller regions such as patches. Future work includes
analysis of efficiency and quality of dense scene flow in the
proposed representation.

5. Conclusion and Future Work

This paper presented a novel probabilistic volumetric
representation that addresses the storage and processing
limitations of current volumetric image based 4-d modeling
works. The proposed framework is shown to achieve high
quality modeling of complex 4-d scenes. Experiments were
presented to demonstrate the tradeoff between compression
and novel view rendering quality, as well as the 3-d tracking
capabilities of the system.

Future work will include testing the proposed framework
in large scale outdoor 4-d environments such as mountain-

511

Figure 8: Tracking result of a Taekwondo staff in STICK.

ous regions and urban canyons, where static objects are
common. Such scenes present a major source of compres-
sion which can be readily exploited by the proposed rep-
resentation. However, in contrast to motion capture stu-
dios, such scenes present significant challenges in terms of
data acquisition such as limited number of viewpoints and
temporal synchronization of cameras [18, 30]. These chal-
lenges highlight a limitation of the current modeling algo-
rithm, that is, in such uncontrolled environments, 3-d mod-
els of each time instant may not be acquired reliably. This
limitation motivates investigating whether the proposed 4-d
models can be estimated directly from imagery.

References
[1] 4-d repository. http://4drepository.inrialpes.

fr/, 2012. 2, 5
[2] Vxl. http://http://sourceforge.net/

projects/vxl/, 2012. 5
[3] M. Agrawal and L. Davis. A probabilistic framework for

surface reconstruction from multiple images. CVPR, 2001.
3, 4

[4] E. D. Aguiar, C. Stoll, and C. Theobalt. Performance capture
from sparse multi-view video. ACM SIGGRAPH, 2008. 2

[5] R. Bhotika, D. J. Fleet, and K. N. Kutulakos. A Probabilistic
Theory of Occupancy and Emptiness. In ECCV, 2002. 3

[6] J. D. Bonet and P. Viola. Poxels: Probabilistic voxelized
volume reconstruction. ICCV, 1999. 3, 4

[7] C. Budd, P. Huang, M. Klaudiny, and A. Hilton. Global Non-
rigid Alignment of Surface Sequences. IJCV, 2012. 2

[8] C. Cagniart, E. Boyer, and S. Ilic. Free-form mesh tracking:
A patch-based approach. CVPR, 2010. 2

[9] C. Cagniart, E. Boyer, and S. Ilic. Probabilistic Deformable
Surface Tracking. ECCV, 2010. 2

[10] R. L. Carceroni and K. N. Kutalakos. Multi-view scene cap-
ture by surfel sampling: from video streams to non-rigid 3D
motion, shape and reflectance. ICCV, 2001. 2

[11] J. Carranza, C. Theobalt, M. a. Magnor, and H.-P. Seidel.
Free-viewpoint video of human actors. ACM TOG, 2003. 2,
4

[12] D. Crispell, J. Mundy, and G. Taubin. A Variable-Resolution
Probabilistic Three-Dimensional Model for Change Detec-
tion. IEEE Transactions on Geoscience and Remote Sensing,
2012. 4

[13] P. Debevec, C. Taylor, and J. Malik. Modeling and render-
ing architecture from photographs: A hybrid geometry-and
image-based approach. ACM SIGGRAPH, 1996. 4

[14] J. Deutscher, a. Blake, and I. Reid. Articulated body motion
capture by annealed particle filtering. CVPR, 2000. 7

[15] Y. Furukawa and J. Ponce. Dense 3d motion capture from
synchronized video streams. CVPR, 2008. 2

[16] L. Guan, J. Franco, and M. Pollefeys. 3d occlusion inference
from silhouette cues. CVPR, 2007. 3

[17] L. Guan and M. Pollefeys. Probabilistic 3D Occupancy Flow
with Latent Silhouette Cues. CVPR, 2010. 1, 2, 7

[18] N. Hasler and B. Rosenhahn. Markerless motion capture
with unsynchronized moving cameras. CVPR, 2009. 8

[19] a. Letouzey and E. Boyer. Progressive shape models. CVPR,
2012. 2

[20] K.-L. MA. Visualizing Time-varying Volume Data. Com-
puting in Science and Engineering, March 2003. 2

[21] A. Miller, V. Jain, and J. L. Mundy. Real-time rendering and
dynamic updating of 3-d volumetric data. In Proceedings of
the Fourth Workshop on GPGPU, 2011. 2, 3

[22] T. Pollard and J. L. Mundy. Change Detection in a 3-d World.
In CVPR, June 2007. 3, 4, 5

[23] T. Popham. Tracking 3D Surfaces Using Multiple Cameras
: A Probabilistic Approach by. PhD thesis, University of
Warwick, 2010. 2

[24] A. Prock and C. Dyer. Towards real-time voxel coloring.
Proceedings of the DARPA Image Understanding Workshop,
1998. 1, 2

[25] M. I. Restrepo, B. Mayer, A. O. Ulusoy, and J. L. Mundy.
Characterization of 3-d Volumetric Probabilistic Scenes for
Object Recognition. Journal of Selected Topics in Signal
Processing, 2012. 7

[26] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume ren-
dering algorithm for time-varying fields using a time-space
partitioning (TSP) tree. In IEEE Proceedings Visualization,
1999. 2, 3

[27] G. Slabaugh, R. Schafer, and M. Hans. Image-based photo
hulls. 3DPVT, 2002. 4

[28] T. Popa and I. South-Dickinson and D. Bradley and A. Shef-
fer and W. Heidrich. Globally Consistent Space-Time Re-
construction. Computer Graphics Forum, 2010. 2

[29] A. Taneja, L. Ballan, and M. Pollefeys. Image based detec-
tion of geometric changes in urban environments. In ICCV,
2011. 2

[30] A. Taneja, L. Ballan, and M. Pollefeys. Modeling dynamic
scenes recorded with freely moving cameras. ACCV, 2011.
2, 8

[31] K. Varanasi and A. Zaharescu. Temporal surface tracking
using mesh evolution. ECCV, 2008. 2

[32] S. Vedula. Image Based Spatio-Temporal Modeling and View
Interpolation of Dynamic Events. PhD thesis, 2001. 1, 2, 7

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: From error visibility to structural
similarity. ICIP, 2004. 5

[34] S. Würmlin, E. Lamboray, and M. Gross. 3D video frag-
ments: dynamic point samples for real-time free-viewpoint
video. Computers & Graphics, 2004. 2

512

http://4drepository.inrialpes.fr/
http://4drepository.inrialpes.fr/
http://http://sourceforge.net/projects/vxl/
http://http://sourceforge.net/projects/vxl/

